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Abstract A method to infer the bed topography beneath glaciers from surface measurements (elevation from altimetry6

and velocity from InSAR) plus sparse thickness measurements is developed and assessed. The method relies on an origi-7

nal non-isothermal Reduced Uncertainty (RU) version of the Shallow Ice Approximation (SIA) equation which natively8

integrates the surface measurements. The flow model presents a single dimensionless multi-physics parameter g; it takes9

into account basal slipperiness and varying vertical rate factor profiles (therefore the vertical thermal variations). Next,10

the inversions rely on three stages involving: an Artificial Neural Network (ANN) and two Variational Data Assimilation11

(VDA) processes. The ANN based stage aims at estimating the multi-physics number g from the thickness measure-12

ments; the resulting estimator is remarkably robust. The complete inversion method is valid for moderately sheared flows13

(presenting a moderate basal slipperiness): it can be applied to inland ice-sheets areas. Numerical results are presented14

in East Antarctica Ice Sheet areas where the bed elevation may be highly uncertain (Bedmap2 values). The estimations15

are valid for wave lengths greater than ⇠ 10h̄ (due to the long wave assumption, shallow flow model) with a resolution at16

⇠ h̄ (h̄ a characteristic thickness value).17

Keywords Variational data assimilation · reduced flow model · deep learning · inference · topography · glaciers ·18

Antarctica.19

1 Introduction20

Bed topography elevation is a necessary data to set up dynamic ice flow models. Also, when combined with the surface21

topography measurements (e.g. acquired by altimetry), it straightforwardly provides the ice volume. In Antarctica and22

Greenland ice-sheets, ice thickness measurements are available along airborne radio-echo sounding tracks e.g. in the23

CReSIS RDS database 1. These measurements are particularly dense in fast ice coastal stream areas. On the contrary,24

they are very sparse inland; they are even nonexistent deep inland, see [4,14] and references therein.25

Numerous satellites provide (or have provided) accurate measurements of ice sheets surfaces: altimeters provide surface26

elevation H at ⇡ ±20 cm for 1 km2 pixels see e.g. [22,4], radar interferometers (InSar) provide surface velocity uH see27

e.g. [43].28

To obtain the bed elevation values beneath the glaciers, the challenge is next to infer its value between the thickness29

measurements given the surface measurements.30

A simple method to try to solve this challenge is to apply an ordinary Kriging, a statistical interpolation method (the most31

employed in geo-statistics). This interpolation method (purely data-driven) may be viewed as a Gaussian process regres-32

sion providing the best linear unbiased prediction. This method is the one employed to provide the reference bed elevation33

estimations in large vicinities of measurements in Greenland and Antarctica, see [3,14]. For estimations in Antarctica,34

the authors of [14] suggest that for cells located less than 20km from a measurement, the estimation error is an increasing35

function of the distance at a given rate. Next, beyond 20 km, the error would be uncorrelated with the distance. Still in the36

reference map called Bedmap2 [14], for cells located more than 50 km from any measurement, the thickness estimation37

is based on the gravity-field inversion. As a consequence, the estimations far from any measurements present very large38

uncertainties, up to ±⇠ 1000m according to [14].39
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To reduce uncertainties on the bed elevation beneath ice-sheets, combining physically-informed models and datasets is40

definitively a good direction. To do so, a key-point is be to employ a flow model sufficiently complex to be representative41

enough but simple enough to lead to well-posed, stable inverse problems (i.e. not leading to severe equifinality issues).42

In inverse geophysical flows modeling, equifinality issues are the common pitfall to avoid, see e.g. [5].43

44

In fast ice streams (⇡ 1� 10 km/y in Antarctica), the flows are plug-like (the glaciers simply slide). In this case,45

the momentum equation becomes trivial and inverting the (depth-integrated) mass equation enables to fill up the gaps46

downstream (and upstream) the measurements, see [46,40]. Due to the depth-integrated mass equation nature, the mea-47

surements (e.g. the flight tracks during airborne campaigns) have to be acquired cross-lines and relatively densely. Indeed,48

it is well known that this transport equation is intrinsically unstable when inverted; moreover, it propagates errors, see e.g.49

[36] and references therein. To locally damp this feature, some artificial diffusion which regularizes the equation has to50

be introduced. The inversion of the mass equation has been proposed in [8,46]; next, it has been combined with surface51

measurements by Variational Data Assimilation (VDA) in [41,42]. This approach has enabled the estimation of the bed52

elevation under ice streams, in particular in Greenland [40,42].53

In [7], a Bayesian framework is applied to provide probability distributions of thickness assuming Gaussian covariance54

structures of input data. The algorithm is equivalent to ordinary Kriging if no prior data is available. Bayesian approaches55

are particularly rich, however again here it relies here on mass conservation only.56

For fully sheared flows, the isothermal Shallow Ice Approximation (SIA) flow model with no slip at bottom, has been57

inverted in [37,21]. These estimations are robust however they are relevant for a very restricted flow regime only: fully58

sheared flow areas (therefore very slow flows, ⇡ 1�10 m/y in Antarctica).59

In moderately sliding flows, equivalently moderately sheared flows (that is mid-sliding mid-sheared), the slipperiness at60

bottom has to be taken into account in the inversion; it is an additional unknown parameter, in addition to the rate factor61

modeling the internal deformation. Inversions in such flow regime are much more challenging than the ones in the two62

previously described regimes. The inverse problem is here a-priori ill-posed.63

Let us cite some other studies related to bedrock estimations. [25] inverts the 1D depth-integrated SIA equation with64

slipperiness and a shape factor which models the 3D features of the flow. This leads to an ill-posed inverse problem; how-65

ever, the inversions are performed by imposing empirical constant values for the few unknown parameters. Based on the66

inversion of the complete hybrid SIA-SSA system called PISM [55] (SSA for Shallow Shelf Approximation), [51] uses67

an empirical iterative method to calibrate the bed elevation only. In [38], the SIA flow model with slipperiness at bottom68

(i.e. not no-slip) is inverted by distinguishing different sub-regimes. The developed mid-analytical mid-computational in-69

version methods lead to well-posed inverse problems, therefore stable inversions. The only weakness of the study arises70

in the ice rate factor which is supposed to be constant. Unfortunately this assumption is unrealistic for ice-sheets.71

Inland ice-sheets areas presenting mid-range surface velocities (⇡ [10�100] m/y in Antarctica) correspond to moderately72

slipping / moderately sheared flows. Such flows cannot be accurately modeled neither by mass conservation only, nor73

by plug-like flows models (e.g. SSA model), nor by fully sheared flows models (e.g. the classical SIA model with no74

slip at bottom). In this case, the measured surface features (elevation and velocity) are the signature of the slipperiness at75

bottom and the internal deformation. Moreover, the internal deformation depends on the constitutive ice behavior and the76

vertical thermal profiles. As a consequence, to invert the surface data in moderately sheared flows is highly challenging.77

Moreover, inland moderately sheared flows have been poorly covered during the airborne campaigns since they constitute78

large and far areas therefore difficult and expansive to flight over. As a consequence, the flow model to invert needs to be79

stable and robust when inverted even in lack of local in-situ data. This mathematical property is all but trivial to obtain,80

see e.g. [2,36,48,38]. Moreover, it would be highly valuable that the flow model inversion is as insensitive as possible to81

the measurements locations.82

Note that an effective bed topography only can be inferred from the surface signature. Indeed, the glaciers flows act as83

low-band filters: the bed variations are filtered by the flow with filtering features depending on the flow regime, see [18,84

34,35] for detailed analysis. Given a flow regime and a flow model, this corresponds to an inferable minimal wave length85

[19,34,35].86

Finally, let us mention that a comparison of various inverse methods to estimate the bed elevation beneath glaciers (equiv-87

alently the ice thickness) is presented in [12]. The comparison relies on numerous test cases representing a large spectrum88

of ice flow regimes. For all test cases, no prior thickness value is supposed to be known. The 15 inter-compared methods89

are classified by resolution type and not by domain of validity of the method (e.g. in function of the flow regime). Nu-90

merical comparisons are presented; however, no analysis of the equifinality issues is proposed.91

92

The present study aims at solving the following inverse problem: estimating the ice thickness (equivalently the bed93

elevation) in mid-sheared mid-sliding flows with a hybrid physically-informed data-driven method. The targeted flow94

regimes requires to take into account the complete physics of the flows. To do so, a key ingredient is the RU-SIA (RU95

for Reduced Uncertainties) model derived in [39]. This flow model is dedicated to the present inverse problem by intrin-96

sically (”natively”) integrating the surface measurements in its coefficients. It is a complete multi-physics flow model,97

depth-integrated (shallow flow, long-wave assumption); it respects a ”well-balanced complexity” in view to invert it. It98



Physically-constrained data-driven inversions to infer the bed topography beneath glaciers flows. Application to East Antarctica 3

takes into account both mass and momentum conservations, with a temperature dependent rate factor: the internal defor-99

mation is non-uniform, it depends in particular to the vertical temperature profiles. In the RU-SIA model, all the complex100

multi-physics phenomena are consistently represented by a new dimensionless parameter (denoted by g).101

The inversion method developed here is based on a combination of VDA algorithms and a purely data-driven inversion,102

actually like in our previous study [39]. However in the single test case analyzed in [39], a clear correlation was existing103

between g and one of the observable field (namely |uH |), see [39] Fig. 7. In these conditions, estimating g by a simple104

Kriging method was possible. Next, when applying the method to other areas (e.g. those considered in the present study),105

it turned out that such correlations were not existing. Therefore an other method to attempt to estimate this dimensionless106

multi-physics parameter g had to be investigated. This is successfully done here by using a Neural Network Residual107

Kriging (NNRK) algorithm, see [11,30]. As a consequence, a new inversion method to infer the bed elevation is here108

presented. The employed data are still the surface measurements (elevation, velocity) plus some local in-situ thickness109

values. The inversion method relies on the RU-SIA equation derived in [39], a first advanced VDA process, a deep110

Artificial Neural Network (ANN) and a last VDA process which enables to conclude. The ANN aims at estimating the111

dimensionless multi-physics parameter g of the RU-SIA model from the in-situ ice thickness measurements. These in-situ112

measurements are available along flight tracks of airborne campaigns. The complete inversion method is demonstrated113

to be mathematically and computationally robust. The considered areas are the EAIS regions which a-priori respect the114

domain of validity of the flow model; this corresponds to six large inland East Antartica Ice Sheet (EAIS) regions. In115

other respects, let us recall that estimating accurately the bed elevation in EAIS is interesting since global warming may116

threaten its stability, particularly around some of the considered areas, see [13].117

Moreover a remarkable relationship between the present inversions based on the RU-SIA flow model and the mass conser-118

vation method, largely developed in [46,40,42], is presented. This relationship opens promising perspectives to complete119

the mass conservation based estimations only, in deeper ice-sheets regions. Indeed, we mathematically show that the120

present complete estimations and the mass conservation only estimations are connect each other at the interface of their121

respective domain of validity, that is at the plug-like flows boundaries (e.g. at sheared margins and further).122

The present inversion method may be applied to any glaciers flows as soon as the flow model assumption is satisfied (that123

is from highly sheared flows to mid-sheared mid-sliding ones). Due to the long wave assumption of the flow model, the124

thickness estimations are valid at ⇡ 10⇥ h̄ wave length, h̄ a characteristic thickness value.125

126

The outline of the article is as follows. In Section 2, the RU equation developed in [38,39] is recalled; its domain127

of validity is highlighted; uncertainty of the dimensionless parameter g is analyzed. Next, the inversion method is de-128

tailed: Step 1) and Step 3) of the global algorithm aim at inverting the RU-SIA equation by VDA (physicalled-informed129

inversions); Step 2) aims at estimating g using a NNRK algorithm (deep learning, purely data-driven). In Section 4, the130

considered six large EAIS areas (named Antp, p = 1, ..,6) are presented. The methods to obtain the reference Bedmap2131

estimations [14] are briefly recalled. Each computational steps of the present inversion method is analyzed in detail.132

In Section 5, the robustness of the estimations is assessed in details for the Ant1 and Ant3 cases, in particular their133

sensitivities with respect to the presence or not of additional flight tracks. A conclusion is proposed in Section 6. As134

complimentary material, the computed thickness estimations for four other areas Antp, p = 2,4, ..,6, are presented in135

Appendix.136

2 Method137

In this section the inversion method to estimate the ice thickness h (equivalently the bed topography elevation b) is de-138

tailed. It is done in three steps. Step 1) aims at estimating the product (gh) by assimilating all surface data (altimetry,139

InSAR and climatic term Source Mass Balance) plus the in-situ thickness measurements in the RU-SIA flow model140

(model presented below). Step 2) aims at estimating the dimensionless multi-physics parameter g from the in-situ mea-141

surements only (measurements available along the flight tracks of airborne campaigns). Step 3) aims at estimating the142

thickness h (and adjusting a climatic term) by assimilating all available data again. The final output of the inversion143

method is the ice thickness h, therefore the bed topography elevation b.144

145

2.1 The RU-SIA flow model146

The RU-SIA equation is obtained by reformulating the depth-integrated SIA model with basal slipperiness (see e.g. [17]147

Chapter 5) but with a non constant rate factor and by natively integrating the surface measurements (elevation and veloc-148

ity). The resulting 2D depth-integrated flow model is original; it is relevant for large scale sheared flows with moderate149

slipperiness at bottom and with non constant vertical temperature profile. The various uncertain multi-physics param-150

eters (constitutive law exponent, flow regime, temperature dependent term) are gathered into the single dimensionless151
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Ice

Fig. 1 Schematic vertical view of the gravitational ice flow and notations

parameter g . As a consequence, all the physical parametrisation uncertainty is represented by this original dimensionless152

parameter. The basic RU-SIA model assumptions are the same as those for the SIA model (classical lubrication the-153

ory) with basal slipperiness that is: the flow is necessarily sheared (normal stress components are negligible) and it is154

”shallow” (long wave assumption).155

2.1.1 The equations and the dimensionless parameter g156

The surface slope is denoted by S = |—H|; uH is the surface velocity and ub is the velocity at bottom (basal velocity).157

The depth (ice thickness) is denoted by h, h = (H �b) with H the ice surface elevation and b the bed elevation, see Fig.158

1. q is a potential mean slope value in the (x,y)-plane (q = 0 in the forthcoming test areas).159

160

The flow equation.The depth-integrated flow model SIA model with slipperiness at bottom (see e.g. [17] Chapter 5) is161

derived in a non isothermal case in [38] providing the so-called xSIA (x for extended) equation. Next in [39], by taking162

advantage of the measured surface features (elevation and velocity norm), the xSIA model is re-formulated to obtain the163

RU-SIA model. The RU-SIA equation reads as follows:164

�div
✓
|uH |
S

gh—H
◆
(x) = ȧ(x) in W (1)

x denotes the space variable and W the considered domain (an open set of R2). The RHS ȧ is the classical one defined165

by: ȧ(x) = (∂th�a)(x) with a the mass balance (accumulation and ablation), see e.g. [17].166

167

In (1), the term |uH |
S is the observational term; it may provided by InSAR and altimetry surface measurements.168

The considered unknown of (1) is the surface elevation H. (1) is a linear diffusive equation in H, it is closed by Dirichlet169

condition at boundaries: H given e.g. by altimetry.170

Assuming that h (or equivalently b) is given, (1) contains g as the single uncertain parameter.171

172

The dimensionless parameter.g is the dimensionless parameter of the equation, its expression is, [39]:173

g(x) =
✓

1� cA(x)Rs(x)
(q+2)

◆
(2)

Rs is the slip ratio describing the flow regime; it is defined as: Rs(x) = 1� |ub|
|uH |

(x).174

The parameter cA is defined by:175

cA(x) = [(q+2)� (q+1)RA(x)] (3)

where q is the constitutive power-law exponent (q = 3 in the classical Glen’s law, see e.g. [17] Chapter 5, [38]) and176

RA(x) =
Ā(x)
A(x)

.177

The parameters Ā(x) and A(x) are the depth-integrated quantities naturally appearing if the rate factor A depends on178

(x,z). Their expressions are as follows, see [38]:179

Ā(x) = (q+2)
hq+2(x)

✓Z H

b

Z z

b
A(x,x )(H(x)�x )qdx dz

◆�1
(4)
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180

A(x) = (q+1)
hq+1(x)

Z H

b
A(x,z)(H(x)� z)qdz (5)

If the vertical profile of A is constant (A constant in z) then: Ā(x) = A(x) = A(x) 8x.181

182

Recall that the rate factor A models internal structure properties of the ice. A depends on ice temperature, crystal ori-183

entation, debris content, etc. It may be represented by the Arrhenius law, see e.g. [17] Chapter 4 and references therein.184

This parameter A highly depends on the temperature, [17], therefore in particular on z in ice sheets.185

186

Isothermal case.In the isothermal case, A is classically supposed to be a constant, see e.g. [17] Chapter 5. As a conse-187

quence, in this case we obtain: Ā(x) = A = A(x) 8x. It follows that: RA(x) = 1 = cA(x) 8x.188

Next for the classically employed value q = 3, it follows: g(x) =
�
1� 1

5 Rs(x)
�
.189

190

2.1.2 Domain of validity of the model191

The shallowness of the flow is estimated through the geometrical ratio e = H⇤
L⇤ , where H⇤ and L⇤ are characteristic flow192

depth and length respectively. In these depth-integrated asymptotic models, e has to be small enough, e . 1/10 at least,193

see e.g. [29]. As a consequence this flow model is valid for a minimal wave length L⇤ & 10H⇤. The flow regime is char-194

acterised by the slip ratio Rs. By construction, the SIA-like models (including xSIA and RU-SIA equations) are valid for195

Rs ranging from ⇡ 0.3 to 1, see [23,47,6] for detailed analysis. This estimation in terms of Rs is numerically quantified196

in real world cases (including EAIS) in [54]. This study is based on the so-called MCL criteria (criteria proposed in [24]197

and defined as the length scale over which the terms of driving stress and drag are comparable). In particular it can be198

noticed that the ice-sheet areas presenting surface velocity ranging in ⇡ [5�100] m/y are accurately modelled by the SIA199

model as soon as the minimal wave length equals ⇡ 10�12 km in mean. The six test areas Antp considered in the next200

sections, see Fig. 4, have been defined from the surface velocities norm values: |uH | 2⇡ [10� 80] m/y. In these cases201

H⇤ ⇡ 2�3 km, then the RU-SIA equation is accurate for minimal wave lengths L⇤ ⇡ 20�30 km.202

203

2.1.3 Relationship with the mass equation & its inversion in fast plug-like flows204

As already mentioned, nice bed elevation estimations are obtained in fast streams by simply inverting the depth-averaged205

mass equation div(hū) = ȧ, ū the depth-averaged velocity, see [42]. In [46,41,42], ū is related to uH as ū = ãuH , with206

ã set empirically. In fast streams (actually plug like flows), we have Rs ⇠ 0 and ã . 1. Therefore, for such cases the207

uncertainty on the internal deformation (represented in the RU-SIA equation by the parameter cA) is negligible. As a208

consequence ã may be set close to 1 with a few percent error only. This is what is done in these aforementioned studies.209

In other respect, we can show that: ū = � |uH |
S g—H, see [39]. Therefore if the slopes S = |—H| and the velocity are210

co-linear (this is a commonly admitted assumption) than the parameter ã empirically defined in [46,41] is nothing else211

than the dimensionless parameter g defined by (2).212

This equality g = ã enables building up continuous estimations between fast plug-flows (obtained by inverting the mass213

equation like in [41,42]) and the moderately sheared / moderately sliding flows (obtained by inverting the present RU-214

SIA equation).215

On the contrary to plug like flows, in moderately sheared / moderately sliding flows, g varies importantly therefore setting216

its value empirically is not reasonable anymore. That is why an actual estimation of g is required.217

218

2.2 On the uncertainty range of parameter g219

The dimensionless parameter g defined by (2) depends on various physics parameters: the constitutive law exponent220

q, the vertical temperature profile through the rate factor A(z) and the flow regime (slip ratio Rs). Recall that the RU-221

SIA model domain of validity corresponds to Rs 2 [⇡ 1./3.,1], see [23,47,6]. For sake of simplicity, q is supposed to222

be set to the widely employed value for glaciers flows, that is q = 3 (Glen’s law). In isothermal cases, it follows that:223

g(x) = (1�0.2Rs(x)). Therefore in isothermal cases, the uncertainty on g is relatively small, ⇡ 10% only.224

The large majority of glaciers are not isothermal in particular those in ice-sheets. Following the Arrhenius law, see e.g.225
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Fig. 2 (Left) A typical vertical profile of rate factor A(·,z), see (6). (Right) The parameter cA vs m, see (3), with k = 10,100 and 1000.

[17, p.54], and by considering typical ice-sheet vertical temperature profiles in ice-sheets, see [44,45] and e.g. [27,49],226

we consider the following vertical profile of A(x,z), Fig. 2 (Left):227

A(·,z) =
(

Aa for z 2 [B(·),H(·)]
Aa

(B�b)(·,z) ((1� k)z+ kB(·)�b(·)) for z 2 [b(·),B(·)]
(6)

with Aa and k given constants. We define: B(x) = (mh(x)+ b(x)) 8x with m 2 [0,1]. Then A(x,z) presents a boundary228

layer at bottom of thickness (B� b)(x) = mh(x), Fig. 2 (Left). The value of cA(x) vs m for different values of k is pre-229

sented in Fig. 2 (Right). The case m = 0 corresponds to the isothermal case: cA = 1. For thin thermal boundary layers cA230

increases with mh; for thicker layers cA decreases to a minimal value c(min)
A . 1. (This minimal value is reached for the231

purely linear vertical profile: m = 1).232

233

Let us consider typical temperature values in EAIS: the bed is at 0C� and the surface at �40C�. These values234

correspond to Aa ⇡ 10�26 therefore k ⇡ 1000, see Fig. 2 (Right). (The value k ⇡ 10 would correspond to typical inland235

Greenland cases, see [39]). Assuming a boundary layer corresponding to m 2 [0.1,0.5], it follows: cA 2 (3.11,4.64) (Fig.236

2). Finally it follows from (2) that: g(x)⇡ [1� (0.78±0.15)Rs(x)].237

This rough uncertainty analysis based on typical values in the targeted areas shows that the uncertainty on g comes238

similarly from the vertical thermal profile uncertainty (represented by the term (cA/(q+2))) and the slip ratio Rs. In the239

targeted regimes and EAIS areas with the vertical profile (6), this corresponds to g varying within the interval ]0,⇡ 0.7].240

If relaxing the assumption on the vertical profile as defined in (6), one may estimate the upper bound of g by setting241

cA = 1 and Rs = 0.5 which gives: g 2]0,⇡ 0.9]. (Recall that in fast plug-like flows, g is close to 1).242

In the forthcoming numerical results, the estimations of g by the NNRK algorithm are within intervals ]0,⇡ 0.9], see e.g.243

figs. 6 and 9(Up)(Right).244

2.3 The inversion method245

The inversion method to estimate the ice thickness h is developed in three steps. Step 1) and Step 3) are physical-based246

inversions: the RU-SIA equation (1) is inverted with respect to the product (gh) at Step 1), with respect to (h, ȧ) at Step247

3). Step 2) is based on an Artificial Neural Network (ANN) aiming at estimating g; it is a purely data-driven inversion.248

2.3.1 Sketch of the complete inversion method249

The estimations of thickness are performed in three steps as follows.250

Step 1) Estimation of the effective diffusivity h = (gh) in RU-SIA equation (1) by VDA.251

Given the surface measurements (observations) Hobs and |uobs
H |, the effective diffusivity h = (gh) in (1) is infered by252

solving the following optimal control problem:253

min
k

g(k) with g(k) = gobs(k)+a greg(k) (7)

with k ⌘ h = (gh) and254

gobs(·) =
1
2

Z

W
|H(·)(x)�Hobs(x)|2ctr(x)dx, (8)

ctr is the spatial restriction operator to the flight tracks, greg(·) a Tykhonov’s regularization term, see e.g. [28]. In255

this step, it is defined as: greg(h) = 1
2
R

W |—h(x)|2dx. The weight coefficient a is classically set such that it provides256
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a reasonable balance between the physical misfit and the regularization (regularization should be greatly lower than257

the physical misfit term). The surface elevation H(h) corresponds to the solution of the RU-SIA equation (1) (with258

Dirichlet boundary conditions) with h given. The gradient of the cost functional is computed by introducing the ad-259

joint equation. The minimisation algorithm is a quasi-Newton method (the L-BFGS algorithm of the Python routine260

scipy.optimize.minimize).The iterative minimization process is performed until convergence. Numerous numerical261

experiments have demonstrated robust convergences. In particular the optimal solution does not significantly depend262

on the smoothing length scale of the surface data (done in the present Ant� p test cases at ⇡ 24 km, see next Section),263

nor on the first guess (set to hb the Bedmap2 value in EAIS).264

Past this computational VDA step providing the optimal value h⇤, the value of g along the flights tracks where depth265

measurements hb are available are straightforwardly deduced: g⇤tr =
h⇤

hb
ctr(x). These values are inputs of the next266

algorithm, Step 2).267

These obtained values are representative at the flow model scale, that is at 10h̄ ⇡ 25 km minimal wave length (with268

⇡ 2km mesh cells), see the investigation presented in [39].269

270

Step 2) Extension of g in the whole domain by NNRK.271

Given g⇤tr along the flights tracks (result of Step 1)), a NNRK algorithm ([11,30]) is applied to extend values of g to272

the whole area. This statistical learning algorithm is done in two steps: 1) an ANN estimator (deep learning) is built273

up; 2) an ordinary Kriging of the residuals is added. Details are presented in the next paragraph.274

275

Step 3) Estimation of the pair (h, ȧ) in RU-SIA equation (1) by VDA.276

Given g all over the domain (result of Step 2)), the thickness h is infered simultaneously with the RHS ȧ in (1) by277

another VDA process. Let us recall them briefly.278

Similarly to Step 1), the pair (h, ȧ) in (1) is infered by solving the optimal control problem (7) with gobs defined279

by (8) but minimizing with respect to k = (h, ȧ) (and not w.r.t. h = gh like in Step 1)). In this VDA process, the280

regularization term reads:281

greg(h, ȧ) =
1
2
k(h�hb)kC�1

h
+

1
2
kȧ� ȧbkC�1

a
(9)

with C�1
h and C�1

a covariance operators defining metrics, (hb, ȧb) prior background values (equal to the current classi-282

cal estimations). The latter are classically defined as the second order auto-regressive correlation matrices with length283

scale respecting a balance between the regularisation and the preconditioning effects of the VDA algorithm, see [20,284

39]. Next following [33,20], a change of the control variable is made. The numerous numerical experiments have285

demonstrated that this choice of covariance operators combined with the change of variable improves greatly the286

robustness and the convergence speed of the VDA algorithm.In (7) the weight coefficient a is defined as a decreasing287

sequence following an iterative regularisation strategy, see [28] for an analysis. This iterative regularisation strategy288

improves the convergence speed of the VDA algorithm too.289

Numerous assessments of the VDA steps are presented in [39], in particular the sensitivity of the inversions with respect290

to: i) the uncertainties on g; ii) the density of flights tracks (by removing some of them); iii) the smoothing length scale291

of the surface data (altimetry, InSar) from ⇡ 24 to 48 km; iv) the first guess (chosen here as the Bedmap 2 value hb).292

293

Remark 1 Using the explicit expression (2) of g one can compute a-posteriori estimations of the (spatially distributed)294

slip ratio value Rs. This is an interesting feature to analyse a-posteriori the degree of the RU-SIA flow model consistency.295

The few a-posteriori analysis made (not presented here) remarkably confirms the good consistency of RU-SIA model.296

297

Remark 2 Based on a-priori vertical thermal profile(s) (e.g. the one defined by (6)), the RU-SIA equation (1) provides298

a-posteriori estimations of the effective thermal boundary layer thickness (B� b), see Fig. 2 (Left). Such a-posteriori299

estimations may be interesting for various analyses. Moreover the vertical profiles could be adjusted by constraining300

them with (the very few) in-situ measurements.301

2.3.2 Details of Step 2): the Neural Network Residual Kriging (NNRK) algorithm302

The employed NNRK algorithm is decomposed in three steps as follows.303

Step 2a) Considering the surface data (H, S , |uH |, ȧb) at all in-situ measurements locations (e.g. along the flights tracks of all304

areas Antp) plus the values of g⇤tr computed at Step 1), an estimator of g is built up by training a ANN. This estimator305

is denoted by ḡ .306

The training dataset is denoted by D ; it contains ”examples” (Ii,Oi), i = 1, · · · ,Nft , where Ii = (H,S , |uH |, ȧb)(xi)307
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Fig. 3 The Artificial Neural Network (ANN) with four hidden layers. First step of the NNRK algorithm.

is the i-th input and Oi = g⇤tr(xi) is the corresponding output. xi, i = 1, · · · ,Nft denote the i-th in-situ measurements308

coordinates (e.g. along the flight tracks).309

The estimator ḡ is computed as the minimizer of the mean square misfit: 1
Nft

ÂN f t
i=1 (Oi � ḡ(Ii))

2. This misfit function310

(also called loss function) reads:311

j(D ; ·) = 1
Nft

Nf t

Â
i=1

[g⇤tr(xi)� ḡ ((H,S , |uH |, ȧb)(xi); ·)]2 for xi 2 Gtr (10)

To solve this large dimensional data-based optimisation problem, the currently most efficient methods are ANN with312

few hidden layers (deep learning). Here, 5 layers are considered, see Fig. 3; each of the 4 hidden layers contains 50313

neurons. The most efficient activation function is chosen: the rectified linear unit (ReLU) function, see e.g. [16,32].314

The ANN is determined by its architecture and the weight parameters (W1, · · · ,W5), Fig. 3.315

The training step consists of identifying the optimal values of these parameters Wj, j = 1, ..,5. Each Wj is a matrix of316

dimension nout ⇥nin. Here, W1 has 5⇥50 = 250 parameters, Wj for j = 2,3,4 have 50⇥50 = 2500 parameters each,317

W5 has 50⇥1 = 50 parameters. The ANN has been coded in Python using the PyTorch and Mpi4Py libraries [10].318

To minimize j(D ;(W1, · · · ,W5)) with respect to {Wj} j, the classical Adam method [31], a first-order gradient-based319

stochastic optimization, is employed. The learning rate (the gradient descent step size) is classically adjusted during320

the optimization procedure.321

The input variables are heterogeneous and of different order of magnitude e.g. the elevation H (m) and the slope322

S (radian). Therefore each input variable v, v an element of {H,S , |uH |, ȧb}, are reduced centred as follows:323

v̄i = (vi � mean(v)/s(v)), for all i, 1  i  Nft . The normalisation is applied to mini-batches in hidden layers;324

this technique is supposed to improve the stability of the model; see e.g. [30] for more details and know-hows on325

ANN and NNRK algorithms.326

Also to avoid overfitting, the dropout method [50] is adopted. (This technique may help to prevent overfitting). As327

usual, the hyper-parameters of the algorithm (learning rate, decay rate, dropout probability) are experimentally cho-328

sen; the selected values are those providing the minimal value of j.329

330

The ANN has been trained by including hb as an input parameter or not. Both estimators (considering hb as an input331

or not) turned out to have similar accuracies; thus confirming the strategy to predict the dimensionless parameter g of332

the flow model from the surface data only.333

334

Step 2b) The K-fold cross-validation method, see e.g. [1], is employed to assess the ANN accuracy and to confirm if the ANN335

can be used as a predictor. Let us recall that K-fold cross-validation method is as follows, see e.g. [1]:336

– Divide randomly the original training data set D into K (roughly equal) subsets;337

– For each subset Dk, k = 1 · · ·K, the ANN is trained from the other (K �1) subsets Di, i 6= k.338

We denote by D itest = Di and D itrain = [ j 6=iD j, i = 1, · · · ,K.339

– Compute the loss function j(D itest) for each case.340

Finally, choose the best ANN i.e. those providing the smallest total loss function j(D itest)+ j(D itrain).341

342

Step 2c) The residual at the measurements locations is computed: eg = (g⇤tr � ḡ) with ḡ computed by the (best) ANN.343

Next an ordinary Kriging (with a spherical semi-variogram model) is used to extend eg all over the domain. The344
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obtained estimator is denoted by êg . By construction this residual satisfies: E(eg) ⇡ 0. Moreover the correlation345

between two points depends on the distance between them and not on their location. Performing an ordinary Kriging346

on the residual after ANN is known to be particularly efficient, see e.g. [30] Chapter 3.347

The final estimator in the whole domain is denoted by ĝ . It is obtained as the sum of the ANN estimator and the348

ordinary Kriging estimator of residuals:349

ĝ(x) = ḡ(x)+ êg(x) for x 2 W (11)

The forthcoming numerical results show that the estimator ĝ(x) provides (surprisingly) very accurate values of the350

parameter g from the surface data only (altimetry, InSAR and ȧ).351

2.3.3 On the linked uncertainty between g and h352

In the inversion algorithm previously described, after Step 1), one has to separate the effects of the two unknown fields:353

the physical-based dimensionless parameter g and the ice thicknessh. The accuracy and robustness of each VDA process354

are demonstrated by the numerical experiments presented later, see also [39]. It will be demonstrated in next section that355

the NNRK algorithm is robust and accurate too. Then it can be assumed that: g tht ⇡ g⇤h⇤; where the superscript ⇤ denotes356

the optimal computed values while the superscript t denotes the (effective) true value. Let us denote: ej = (j⇤ �j t)/j .357

At order 1, one has:358

eh ⇡�eg (where g does not tend to 0) (12)

In other words, Step 2) and Step 3) of the inversion algorithm propagates the error made on g to h in the same order of359

magnitudes (in %).360

Remark 3 It would be straightforward to apply the same NNRK algorithm to directly estimate the thickness h all over361

the domain. However it seems definitively more consistent to estimate a dimensionless parameter of a flow model able362

to represent accurately the surface data, than to estimate the thickness data partially responsible only of the employed363

surface data. Following this idea of purely data-driven estimations, [9] had proposed an ANN trained and assessed364

on synthetic data generated by an ice flow model and geomorphic premises to estimate the bedrock elevation of four365

mountain glaciers.366

3 Data pre-processing367

In the next sections, the algorithm is applied to 6 large areas in EAIS (ranging from 250268 to 439045 km2); they are368

denoted by Antp, p = 1, ..,6, see Fig. 4. These areas include the upstream areas of major ice-sheds; all of them respect369

the flow model domain of validity. The mean thickness value of Bedmap2 ([14]) ranges from 1822 to 2745 m, see tables370

2-11 for details. The coordinates of the characteristic points defining each area (⇡ 100�150 points per area, see Fig. 4)371

are available on the open source computational software DassFlow webpage2.372

Estimating more accurately the bed elevation in these areas may be interesting since global warming may threaten EAIS373

stability as mentioned e.g. in [13].374

375

The correlations between the given variables (Hobs, kuHk, S , ȧ, hb) for all areas have been computed. It turns out376

that no significant linear correlation between the variables have been observed.377

378

In this section, the method to smooth the surface data accordingly with the flow model domain of validity is presented;379

the definition of adequate numerical grids follows. Moreover since Bedmap2 values are considered as the reference380

values, the method to obtain these values is recalled.381

3.1 Minimal wave length, surface data smoothing and numerical grids382

The surface data |uH | and H have to be defined at an adequate scale to be consistent with the shallow (long wave assump-383

tion) flow model (1); next providing a minimal wave length L⇤ (km) of the inversions. The RU-SIA equation is accurate384

as soon as e = [H]
[L] . 0.1. (In other respect it is shown in [54] that the ice-sheet areas presenting surface velocity ranging385

in ⇡ [5�100] m/y are accurately modelled by the SIA model as soon as the minimal wave length equals ⇡ 10�12 km386

in mean).387

The mean value of the Bedmap2 ice thickness (denoted by h̄b) [14] in the 6 Antp areas equals ⇡ 2.7 km. In the considered388

2 Open-source computational software DassFlow: Data Assimilation for Free Surface Flows. Python version for 2D shallow generalised Newtonian
fluids. INSA, University of Toulouse, CNES. www.math.univ-toulouse.fr/DassFlow.
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Fig. 4 Location of the 6 test areas Antp (east Antarctica) with InSAR-based surface velocity values in m/y (from [43]).

regimes, the velocity field is co-linear to the slopes S ; therefore to be fully consistent, the smoothing of surface data389

should be done non-isotropically by defining a streamline minimal wave length and a cross-line one. For a sake of sim-390

plicity, here an isotropic smoothing is performed. To do so, a Gaussian with standard deviation s = 4 km is convoluted391

with each given surface field: elevation and velocity norm. Then the smoothing effects are sensitive in disks of diameter392

⇡ 2⇥ (3s)⇡ 10h̄b km.393

394

Next a finite element mesh is built up using Gmsh software [15] with a grid size dx ⇡ 3 km. Indeed dx = 3 km395

provides ⇡ 10 points per minimal wave length L⇤, therefore respecting the minimal number of points to properly approx-396

imate all fields. The flight tracks are meshed with cells of dx ⇡ 2 km. The given thickness measurements (provided in the397

Bedmap2 database [14]) are interpolated along the flight tracks .398

399

3.2 Recalls of the origins of Bedmap2 values400

Bedmap2 values hb are considered as reference values; moreover they are employed to set the first guesses of the VDA401

processes at Step 1) and Step 3) (see paragraph 2.3.2). hb and its a-priori uncertainty as derived in [14] are plotted for each402

test area Antp in figures 6, 9, 12, 13, 14 and 15 (Middle)(Left). In Bedmap2 database [14], the interpolation - extrapola-403

tion of airborne measurements are performed throughout the domain by the ArcGIS Topogrid routine (ESRI Ltd, ArcGIS404

9); the latter is based on the ANUDEM algorithm [26]. This algorithm uses an iterative finite difference interpolation405

technique which is essentially a thin plate spline technique [53]. Next, empirical uncertainty values are stated as follows,406

see [14]. The thickness measurements are split into two datasets (D1) and (D2). Dataset (D1) is used to build up an inter-407

polation including at Dataset (D2) location points; values of (D2) being not used at this stage. Next, Dataset (D2) is used408

to quantify the misfit with the ”predicted” - interpolated values; and basic statistics on the results with dependence on the409

distance to data are deduced. For cells located between 5 and 20km from any data, [14] suggests that the interpolation410

error is an increasing function of distance from the closest data; beyond it would be not correlated. (Observe that this411

distance corresponds approximatively to the minimal wave length of the RU-SIA model). For cells that are more than 50412

km from airborne measurements, the thickness estimation is based on gravity-field inversion (gravity-derived thickness);413

the proposed related uncertainty equals ±1000m. This is how the uncertainty values on Bedmap2 values hb are defined;414

see figures 6, 9, 12, 13, 14 and 15 (Middle)(Right).415

416
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Fig. 5 Misfit functional j(D) defined by (10), vs minimization iterations for: (Left) different train sets D itrain; (Right) different test sets D itests. The
learning rate (gradient descent step size) is decayed by 0.2 every 30 epochs (1 epoch = 1 forward pass and 1 backward pass of all the training examples),
see e.g. [30] for details on this classical method.

4 Analysis of each inversion algorithm step417

4.1 Step 1: Estimation of h by VDA418

The effective diffusivity h defined in (1) is estimated in each area Antp by VDA following Step 1) described in Paragraph
2.3.1. The convergence of this iterative VDA process is very slow (a few hundreds of iterations) but very robust in
particular with respect to the first guess value. This step has been thoroughly assessed in [39]. The stopping criteria is the
stationarity of khk. Here the RHS ȧ provided by [52] is supposed to be exact. After convergence of the VDA process,
given the ice thickness along the flights tracks, the computed optimal value g⇤ is saved for Step 2), that is:

g⇤tr(x) =
h⇤

hb
(x) for x 2 Gtr

4.2 Step 2: Estimation of g by NNRK419

The ANN algorithm input values, see Fig. 3, are datasets along all flight tracks in all test areas Antp, p = 1, ..,6 plus the420

values of g⇤tr computed at Step 1). This dataset is denoted by D . Following Step 2b) (see paragraph 2.3.2), the K-fold421

cross-validations are performed with K = 6. The results are presented in Fig. 5. (The value K = 6 is completely indepen-422

dent of the total test cases number). Here, the training sets D itrain contains 16774 examples and a test set D itest contains423

3354 examples; each example being an (input, output) pair of ANN.424

It can be read on Fig. 5 (Left) that all ANN models trained from the different data sets D itrain provide very close cost425

values j(D itrain) (see (10)). Moreover, the cost values of all test sets j(D itest) are almost all equal. This shows that all426

ANN have very close prediction capability, all being excellent. Indeed after optimisation, j(D itest) ⇡ 5 10�3 (Fig. 5427

(Right)); this corresponding to ⇡ 1% of the mean value of ḡ . The ANN trained from D2train is selected since having a428

slightly smaller misfit value ( j(D itrain)+ j(D itest)). These tests of prediction capabilities demonstrate the robustness and429

accuracy of the trained ANN.430

Next, values of ḡ are predicted in the whole domains Wp, p = 1, · · · ,6 by performing the selected ANN.431

Next by performing the Kriging step (Step 2c) described in Paragraph 2.3.2), the predictor ĝ is obtained.432

Following the a-priori estimation derived in Section 2.2, the upper bound 0.9 is imposed to the estimation; this upper433

bound is active at very few locations only; moreover it is in great majority where the uncertainty on hb is low.434

For each test area, the predicted values of g are plotted; see figures 6, 9, 12, 13, 14 and 15 (Up) (R).435

436

4.3 Step 3: Estimation of h (and adjustment of ȧ) by VDA437

After Step 2), the dimensionless parameter g in RU-SIA equation (1) is given. Then the thickness h is infered by VDA438

following the method presented in paragraph 2.3.1. The optimisation algorithm converges in ⇠ 20�50 iterations depend-439

ing on the test case. Its convergence is robust; this point has been thoroughly analysed in [39].440

At this step, h is simultaneously infered with ȧ. Indeed this enables to adjust the value of ȧ within its uncertainty range441

which is here ⇠±20%, see [52]. It can be noticed in tables 2, 5, 8, 9, 10 and 11 that the corrections made remains in great442

part within this a-priori uncertainty range. Indeed the upper bound is active at few locations only. In other words, this443

adjustment based on the physical-based model RU-SIA is consistent with the (totally independent) estimations derived444
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Table 1 Difference between values of H the response of RU-SIA equation (1) if changing the RHS value: ȧb the Racmo2 value, ȧ⇤ the infered value at
Step 3). Domain Wp=Ant1.

Difference of H Median Mean Max
|H(ȧb)�H(ȧ⇤)| 3.3m 6.0m 26.3m

in [52].445

Of course, given the surface data, any change of ȧ in RU-SIA equation (1) has an effect on the infered value of h. As an446

example let us compute the response H of RU-SIA equation (1) in Ant1 area with: i) the RACMO2 value ȧb in the RHS447

(providing H(ȧb)); ii) the infered value ȧ⇤ by VDA in the RHS (providing H(ȧ⇤)). The obtained difference are the ones448

indicated in Tab. 1. Therefore the correction made on the RHS ȧ = (∂th� a) implies a correction on the ice thickness449

h negligible (⇠ 1%) compared to the one obtained by the complete inversioin method, see Tab. 2 in next section. This450

remark holds for all the domains Wp.451

452

4.4 On the RU-SIA model accuracy453

For each test area Antp, domain information and basic statistics on the results are presented, see tables 2, 8, 5, 9, 10, 11.454

Statistics on the computed surface elevation H, output of RU-SIA model, are indicated. It can be noticed that the RU-SIA455

equation solved from Bedmap2 value hb and the (purely data-driven) estimation of g obtained at Step 2) already fits very456

well the measured surface elevation Hobs, see ”Direct model validation” lines in the tables. This very good accuracy457

(based on the Bedmap2 bed elevation hb i.e. without any additional calibration of h) demonstrates the validity and the458

relevance of the RU-SIA model. After Step 3) of the inversion algorithm i.e. after the identification of h and ȧ by VDA,459

of course the RU-SIA model fits even better the measured surface elevation Hobs, see ”|H(h⇤)�Hobs| (after h-inversion)”460

in the tables.461

462

5 Results and sensitivity tests (Ant1 and Ant3 areas)463

In this section, the bed elevation b (equivalently the ice thickness h) is infered by the inverse method described in Section464

2.3 for the two areas Ant1 and Ant3, see Fig. 4, tables 2 and 5. Different estimations of h are compared, depending if:465

a) isolated flight tracks (hence locally highly constraining) are considered or not;466

b) the learning method at Step 2) is the NNRK algorithm described in Paragraph 2.3.2, or an ordinary Kriging method467

like it is done in [39].468

These comparisons aim at analysing the robustness and accuracy of the present inverse method.469

Ant1 is a 370809 km2 area north-east upstream of Bailey, Slessor and Recovery ice-streams; Ant3 is a 250268 km2 area470

in Wilhelm and Queen Mary lands, upstream of Shackleton ice shelf and Davis sea.471

Among the considered six areas, Ant1 and Ant3 are those presenting the largest uncovered parts during airborne cam-472

paigns. As a consequence they contain large areas where Bedmap2 estimation hb is based on gravity field inversions,473

therefore presenting very large uncertainties.474

For each case, the domain information and basic statistics on the numerical results are presented in tables 2 and 5. For475

each case, the most relevant fields are plotted, see figures 6 and 9: the surface velocity norm |uH | and the flight tracks lo-476

cations (Up)(L), the NNRK estimation ĝ defined by (11) (Up) (R), the Bedmap2 value hb (Middle)(L) with its uncertainty477

as presented in [14] (Middle)(R), the present thickness estimation h⇤ (Down)(L) and its difference with hb (Down)(R).478

5.1 Results for Ant1 area479

This domain presents large unexplored areas during the airborne campaigns therefore huge uncertainty on hb values, see480

Fig. 6 (Middle).481

5.1.1 The ice thickness estimation h⇤482

Recall that ĝ is the NNRK estimation of the dimensionless parameter g defined by (2).No correlation is observed between483

h and g; the only clearly observed correlation is : g is small where |uH | is small, see Fig. 6 (Up). This observation is fully484

consistent with the a-priori analysis done in Section 2.2, see (2) and Fig. 2.485

Recall that hb values are thin plate spline based estimations (see [14] and paragraph 3.1) hence intrinsically smooth, Fig. 6486
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Table 2 Domain Wp=Ant1, information and results.

Domain Wp & mesh information
Surface |Wp| 370809km2

Mean ice thickness of hb (Bedmap2) 2696.2m
# mesh vertices: in Wp / on flight tracks 57661 / 2152

RU-SIA model output (with ĝ) Median Mean Max
|H(hb)�Hobs| (before h-inversion) 7.0m 10.3m 53.0m
|H(h⇤)�Hobs| (after h-inversion) 2.6m 3.7m 44.6m

Infered RHS ȧ
|ȧ⇤ � ȧb| 0.7cm/y 0.7cm/y 3.6cm/y

|ȧ⇤ � ȧb|/|ȧb| 19.2% 17.0% 20.0%
Infered thickness h

|h⇤ �hb| 275.2m 356.8m 1953.5m
|h⇤ �hb|/|hb| 10.4% 13.3% 65.7%

Ice volume change in km3 / in % 1.6 104 km3 / 1.6%

(Middle)(Left). The present estimation h⇤ is the optimal solution of a data-driven model combined with a physical-based487

model; no additional smoothing has been added, then the obtained value h⇤ is much less smooth than hb. It is worth to488

notice that a non isotropic smoothing of the surface data (see the previous section) would have provided bed elevation489

patterns more correlated to the surface streamlines.490

The difference between h⇤ and hb is not correlated to the distance to the nearest measurement (flight track), on contrary to491

the empirically stated uncertainty in [14]. Indeed large corrections of hb (up to 1500 m) are obtained close to flight tracks;492

close meaning at 1�2 minimal wave lengths of the RU-SIA model that is ⇠ 20�40 km, see e.g. in Fig. 6 (Down)(R) the493

areas around coordinates (2750,1950)(2900,1550)(3050,2050). At the opposite, h⇤ may remain very close to hb in areas494

relatively far from any flight tracks.495

Recall that the flight tracks are meshed as 1d lines; along these segments (⇡ 2 km long), the infered depth value can496

vary of ±150m around the measured values (inequality constraints imposed in the VDA processes). Therefore in the497

adjacent triangles (which are nearly equilateral with ⇡ 2 km edges), the plotted mean depth values may be already much498

different than the measured ones. This large scale smoothing may explain the potential great differences between the two499

estimations even relatively close to the flight tracks.500

The basic statistics presented in Tab. 2 show that after the VDA processes, the RU-SIA equation fits extremely well the501

measured surface elevation. The correction made on ȧ is relatively consequent, 17% in mean (it is the highest correction502

made among the 6 test cases Antp). However it remains lower than the maximal authorised correction: ±20%.503

Finally the correction made on hb is non negligible: 13.3% (356.8 m) in mean, with a 1.6% (1.6 104 km3) of volume504

change only (for 370809 km2).505

5.1.2 Ant1: if removing some flight tracks506

In this paragraph, a new ice thickness estimation is computed. It differs from h⇤ since the flight tracks indicated in507

Fig.6 (Up)(L) are not considered anymore. The original complete set of flight tracks is denoted by G all ; the partial one508

is denoted by G less. In G less case, the mesh of the entire area has been re-builded (since in each mesh, the lineaic flight509

tracks are meshed differently). The inverse problem based on G less is less constrained in particular the two VDA processes510

(Steps 1 and 3). Indeed the removed flight tracks are isolated, see Fig. 6(Up)(L); no constraint is imposed in the vicinity511

of these removed flight tracks anymore.512

The statistical learning at Step 2) is unchanged, therefore values of ḡ are unchanged too. However the estimation ĝ513

defined by (11) is not the same since the Kriging step is changed. Indeed the latter is based on less flight tracks data.514

The difference between the two estimations (ḡ(G all)� ĝ(G less)) is plotted in Fig. 7 (Up)(R). It can be noticed that ĝ is515

changed all over the domain and not particularly in the vicinity of the missing flight track. Indeed, the Kriging method516

(Step 2c) in Paragraph 2.3.2) aims at computing the minimal variance in norm 2 (least square) and not point-wise; hence517

the global change of ĝ .518

Next the infered thickness h⇤ is different for two reasons: 1) values of g are different; 2) the VDA process of Step 3)519

is not locally constrained at the missing flight tracks locations. The difference between the two thickness estimations is520

plotted in Fig. 7 (Down)(R). For a sake of readability, the legend in Fig. 7(Down)(R) has been bounded at ±400m (very521

few locations were greater than this bound). Basic statistics on the difference are presented in Tab. 3. Differences of 300522

m correspond to ⇡ 10� 15% of change. As expected, see (12), the variations of h are correlated to the variations of g:523

compare Fig. 7 (Up)(R) to (Down)(R). Since the global change of g , the change of h is not particularly important around524

the missing flight tracks.525

Finally, it is worth to mention that the present inversion method is relatively global with local constraints (”in-situ”526

measurements along the flight tracks); it is not purely local inversions. In the present experiment, the obtained variations527
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Fig. 6 Domain Wp=Ant1 (the plotted coordinates equal the Eastings-Northings plus (2800,2800)km): (Up)(L) Surface velocity module |uH | and flight
tracks (R) ĝ computed by NNRK, see (11). (Middle)(L) Thickness hb from Bedmap2 [14] (R) Empirical uncertainty on hb from [14]. (Down)(L) Infered
thickness with ĝ: h⇤(ĝ) (R) Difference (h⇤(ĝ)�hb).

Table 3 Domain Wp=Ant1. Comparison of the estimations if considering or not the flights tracks indicated in Fig.6 (Up)(L).

Infered thickness difference Median Mean Max
|h⇤(G all

tr )�h⇤(G less
tr )| 151.3m 196.9m 1524.5m

|h⇤(G all
tr )�h⇤(G less

tr )|/|h⇤(G less
tr )| 5.6% 6.6% 80.0%

of h⇤ are roughly half of the ones obtained from hb, see tables 2 and 3: difference of 6.6% in mean vs 13.3%, and 5.6%528

vs 10.4% for median values.529

5.1.3 Ant1: with a different statistical learning method at Step 2)530

It has been previously shown that uncertainties on g generates uncertainties on h of same order of magnitude, see (12). In531

this paragraph, the influence of the statistical estimator considered at Step 2) is investigated. To do so, first we compare:532

a) ḡ obtained by ANN algorithm at Step 2a) to ĝ obtained by the complete NNRK algorithm (see (11);533

b) gkrig obtained by an ordinary Kriging of values infered along the flights tracks to ĝ .534

It may be a-priori guessed that a deep learning method (as the present NNRK algorithm) is more reliable than a535

Kriging inter/extrapolation of its values between the flight tracks.536



Physically-constrained data-driven inversions to infer the bed topography beneath glaciers flows. Application to East Antarctica 15

Fig. 7 Domain Wp=Ant1: comparison if not considering the flights tracks indicated in Fig.6 (Up)(L). (Up)(L) Field ĝ(G less
tr ) (i.e. without the flights

tracks indicated in Fig.6 (Up)(L)). (R) Difference (ĝ(G all
tr )� ĝ(G less

tr )). (Down)(L) Infered thickness h⇤(G less
tr ) (R) Difference between the two estima-

tions: (h⇤(G all
tr )�h⇤(G less

tr )).

Table 4 Domain Wp=Ant1. Comparison the original thickness estimation (obtained using NNRK) to the one obtained using ordinary Kriging at Step2)

Infered thickness difference Median Mean Max
|h⇤(ĝ)�h⇤(gkrig)| 145.5m 183.5m 1264.2m

|h⇤(ĝ)�h⇤(gkrig)|/|h⇤(ĝ)| 5.3% 7.2% 117.2%

Second, we compare the infered thickness h⇤ obtained from ĝ (that is the original estimation plotted in Fig. 6537

(Down)(L)) to the one obtained from gkrig.538

539

As expected, the difference between ḡ and ĝ (i.e. before and after the Kriging Step 2c) are localised in the vicinity540

of the flight tracks. In Ant1 case, these differences may be up to ⇠ ±20%, see Fig. 8(Up)(R). More interestingly and as541

expected too, the differences between ĝ and gkrig are not clearly correlated to the distance to the nearest flight track. The542

observed difference in Ant1 case may be consequent: ⇠±40%, see Fig. 8(Middle)(R).543

Next, like in the previous sensitivity test (and for the same reasons), the variations of h are correlated to the variations544

of g: compare Fig. 8 (Middle)(R) to (Down)(R). Some statistics on the differences are presented in Tab. 4. Again the545

obtained variations in h are roughly half of the ones obtained from hb, see tables 2 and 4: difference of 7.2% in mean vs546

13.3%, and 5.3% vs 10.4% for median values.547

548

5.2 Results for Ant3 area549

Like Ant1, Ant3 area presents large uncovered areas during the airborne campaigns, corresponding to huge uncertainty550

on hb, see Fig. 9.551

5.2.1 The ice thickness estimation h⇤552

Like in Ant1 case, the only observed correlation is: g is small if uH is small, see Fig. 9 (Up). Again the difference between553

h⇤ and hb is uncorrelated to the distance to the nearest flight track (on contrary to the empirically established uncertainty554

in [14]). Large corrections of hb (up to 700 m) are found close to flight tracks see e.g. the area around coordinates555

(5550,2800) in Fig. 6 (Down)(R); at the opposite, h⇤ may remain very close to hb in areas relatively far from any flight556
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Fig. 8 Domain Wp=Ant1: comparison between different statistical learning methods at Step 2). (Up)(L) ḡ computed by ANN only. (R) Difference
(ĝ � ḡ). (Middle)(L) gkrig computed by ordinary Kriging. (R) Difference (ĝ � gkrig). (Down)(L) Infered thickness h⇤(gkrig). (R) Difference (h⇤(ĝ)�
h⇤(gkrig)).

tracks, see e.g. the area around coordinates (5250,2800).557

The few statistics presented in Tab. 5 show that again after the VDA processes, the RU-SIA equation fits extremely558

well the measured surface elevation. The correction made on ȧ is much lower than the authorised maximal variation:559

11.2% in mean. In Ant3, the global correction made on hb is relatively low: 6.6% in mean (3.5% median) with a 0.5%560

of volume change only. However in the most uncertain areas, the corrections made can be either low, see e.g. the areas561

around coordinates (5000,2650) (5200,3250), or important (±⇠ 700m), see e.g. the area around coordinates (5000,2650).562

563

5.2.2 Ant3: if removing some flight tracks564

The ice thickness obtained if not considering the flight tracks indicated in Fig.9 (Up)(L) is compared to the original565

estimation h⇤ (the one plotted in Fig.9 (Down)(L)). For the same reason as in Ant1 case, both ĝ and h are changed all over566

the domain and in the vicinity of the missing flight track only. Largest changes are obtained in areas far to the missing567

tracks; also it may close to (assimilated) flight tracks, see e.g. the area around coordinates (5100,3200). The difference568

between the two estimations are plotted in Fig. 6 (Up)(R) and (Down)(R). (Again for a sake of readability, the legend569

in Fig. 10(Down)(R) has been bounded at ±400m; very few values being greater than this bound). Basic statistics on570

the difference are presented in Tab. 6. (A difference of 200m corresponds to ⇡ 10% of change). Again, the obtained571
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Table 5 Domain Wp=Ant3, information and results.

Domain Wp & mesh information
Surface |Wp| 250268km2

Mean ice thickness of hb (Bedmap2) 1822.8m
# mesh vertices: in Wp / on flight tracks 42881/2443

RU-SIA model output (with ĝ) Median Mean Max
|H(hb)�Hobs| (before h-inversion) 7.8m 12.7m 274.0m
|H(h⇤)�Hobs| (after h-inversion) 2.8m 4.0m 110.6m

Infered RHS ȧ
|ȧ⇤ � ȧb| 2.2cm/y 2.5cm/y 22.1cm/y

|ȧ⇤ � ȧb|/|ȧb| 11.2% 11.4% 20%
Infered thickness h

|h⇤ �hb| 70.0m 124.5m 862.2m
|h⇤ �hb|/|hb| 3.5% 6.6% 63.5%

Ice volume change in km3 / in % 3.0 103 km3 / 0.5%

Fig. 9 Domain Wp=Ant3 (the plotted coordinates equal the Eastings-Northings plus (2800,2800)km): (Up)(L) Surface velocity module |uH | and flight
tracks (R) ĝ computed by NNRK, see (11). (Middle)(L) Thickness hb from Bedmap2 [14] (R) Empirical uncertainty on hb from [14]. (Down)(L) Infered
thickness with ĝ: h⇤(ĝ) (R) Difference (h⇤(ĝ)�hb).
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Fig. 10 Domain Wp=Ant3: comparison if not considering the flights tracks indicated in Fig.9 (Up)(L). (Up)(L) Field ĝ(G less
tr ) (i.e. without the flights

tracks indicated in Fig.9 (Up)(L)). (R) Difference (ĝ(G all
tr )� ĝ(G less

tr )). (Down)(L) Infered thickness h⇤(G less
tr ). (R) Difference between the two estima-

tions: (h⇤(G all
tr )�h⇤(G less

tr )).

Table 6 Domain Wp=Ant3. Comparison if considering or not the flights tracks indicated in Fig.9 (Up)(L).

Infered thickness difference Median Mean Max
|h⇤(G all

tr )�h⇤(G less
tr )| 42.7m 56.3m 904.6m

|h⇤(G all
tr )�h⇤(G less

tr )|/|h⇤(G less
tr )| 2.2% 2.8% 78.7%

Table 7 Domain Wp=Ant3. Comparison of the original thickness estimation (obtained using NNRK) to the one obtained using ordinary Kriging at
Step2).

Infered thickness difference Median Mean Max
|h⇤(ĝ)�h⇤(gkrig)| 58.3m 84.9m 1418.7m

|h⇤(ĝ)�h⇤(gkrig)|/|h⇤(ĝ)| 2.9% 4.3% 124.5%

variations on h are roughly half than the ones obtained from hb, see tables 5 and 6: difference of 2.8% in mean vs 6.6%,572

and 2.2% vs 3.5% for median values.573

5.2.3 Ant3: with a different statistical learning method at Step 2)574

Similarly to the Ant1 case, the difference between ḡ and ĝ (i.e. before and after the Kriging Step 2c)) are mainly localised575

in the vicinity of the flight tracks with amplitudes up to ⇠±0.20, Fig. 11 (Up)(R). Again, the differences between ĝ and576

gkrig are not in the vicinity of the tracks only; they may be anywhere. The observed difference is up to ⇠ ±0.45, see577

Fig. 11(Middle)(R). Statistics on the differences on the corresponding estimated thicknesses are presented in Tab. 7. The578

obtained differences on h are about one third lower than the ones obtained from hb, see tables 2 and 7: difference of 4.3%579

in mean vs 6.6%, and 2.9% vs 3.5% for median values.580

581

In summary, these empirical sensitivity analyses highlight the robustness and the reliability of the inversion method.582

If not considering some in-situ measurements (along some flight tracks), see figures 6 and 9 (Up)(L), the obtained differ-583

ences on h are roughly half than the ones obtained between h⇤ and hb.584

If considering a simple Kriging method to estimate g instead of the NNRK algorithm, the obtained differences on h in585

Ant1 case (resp. in Ant3 case) are roughly 1/2 (resp. 2/3) the ones obtained between h⇤ and hb.586

Therefore in all investigated cases, the obtained variations are lower than the ones obtained from hb, see sections 5.1.1587

and 5.2.1.588
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Fig. 11 Domain Wp=Ant3: comparison between different statistical learning methods at Step 2). (Up)(L) ḡ computed by ANN only. (R) Difference
(ĝ � ḡ). (Middle)(L) gkrig computed by ordinary Kriging. (R) Difference (ĝ � gkrig). (Down)(L) Infered thickness h⇤(gkrig). (R) Difference (h⇤(ĝ)�
h⇤(gkrig)).

6 Conclusion589

In this study, a method to infer the bedrock topography beneath glaciers at wave length ⇠ 10h̄, h̄ a characteristic thick-590

ness value (with a resolution at ⇠ h̄) is developed. The key ingredients of this inversion method are the following: a)591

a dedicated Reduced-Uncertainty flow model (RU-SIA) taking into account a complete physics (including non-uniform592

internal deformation in particular due to the temperature profile); the model presents a single dimensionless multi-physics593

parameter g(x); b) two advanced VDA processes; c) an Artificial Neural Network (ANN) estimating g(x) from the sur-594

face data and in-situ measurements (acquired during airborne campaigns). A strong feature of the method is to consider595

at each step robust and stable inverse problems (or at least not trivially ill-posed ones). All steps of the algorithm have596

been thoroughly assessed, partly in [39] next in the present study, in particular the estimation sensitivity with respect to597

the presence or not of local in-situ measurements (airborne campaigns). The ANN capabilities to infer the dimensionless598

multi-physics parameter g from the surface measurements only are surprisingly excellent for all considered datasets in599

EAIS.600

Observe that it is straightforward to apply the same deep-learning method as the present one to directly estimate the601

ice thickness h (instead of g), by training the ANN from the in-situ measurements acquired along the flight tracks. We602

have performed such estimations; they turned out to be too highly dependent on the training datasets. In particular, they603

are sensitive to the presence or not of local in-situ measurements. In other words, these purely data driven estimations604
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turned out to be not robust enough, on contrary to the estimations of g . It seems more consistent to estimate an ”intrinsic”605

dimensionless multi-physics parameter from the surface signature than the ice depth.606

The present hybrid physically-informed data-driven method enables the estimation of the bed elevation between in-situ607

measurements, in poorly covered areas, even in large uncovered areas e.g. in EAIS where the current estimations are608

today gravimetry-based (therefore highly uncertain). Indeed, the developed method is relatively global (with local con-609

straints along the flight tracks) and not purely local. It has been shown to be relatively robust. The estimations in large610

uncovered areas remain accurate as elsewhere. In the considered six large EAIS areas, the corrections made to Bedmap2611

may be large (up to 1000m) even at 2 wave lengths (⇡ 50km) away to ”in-situ” measurements (flight tracks). Away from612

the flight tracks, the correction obtained to Bedmap2 may be significant or not, depending on the surface signature. The613

obtained corrections led to a total ice volume change of 0.5�5.6%, depending on the area.614

In view to edit new bedrock maps from the present estimation method, further investigation need to be led in particular615

by adding additional prior information such as regularisation length scales of h. In a mathematical point of view, this can616

be easily done (by adding extra regularisation terms in the optimisation formulations). This prior information should be617

introduced from geomorphologic analyses. Moreover, the smoothing of the observational surface term |uH |/S may be618

defined as non-isotropic to distinguish the streamline minimal wave length from the cross-line one.619

This bed estimation method may be applied to any ice-sheets or ice-caps, as soon as the method domain of validity is620

compatible with the observed flows, that is highly to moderately sheared flows (i.e. not almost purely slipping flows). Fi-621

nally, the method can be easily extended to unsteady flows if the surface observations (elevation and velocity) are given in622

time and assuming that the initial condition is either not important at the considered time scale or approximatively known.623
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Table 8 Domain Wp=Ant2, information and results.

Domain Wp & mesh information
Surface |Wp| 431860km2

Mean ice thickness of hb (Bedmap2) 2144.4m
# mesh vertices: in Wp / on flight tracks 65123/5194

RU-SIA model output (with ĝ) Median Mean Max
|H(hb)�Hobs| (before h-inversion) 8.7m 17.3m 149.9m
|H(h⇤)�Hobs| (after h-inversion) 3.9m 5.1m 49.2m

Infered RHS ȧ
|ȧ⇤ � ȧb| 0.6cm/y 0.8cm/y 4.0cm/y

|ȧ⇤ � ȧb|/|ȧb| 14.8% 13.2% 20%
Infered thickness h

|h⇤ �hb| 171.1m 302.4m 2025.6m
|h⇤ �hb|/|hb| 8.3% 14.2% 80.0%

Ice volume change in km3 / in % 5.2 104 km3 / 5.6%

Table 9 Domain Wp=Ant4, information and results.

Domain Wp & mesh information
Surface |Wp| 439045km2

Mean ice thickness of hb (Bedmap2) 2745.4m
# mesh vertices: in Wp / on flight tracks 61219/4977

RU-SIA model output (with ĝ) Median Mean Max
|H(hb)�Hobs| (before h-inversion) 6.3m 8.4m 66.9m
|H(h⇤)�Hobs| (after h-inversion) 3.0m 4.1m 45.3m

Infered RHS ȧ
|ȧ⇤ � ȧb| 2.0cm/y 2.7cm/y 15.0cm/y

|ȧ⇤ � ȧb|/|ȧb| 8.7% 10.1% 20%
Infered thickness h

|h⇤ �hb| 147.6m 185.0m 1241.6m
|h⇤ �hb|/|hb| 5.7% 7.0% 50.4%

Ice volume change in km3 / in % 1.5 104 km3 / 1.5%

A Results for other EAIS areas736

In this section, the estimation of ice thickness is performed in the four other areas indicated in Fig. 4: Ant2, Ant4, Ant5 and Ant6. Ant2 is located737

upstream of Fisher and Merllor ice-streams (upstream Amery ice shelf). Ant4 is located upstream Totten ice-streams (Wilkes land and Terre Adélie),738

one of the largest discharger of ice in EAIS. Ant5 is located upstream Ninnis and Mertz ice-streams in Terre Adélie and George V land. Ant6 is located739

upstream Byrd ice-streams (east of Ross Ice shelf), see Fig. 4.740

These areas have been relatively well covered during the airborne campaigns excepted the north-east part of Ant2, see Fig. 12. Distances between flight741

tracks are relatively low, therefore the empirical uncertainty assigned to Bedmap2 estimations hb is low too: ⇡±[100�250]m, see figures 12, 13, 14,742

15 (Middle).743

For each area, domain information and statistics on the numerical results are presented, see tables 8-11.744

As already noticed, RU-SIA model already fits well with the surface topography after the data-driven model (Step 2) only; that is with ĝ and hb as745

parameters in (1): see lines ”(|H(hb)�Hobs| (before h-inversion)” in the tables. Next RU-SIA model fits accurately the surface topography after the746

re-calibration / estimation of h. Indeed, misfit values range within ⇡ [4�5]m in mean; see lines ”(|H(hb)�Hobs| (after h-inversion)” in tables.747

The corrections made on ȧ are ⇠ [10�17]% in mean, that is within the a-priori uncertainty range indicated in [52].748

The estimated thickness h⇤ is plotted in each case, see figures 12-15 (Down)(L); its difference with hb is plotted (Down)(R). The corrections made749

to hb are non negligible: they are ranging within [7.0� 15.9]% in mean (corresponding to [185� 373] m, see the lines ”|h⇤ � hb|” in tables). These750

corrections lead to changes of total ice volume by [1.5,5.6]%. Again, the obtained difference with hb is independent of the distance to the closest flight751

track. Maximum values of correction to hb can be locally high. In the uncovered north-east Ant2 area, corrections are up to ⇡ 2000m. At ⇡ 50km from752

the nearest flight track (that is ⇠ 2 minimal wave lengths of the model) correction may reach 1000m (even in area surrounded by well covered areas),753

see e.g. figures 14 and 15 (Down)(R). Beyond ⇡ 100km from the nearest data, the correction of hb may be significant or not, depending on the surface754

signature, see e.g. figures 14 and 15 (Down)(R).755

756
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Table 10 Ant 5, information and results.

Domain Wp & mesh information
Surface |Wp| 362019km2

Mean ice thickness of hb (Bedmap2) 2415.3m
# mesh vertices: in Wp / on flight tracks 41597/2351

RU-SIA model output (with ĝ) Median Mean Max
|H(hb)�Hobs| (before h-inversion) 18.3m 23.9m 173.3m
|H(h⇤)�Hobs| (after h-inversion) 3.9m 5.1m 43.1m

Infered RHS ȧ
|ȧ⇤ � ȧb| 3.9cm/y 4.4cm/y 14.5cm/y

|ȧ⇤ � ȧb|/|ȧb| 18.8% 15.4% 20%
Infered thickness h

|h⇤ �hb| 275.1m 373.1m 1989.2m
|h⇤ �hb|/|hb| 12.1% 15.9% 68.8%

Ice volume change in km3 / in % 3.8 104 km3 / 5.6%

Table 11 Domain Wp=Ant6, information and results.

Domain Wp & mesh information
Surface |Wp| 406388km2

Mean ice thickness of hb (Bedmap2) 2672.9m
# mesh vertices: in Wp / on flight tracks 63981/3012

RU-SIA model output (with ĝ) Median Mean Max
|H(hb)�Hobs| (before h-inversion) 8.3m 11.0m 46.8m
|H(h⇤)�Hobs| (after h-inversion) 2.7m 3.4m 21.3m

Infered RHS ȧ
|ȧ⇤ � ȧb| 0.4cm/y 0.5cm/y 1.8cm/y

|ȧ⇤ � ȧb|/|ȧb| 15.8% 14.2% 20%
Infered thickness h

|h⇤ �hb| 218.6m 313.9m 1777.3m
|h⇤ �hb|/|hb| 8.1% 11.6% 63.8%

Ice volume change in km3 / in % 2.6 103 km3 / 1.7%
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Fig. 12 Domain Wp=Ant2 (the plotted coordinates equal the Eastings-Northings plus (2800,2800)km): (Up)(L) Surface velocity module |uH | and
flight tracks. (R) ĝ computed by NNRK, see (11). (Middle)(L) Thickness hb from Bedmap2 [14]. (R) Empirical uncertainty on hb from [14]. (Down)(L)
Infered thickness with ĝ: h⇤(ĝ). (R) Difference (h⇤(ĝ)�hb).
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Fig. 13 Domain Wp=Ant4 (the plotted coordinates equal the Eastings-Northings plus (2800,2800)km): (Up)(L) Surface velocity module |uH | and
flight tracks. (R) ĝ computed by NNRK, see (11). (Middle)(L) Thickness hb from Bedmap2 [14]. (R) Empirical uncertainty on hb from [14]. (Down)(L)
Infered thickness with ĝ: h⇤(ĝ). (R) Difference (h⇤(ĝ)�hb).
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Fig. 14 Domain Wp=Ant5 (the plotted coordinates equal the Eastings-Northings plus (2800,2800)km): (Up)(L) Surface velocity module |uH | and
flight tracks. (R) ĝ computed by NNRK, see (11). (Middle)(L) Thickness hb from Bedmap2 [14]. (R) Empirical uncertainty on hb from [14]. (Down)(L)
Infered thickness with ĝ: h⇤(ĝ). (R) Difference (h⇤(ĝ)�hb).
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Fig. 15 Domain Wp=Ant6 (the plotted coordinates equal the Eastings-Northings plus (2800,2800)km): (Up)(L) Surface velocity module |uH | and
flight tracks. (R) ĝ computed by NNRK, see (11). (Middle)(L) Thickness hb from Bedmap2 [14]. (R) Empirical uncertainty on hb from [14]. (Down)(L)
Infered thickness with ĝ: h⇤(ĝ). (R) Difference (h⇤(ĝ)�hb).


