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Abstract A method to infer the bed topography beneath glaciers from surface measurements (e.g. elevation from al-
timetry and velocity from InSAR) plus sparse thickness measurements is developed and assessed. The method relies on
an original non-isothermal Reduced Uncertainty (RU) version of the Shallow Ice Approximation (SIA) equation which
natively integrates the surface measurements. The flow model presents a single dimensionless multi-physics parameter γ;
it takes into account basal slipperiness and varying vertical rate factor profiles (thus vertical thermal variations). Next the
inversions rely on a statistical learning model (deep neural network) based on the in-situ thickness measurements com-
bined with two Variational Data Assimilation (VDA) processes. The inversion method is demonstrated to be robust. It is
valid for moderately sheared flows (presenting a moderate basal slipperiness), thus it can be applied to inland ice-sheets
areas. Numerical results are presented in East Antarctica Ice Sheet areas where the bed elevation may be highly uncertain
(Bedmap2 values). The estimations are valid for wave lengths greater than ∼ 10h̄ (due to the long wave assumption,
shallow flow model) with a resolution at ∼ h̄ (h̄ a characteristic thickness value).

Keywords Variational data assimilation · reduced flow model · deep learning · topography · inference · glaciers ·
Antarctica.

1 Introduction

Bed topography elevation is a fundamental data to set up dynamic ice flow models; moreover if combined with the sur-
face topography measurements (e.g. acquired by altimetry in ice-sheets) it straightforwardly provides the ice volume. In
Antarctica and Greenland ice-sheets, ice thickness measurements are available along airborne radio-echo sounding tracks
see e.g. CReSIS RDS database 1. The measurements are particularly dense in fast ice costal stream areas. On the contrary
they are very sparse inland, they are even nonexistent deep inland, see [4,14] and references therein. In other respects,
numerous satellites have provided accurate measurements of ice sheets surfaces: altimeters provide surface elevation H at
≈±20 cm for 1 km2 pixels, see e.g. [22,4], radar interferometers (InSar) provide surface velocity uH see e.g. [43]. Next
the challenge is to infer the bed elevation values between the thickness measurements; this is done by using a model.
The most simple model one can employ is the ordinary Kriging; that is a Gaussian process regression algorithm providing
the best linear unbiased prediction of the intermediate values. It is statistical interpolation, a purely data-driven model (the
most employed method in geo-statistics). It has enabled to provide bed elevation estimations e.g. inland Greenland and
Antarctica, [3,14]. In Antarctica, the authors of [14] suggest that for cells located less than 20km from a measurement the
estimation error is an increasing function of the distance; beyond 20 km the error would be uncorrelated with distance.
For cells located more than 50 km from any measurement, the thickness estimation is based on the gravity-field inversion
therefore presenting very large uncertainties (±∼ 1000m according to [14]).
To reduce uncertainties on the bed topography estimations, combining physical-based models with datasets is definitively
a good direction. Then a challenge is to employ a flow model sufficiently complex to be accurate but simple enough to
lead to well-posed (and stable) inverse problems in the sense not leading to severe equifinality issues. In inverse geophys-
ical flows modelling by data assimilation, equifinality issues are the common pitfall to avoid, see e.g. [5]. In other respect
the available large glaciers depth datasets invite to employ deep neural networks.
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In fast ice streams, the flows may be considered as plug flows (pure sliding) then the inversion of the depth-integrated
mass equation enables to fill up the gaps downstream (and upstream) the measurements, see [46,40]. The measurements
locations (e.g. the flight tracks during airborne campaigns) have to be cross-lines and relatively dense. Indeed it is well
known that this transport equation is intrinsically unstable to invert and it propagates errors, see e.g. [36] and refer-
ences therein. To locally damp this feature, artificial diffusion regularising the equation may be introduced. The inversion
of mass conservation proposed in [8,46], next combined with surface measurements by Variational Data Assimilation
(VDA) in [41,42], has enabled to estimate the bed elevation under ice streams along flow lines in Greenland, see [40,
42]. In [7] a Bayesian framework is applied to provide probability distributions of thickness assuming Gaussian covari-
ance structures of input data (the algorithm being equivalent to ordinary Kriging if no data is available). This Bayesian
approach is particularly suitable however in this case the estimations are based on mass conservation only.
For fully sheared flows, the isothermal SIA flow model (with no slip at bottom) has been inverted e.g. in [37,21], pro-
viding robust estimations but relevant in a very restricted flow regime only. In moderately sliding flows (equivalently
moderately sheared flows), the slipperiness at bottom has to be taken into account in the bed inversion therefore trans-
forming the inverse problem to a severely ill-posed one. Indeed in this case, the flow models present the basal slipperiness
in addition to the rate factor (internal deformation). [25] inverts the 1D depth-integrated SIA equation with slipperiness
and a shape factor (modelling the 3D features of the flow) leading to an ill-posed inverse problem (the inversions are
performed by imposing empirical constant values for the few unknown parameters). Based on the inversion of the com-
plete hybrid SIA-SSA system PISM [55], [51] proposes an empirical iterative method to fit with the surface elevation by
calibrating the bed elevation only. In [38] the SIA flow model with slipperiness at bottom is inverted by distinguishing
different regimes, enabling to define well-posed inverse problems, hence providing stable and robust inversions. However
the rate factor (depending in particular on the temperature field) is supposed to be constant; unfortunately this assumption
is often unrealistic, in particular in ice-sheets glaciers.
Inland ice-sheets areas presenting mid-range surface velocities (≈ [10−80] m/y in Antarctica), the flows are moderately
slipping / moderately sheared; they cannot accurately be modelled using plug flows models or fully sheared flows mod-
els. Indeed these areas, the measured surface features (elevation and velocity) are the signature of both the slipperiness at
bottom and internal deformation; the latter depending on the constitutive ice behaviour and the vertical thermal profiles.
As a consequence inverting the surface data in moderately sheared flows is highly challenging.
A comparison of various inverse methods to estimate the bed elevation beneath glaciers (equivalently the ice thickness)
is presented in [12]. The comparison relies on numerous test cases representing a large spectrum of ice flow regimes (but
no ice-sheet is considered). One feature of the considered benchmarks is that no prior thickness value is supposed to be
known. The 15 inter-compared methods are classified by resolution type and not by domain of validity (e.g. in function
of the flow regime). Numerical comparisons are presented; no analysis of the equifinality issue(s) is proposed (that is
well-posed vs ill-posed inverse formulations).
The present study aims at solving the following inverse problem: estimating the ice thickness in moderately sheared flows
while taking into account the complete physics of the flow. To do so, a key ingredient is the Reduced Uncertainty SIA
(RU-SIA) model first derived in [39]. This flow model is dedicated to the present inverse problem by natively integrating
the surface measurements. It is a multi-physics depth-integrated shallow flow model while respecting a ”well-balanced
complexity” to be inverted. Indeed it is a 2D shallow flow model (and not 3D with a mobile surface) but relatively com-
plete since mass and momentum equations are considered. Moreover the RU-SIA equation takes into account the non
uniform internal properties (in particular due to the varying vertical temperature profiles) while it presents a single uncer-
tain dimensionless parameter, see [38,39].
Inland moderately sheared flows have been poorly covered during the airborne campaigns (they are difficult and expan-
sive to flight over). Therefore the chosen flow model needs to be stable and robust when inverted even in lack of local
in-situ data. This mathematical feature is as important as the model consistency; this feature is all but trivial to obtain,
see e.g. [2,36,48,38]. Moreover it would be highly valuable that the flow model inversion is as insensitive as possible to
the measurements locations.
Note that an effective bed topography only can be infered from the surface signature. Indeed the glaciers flows act as
low-band filters: the bed variations are filtered by the flow with filtering features depending on the flow regime, see [18,
34,35] for detailed analysis. To a flow regime and a flow model corresponds a minimal inferable wave length [19,34,35].

In the present study, a new inversion method to infer the bed elevation from surface measurements (elevation, ve-
locity) and sparse in-situ thickness values is developed. It is applied to six large inland East Antartica Ice Sheet (EAIS)
areas. This inversion method relies on the RU-SIA equation derived in [39], two advanced VDA processes and a deep
Neural Network (statistical learning).The latter aims at estimating the single dimensionless parameter γ of the RU-SIA
model from the in-situ ice thickness measurements (here available along the flight tracks of airborne campaigns).
The present inversion method may be applied to any glaciers flows in ice-sheets or ice-caps as soon as the flow model
assumption is satisfied and the estimation of γ is robust. Then the computed thickness estimations are valid at ≈ 10× h̄
wave length, h̄ a characteristic thickness value.
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In [39], the proposed inversion strategy is similar as the present one since based on the two VDA processes and an
estimation of γ too. However in [39] γ is estimated by a simple Kriging method. This was possible in the single con-
sidered test case since a clear correlation is observed between γ and one of the observable (namely |uH |, see [39] Fig.
7). Such clear correlation may be not observed in other contexts. Then in the present inversion method, a more general
Neural Network Residual Kriging (NNRK) algorithm ([11,30]) is employed. The present assessment experiments of this
method (assessment based on cross-validations) performed on numerous large EAIS areas have demonstrated that it is
robust and accurate even in the lack of clear correlation between γ and one of the observable.
In other respect the present study details a remarkable relationship between the mass inversion method [46,40,42] en-
abling to estimate the bed elevation under fast streams, and the present RU-SIA based method. This relationship opens
promising perspectives to mix these two complimentary methods, then to obtain smooth estimations between their re-
spective domain of validity.

The present test areas have been selected since they respect the domain of validity of the method; moreover estimat-
ing more accurately the bed elevation there is interesting since global warming may threaten EAIS stability, particularly
around some of these areas, see e.g. [13].

The outline of the article is as follows. In Section 2, the Reduced Uncertainty (RU) equation developed in [38,39] is
recalled; its domain of validity is highlighted; uncertainty range on its uncertain dimensionless parameter γ is presented.
Next, the inversion method developed in three steps is detailed: Step 1) and Step 3) aim at inverting the RU-SIA equation
by VDA (physical-based inversions); Step 2) aims at estimating γ using a ANNK algorithm (deep learning). In Section
4, the considered six large EAIS areas (named Antp, p = 1, ..,6) are presented; basis of the Bedmap2 estimations [14]
are recalled. Each computational steps of the inversion method is analysed in detail. In Section 5, the robustness of the
obtained estimations is assessed for Ant1 and Ant3 cases; in particular their sensitivities with respect to the presence
or not of additional flight tracks. A conclusion is proposed in Section 6. As a complimentary material, the computed
thickness estimations for the four other areas Antp, p = 2,4, ..,6, are presented in Appendix.

2 Method

In this section the inversion method to estimate the ice thickness h (equivalently the bed topography elevation b) is de-
tailed. It is done in three steps. Steps 1) and 3) aim at assimilating all surface data (altimetry, InSAR and climatic term
Source Mass Balance) plus the in-situ thickness measurements in the RU-SIA flow model. Step 2) aims at estimating
the single dimensionless parameter γ from the in-situ measurements only (measurements available along the flight tracks
of airborne campaigns). The final output of the inversion method is the ice thickness h, therefore the bed topography
elevation b.

2.1 The RU-SIA flow model

The RU-SIA equation is obtained by reformulating the depth-integrated SIA model with basal slipperiness (see e.g. [17]
Chapter 5) but with a non constant rate factor and by natively integrating the surface measurements (elevation and ve-
locity), see [39]. The resulting 2D depth-integrated flow model is original; it is relevant for large scale sheared flows
with moderate slipperiness at bottom and with non constant vertical temperature profile. The various uncertain multi-
physics parameters (constitutive law exponent, flow regime, temperature dependent term) are gathered into the single
dimensionless parameter γ . As a consequence, all the physical parametrisation uncertainty is represented by this original
dimensionless parameter. The basic RU-SIA model assumptions are the same as those for the SIA model (classical lu-
brication theory) with basal slipperiness that is: the flow is necessarily sheared (normal stress components are negligible)
and it is ”shallow” (long wave assumption).

2.1.1 The equations and the dimensionless parameter γ

The surface slope is denoted by S = |∇H|; uH is the surface velocity and ub is the velocity at bottom (basal velocity).
The depth (ice thickness) is denoted by h, h = (H−b) with H the ice surface elevation and b the bed elevation, see Fig.
1. θ is a potential mean slope value in the (x,y)-plane (θ = 0 in the forthcoming test areas).

The depth-integrated flow model SIA model with slipperiness at bottom (see e.g. [17] Chapter 5) is derived in a non
isothermal case in [38] providing the so-called xSIA (x for extended) equation. Next in [39], by taking advantage of the
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Ice

Fig. 1 Schematic vertical view of the gravitational ice flow and notations

measured surface features (elevation and velocity norm), the xSIA model is re-formulated to obtain the RU-SIA model
(RU for Reduced Uncertainty). The RU-SIA equation reads as follows:

−div
(
|uH |
S

γh∇H
)
= ȧ (1)

The RHS ȧ is the classical one defined by: ȧ = (∂th− a) with a the mass balance (accumulation and ablation). γ is the
dimensionless parameter of the model, its expression is:

γ =

(
1− cARs

(q+2)

)
(2)

Rs is the slip ratio describing the flow regime; it is defined as: Rs = 1− |ub|
|uH |

.

The parameter cA is defined by:
cA = [(q+2)− (q+1)RA] (3)

where q is the constitutive power-law exponent (q = 3 in the classical Glen’s law (see e.g. [17] Chapter 5, [38]) and

RA =
Ā
A

.

The parameters Ā(x) and A(x) are the depth-integrated quantities naturally appearing if the rate factor A depends on
(x,z). A highly depends on z as soon as the temperature vertical profile varies. The expressions of these parameters are as
follows, see [38]:

Ā(x) =
(q+2)
hq+2(x)

(∫ H

b

∫ z

b
A(x,ξ )(H(x)−ξ )qdξ dz

)−1

(4)

A(x) =
(q+1)
hq+1(x)

∫ H

b
A(x,z)(H(x)− z)qdz (5)

If the vertical profile of A is constant then: Ā(x) = A(x) = A(x) ∀x. Therefore in the isothermal case, A is a constant
and: Ā = A = A; moreover RA = 1 = cA. This is the case described in the literature (excepted in [38,39]).
For the classically employed value q = 3, γ =

(
1− 1

5 Rs
)
.

Recall that Rs = 1 for a fully sheared flow (no slip at bottom) and Rs = 0.5 for a mid-sheared mid-sliding flow.

In (1), the term |uH |
S is the observational term, e.g. provided by InSAR and altimetry surface measurements. Assuming

that h (or equivalently b) is given, Eqn (1) in variable H contains γ as the single uncertain parameter. The linear diffusive
equation in H is closed by Dirichlet condition at boundaries: H given e.g. by altimetry.

2.1.2 Domain of validity of the model

The shallowness of the flow is estimated through the geometrical ratio ε = H∗
L∗ , where H∗ and L∗ are characteristic flow

depth and length respectively. In these depth-integrated asymptotic models, ε has to be small enough, ε . 1/10 at least,
see e.g. [29]. As a consequence this flow model is valid for a minimal wave length L∗ & 10H∗. The flow regime is char-
acterised by the slip ratio Rs. By construction, the SIA-like models (including xSIA and RU-SIA equations) are valid for
Rs ranging from ≈ 0.3 to 1, see [23,47,6] for detailed analysis. This estimation in terms of Rs is numerically quantified
in real world cases (including EAIS) in [54]. This study is based on the so-called MCL criteria (criteria proposed in [24]
and defined as the length scale over which the terms of driving stress and drag are comparable). In particular it can be
noticed that the ice-sheet areas presenting surface velocity ranging in≈ [5−100] m/y are accurately modelled by the SIA
model as soon as the minimal wave length equals ≈ 10−12 km in mean. The six test areas Antp considered in the next
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Fig. 2 (Left) A typical vertical profile of rate factor A(z), see (6). (Right) The parameter cA vs m, see (3), with k = 10,100 and 1000.

sections, see Fig. 4, have been defined from the surface velocities norm values: |uH | ∈≈ [10− 80] m/y. In these cases
H∗ ≈ 2−3 km, then the RU-SIA equation is accurate for minimal wave lengths L∗ ≈ 20−30 km.

2.1.3 Junction with the mass equation & its inversion in fast plug-like flows

As already mentioned, nice bed elevation estimations are obtained in fast streams by inverting the depth-averaged mass
equation div(hū) = ȧ with ū the depth-averaged velocity, see [42]. In [46,41,42], ū is related to uH as ū = α̃uH , with
α̃ empirically set. In fast streams (plug like flows), one has Rs ∼ 0 and α̃ . 1; therefore the uncertainty on the internal
deformation (represented in the RU-SIA equation by the parameter cA) is negligible. As a consequence α may be set
close to 1 with a few percent error only.
In [39] it is shown that: ū =− |uH |

S γ∇H. Therefore if the slopes S = |∇H| and the velocity are co-linear (this is a com-
monly admitted assumption) than the parameter α̃ empirically defined in [46,41] is nothing else than the dimensionless
parameter γ defined by (2). On the contrary to plug like flows, in moderately sheared / moderately sliding flows, γ varies
quite importantly; setting its value empirically is not reasonable anymore. That is why an actual estimation of γ is re-
quired.
This equality γ = α̃ enables to build up continuous estimations between fast plug-flows (obtained by inverting the mass
equation as in [41,42]) and the moderately sheared / moderately sliding flows (obtained by inverting the RU-SIA equa-
tion).

2.2 On the uncertainty range of parameter γ

The dimensionless parameter γ defined by (2) depends on various physics parameters: the constitutive law exponent q, the
vertical temperature profile through the rate factor A(z) and the flow regime (slip ratio Rs). Recall that the RU-SIA model
domain of validity corresponds to Rs ∈ [≈ 1./3.,1], see [23,47,6]. For a sake of simplicity, q is supposed to be set to
the widely employed value for glaciers flows, that is q = 3 (Glen’s law). In isothermal cases, it follows: γ = (1−0.2Rs).
Therefore in isothermal cases, the uncertainty on γ is relatively small, ≈ 10% only.
The large majority of glaciers are not isothermal in particular those in ice-sheets. Following the Arrhenius law, see e.g.
[17, p.54], and by considering typical ice-sheet vertical temperature profiles in ice-sheets, see [44,45] and e.g. [27,49],
we consider the following profile of A(z), Fig. 2 (Left):

A(z) =

{
Aa for z ∈ [B,H]

Aa
B−b ((1− k)z+ kB−b) for z ∈ [b,B]

(6)

with Aa and k given constants. We define: B = (mh+b) with m ∈ [0,1]. Then A(z) presents a boundary layer at bottom
of thickness (B− b) = mh, Fig. 2 (Left). Following [39], the value of cA vs m for different values of k is presented in
Fig. 2 (Right). The case m = 0 corresponds to the isothermal case: cA = 1. For thin thermal boundary layers cA increases
with mh; for ticker layers cA decreases to a minimal value c(min)

A . 1. (This minimal value is reached for the purely linear
vertical profile: m = 1).

Let us consider typical temperature values in EAIS: the bed is at 0C◦ and the surface at −40C◦. These values
correspond to Aa ≈ 10−26 therefore k ≈ 1000, see Fig. 2 (Right). (The value k ≈ 10 would correspond to typical inland
Greenland cases, see [39]). Assuming a boundary layer corresponding to m ∈ [0.1,0.5], it follows: cA ∈ (3.11,4.64) (Fig.
2). Finally it follows from (2) that: γ ≈ [1− (0.78±0.15)Rs].
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This rough uncertainty analysis based on typical values in the targeted areas shows that the uncertainty on γ comes
similarly from the vertical thermal profile uncertainty (represented by the term (cA/(q+2))) and the slip ratio Rs. In the
targeted regimes and EAIS areas with the vertical profile (6), this corresponds to γ varying within the interval ]0,≈ 0.7].
If relaxing the assumption on the vertical profile as defined in (6), one may estimate the upper bound of γ by setting
cA = 1 and Rs = 0.5 which gives: γ ∈]0,≈ 0.9]. (Recall that in fast plug-like flows, γ is close to 1).
In the forthcoming numerical results, the estimations of γ by NNRK algorithm are within intervals ]0,≈ 0.9], see e.g.
figs. 6 and 9(Up)(Right).

2.3 The inversion method

The inversion method to estimate the ice thickness h is developed in three steps. Step 1) and Step 3) are physical-based
inversions: the RU-SIA equation (1) is inverted by VDA. Step 2) is based on ANN algorithm; it is a purely data-driven
inversion. Step 1) and Step 3) are similar than those proposed in [39], while Step 2) is different.

2.3.1 Sketch of the complete inversion method

The estimations are performed in three steps as follows.

Step 1) Estimation of the effective diffusivity η = (γh) in RU-SIA equation (1) by VDA.
Given the surface measurements H and |uH |, the effective diffusivity η = (γh) in (1) is infered by solving the follow-
ing optimal control problem:

min
k

g(k) with g(k) = gobs(k)+α greg(k) (7)

with k≡ η = (γh) and

gobs(·) =
1
2

∫
Ω

|H(·)(x)−Hobs(x)|2χtr(x)dx, (8)

χtr is the spatial restriction operator to the flight tracks, greg(·) a Tykhonov’s regularization term, see e.g. [28].
In this step, it is defined as: greg(η) = 1

2
∫

Ω
|∇η(x)|2dx. The weigh coefficient α is empirically set ”at best” (see

[39] for details). The surface elevation H(η) corresponds to the solution of the RU-SIA equation (1) (with Dirich-
let boundary conditions) with η given. The gradient of the cost functional is computed by introducing the adjoint
equation. The minimisation algorithm is a quasi-Newton method (the L-BFGS algorithm of the Python routine
scipy.optimize.minimize). We refer to [39] for more details.
The iterative minimization process is performed until convergence. Numerous numerical experiments have demon-
strated robust convergences; see [39] for a thoroughly assessment of the method. In particular the optimal solution
does not significantly depend on the smoothing length scale of the surface data (done in the present Ant− p test cases
at ≈ 24 km, see next Section), nor on the first guess (set to hb the Bedmap2 value in EAIS).
Past this computational VDA step providing the optimal value η∗, the value of γ along the flights tracks where depth

measurements hb are available are straightforwardly deduced: γ
∗
tr =

η∗

hb
χtr(x). These values are inputs of the next

algorithm, Step 2).
These obtained values are representative (and accurate, see [39]) at the flow model scale, that is at 10h̄ ≈ 25 km
minimal wave length (with ≈ 2km mesh cells).

Step 2) Extension of γ in the whole domain by NNRK.
Given γ∗tr along the flights tracks (result of Step 1)), a NNRK algorithm ([11,30]) is applied to extend values of γ to
the whole area. This statistical learning algorithm is done in two steps: 1) an ANN estimator (deep learning) is buit
up; 2) an ordinary Kriging of the residuals is added. Details are presented in next paragraph.

Step 3) Estimation of the pair (h, ȧ) in RU-SIA equation (1) by VDA.
Given γ all over the domain (result of Step 2)), the thickness h is infered simultaneously with the RHS ȧ in (1) by
another VDA process. The equations and the complete VDA algorithm are presented and assessed in detail in [39].
Let us recall them briefly.
Similarly to Step 1), the pair (h, ȧ) in (1) is infered by solving the optimal control problem (7) with gobs defined
by (8) but minimizing with respect to k = (h, ȧ) (and not w.r.t. η = γh like in Step 1)). In this VDA process, the
regularization term reads:

greg(h, ȧ) =
1
2
‖(h−hb)‖C−1

h
+

1
2
‖ȧ− ȧb‖C−1

a
(9)



Physically-constrained data-driven inversions to infer the bed topography beneath glaciers flows. Application to East Antarctica 7

with C−1
h and C−1

a covariance operators defining metrics. The latter are classically defined as the second order auto-
regressive correlation matrices with length scale respecting a balance between the regularisation and the precondi-
tioning effects of the VDA algorithm, see [39] for details and [20] for an analysis in another physical context. Next
following [33,20], a change of the control variable is made. The numerous numerical experiments have demonstrated
that this choice of covariance operators combined with the change of variable improves greatly the robustness and the
convergence speed of the VDA algorithm, see [39].
In (7) the weight coefficient α is defined as a decreasing sequence following an iterative regularisation strategy, see
[39] for details and [28] for an analysis. This iterative regularisation strategy improves the convergence speed of the
VDA algorithm too.

Numerous assessment experiments are presented in [39], in particular the sensitivity of the present inversions with
respect to: i) the uncertainties on γ; ii) the density of flights tracks (by removing some of them); iii) the smoothing length
scale of the surface data (altimetry, InSar) from≈ 24 to 48 km; iv) the first guess (chosen here as the Bedmap 2 value hb).

Remark 1 Using the explicit expression (2) of γ one can compute a-posteriori estimations of the (spatially distributed)
slip ratio value Rs. This is an interesting feature to analyse a-posteriori the degree of the RU-SIA flow model consistency,
see [39] for details.

Remark 2 Based on a-priori vertical thermal profile(s) (e.g. the one defined by (6)), the RU-SIA equation (1) provides
a-posteriori estimations of the effective thermal boundary layer thickness (B− b), see Fig. 2 (Left). Such a-posteriori
estimations may be interesting for various analyses. Moreover the vertical profiles could be adjusted by constraining
them with (the very few) in-situ measurements.

2.3.2 The Neural Network Residual Kriging (NNRK) algorithm (Step 2))

The employed NNRK algorithm is decomposed in three steps as follows.

Step 2a) Considering the surface data (H, S , |uH |, ȧb) at all in-situ measurements locations (e.g. along the flights tracks of all
areas Antp) plus the values of γ∗tr computed at Step 1), an estimator of γ is built up by training an Artificial Neural
Network (ANN). This estimator is denoted by γ̄ .
The training dataset is denoted by D ; it contains ”examples” (Ii,Oi), i = 1, · · · ,N f t , where Ii = (H,S , |uH |, ȧb)(xi)
is the i-th input and Oi = γ∗tr(xi) is the corresponding output. xi, i = 1, · · · ,N f t denote the i-th in-situ measurements
coordinates (e.g. along the flight tracks).
The estimator γ̄ is computed as the minimizer of the mean square misfit: 1

N f t
∑

N f t
i=1 (Oi− γ̄(Ii))

2. This misfit function
(also called loss function) reads:

j(D ; ·) = 1
N f t

N f t

∑
i=1

[γ∗tr(xi)− γ̄ ((H,S , |uH |, ȧb)(xi); ·)]2 for xi ∈ Γtr (10)

To solve this large dimensional data-based optimisation problem, the currently most efficient methods are ANN with
few hidden layers (deep learning). Here, 5 layers are considered, see Fig. 3; each of the 4 hidden layers contains 50
neurones. The most efficient activation function is chosen: the rectified linear unit (ReLU) function, see e.g. [16,32].
The ANN is determined by its architecture and the weight parameters (W1, · · · ,W5), Fig. 3.
The training step consists to identify the optimal values of these parameters Wj, j = 1, ..,5. Each Wj is a matrix of
dimension nout×nin. Here, W1 has 5×50 = 250 parameters, Wj for j = 2,3,4 have 50×50 = 2500 parameters each,
W5 has 50×1 = 50 parameters. The ANN has been coded in Python using the PyTorch and Mpi4Py libraries [10].
To minimize j(D ;(W1, · · · ,W5)) with respect to {Wj} j, the classical Adam method [31], a first-order gradient-based
stochastic optimization, is employed. The learning rate (the gradient descent step size) is classically adjusted during
the optimization procedure.
The input variables are heterogeneous and of different order of magnitude e.g. the elevation H (m) and the slope
S (radian). Therefore each input variable v, v an element of {H,S , |uH |, ȧb}, are reduced centred as follows:
v̄i = (vi −mean(v)/σ(v)), for all i, 1 ≤ i ≤ N f t . The normalisation is applied to mini-batches in hidden layers;
this technique is supposed to improve the stability of the model; see e.g. [30] for more details and know-hows on
ANN and NNRK algorithms.
Also to avoid overfitting, the dropout method [50] is adopted. (This technique may help to prevent overfitting). As
usual, the hyper-parameters of the algorithm (learning rate, decay rate, dropout probability) are experimentally cho-
sen; the selected values are those providing the minimal value of j.
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Fig. 3 The Artificial Neural Network (ANN) with four hidden layers. First step of the NNRK algorithm.

The ANN has been trained by including hb as an input parameter or not. Both estimators (considering hb as an input
or not) turned out to have similar accuracies; thus confirming the strategy to predict the dimensionless parameter γ of
the flow model from the surface data only.

Step 2b) The K-fold cross-validation method, see e.g. [1], is employed to assess the ANN accuracy and to confirm if the ANN
can be used as a predictor. Let us recall that K-fold cross-validation method is as follows, see e.g. [1]:

– Divide randomly the original training data set D into K (roughly equal) subsets;
– For each subset Dk, k = 1 · · ·K, the ANN is trained from the other (K−1) subsets Di, i 6= k.

We denote by D itest = Di and D itrain = ∪ j 6=iD j, i = 1, · · · ,K.
– Compute the loss function j(D itest) for each case.

Finally, choose the best ANN i.e. those providing the smallest total loss function j(D itest)+ j(D itrain).

Step 2c) The residual along at the measurements locations is computed: εγ = (γ∗tr− γ̄) with γ̄ computed by the (best) ANN.
Next an ordinary Kriging (with a spherical semi-variogram model) is used to extend εγ all over the domain. The
obtained estimator is denoted by ε̂γ . By construction this residual satisfies: E(εγ) ≈ 0. Moreover the correlation
between two points depends on the distance between them and not on their location. Performing an ordinary Kriging
on the residual after ANN is known to be particularly efficient, see e.g. [30] Chapter 3.
The final estimator in the whole domain is denoted by γ̂ . It is obtained as the sum of the ANN estimator and the
ordinary Kriging estimator of residuals:

γ̂(x) = γ̄(x)+ ε̂γ(x) for x ∈Ω (11)

The forthcoming numerical results show that the estimator γ̂(x) provides (surprisingly) very accurate values of the
parameter γ from the surface data only (altimetry, InSAR and ȧ).

2.3.3 On the linked uncertainty between γ and h

In the inversion algorithm previously described, after Step 1), one has to separate the effects of the two unknown fields:
the physical-based dimensionless parameter γ and the ice thicknessh. The accuracy and robustness of each VDA process
has been demonstrated in [39]. It will be demonstrated in next section that the NNRK algorithm is robust and accurate
too. Then it can be assumed that: γ tht ≈ γ∗h∗; where the superscript ∗ denotes the optimal computed values while the
superscript t denotes the (effective) true value. Let us denote: eϕ = (ϕ∗−ϕ t)/ϕ . At order 1, one has:

eh ≈−eγ (where γ does not tend to 0) (12)

In other words, Step 2) and Step 3) of the inversion algorithm propagates the error made on γ to h in the same order of
magnitudes (in %).

Remark 3 It would be straightforward to apply the same NNRK algorithm to directly estimate the thickness h all over
the domain. However it seems definitively more consistent to estimate a dimensionless parameter of a flow model able
to represent accurately the surface data, than to estimate the thickness data partially responsible only of the employed
surface data. Following this idea of purely data-driven estimations, [9] had proposed an ANN trained and assessed
on synthetic data generated by an ice flow model and geomorphic premises to estimate the bedrock elevation of four
mountain glaciers.
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Fig. 4 Location of the 6 test areas Antp (east Antarctica) with InSAR-based surface velocity values in m/y (from [43]).

3 Data pre-processing

In the next sections, the algorithm is applied to 6 large areas in EAIS (ranging from 250268 to 439045 km2); they are
denoted by Antp, p = 1, ..,6, see Fig. 4. These areas include the upstream areas of major ice-sheds; all of them respect
the flow model domain of validity. The mean thickness value of Bedmap2 ([14]) ranges from 1822 to 2745 m, see tables
2-11 for details. The coordinates of the characteristic points defining each area (≈ 100−150 points per area, see Fig. 4)
are available on the open source computational software DassFlow webpage2.
Estimating more accurately the bed elevation in these areas may be interesting since global warming may threaten EAIS
stability as mentioned e.g. in [13].

The correlations between the given variables (Hobs, ‖uH‖, S , ȧ, hb) for all areas have been computed. It turns out
that no significant linear correlation between the variables have been observed.

In this section, the method to smooth the surface data accordingly with the flow model domain of validity is presented;
the definition of adequate numerical grids follows. Moreover since Bedmap2 values are considered as the reference
values, the method to obtain these values is recalled.

3.1 Minimal wave length, surface data smoothing and numerical grids

The surface data |uH | and H have to be defined at an adequate scale to be consistent with the shallow (long wave assump-
tion) flow model (1); next providing a minimal wave length L∗ (km) of the inversions. The RU-SIA equation is accurate
as soon as ε = [H]

[L] . 0.1. (In other respect it is shown in [54] that the ice-sheet areas presenting surface velocity ranging
in ≈ [5−100] m/y are accurately modelled by the SIA model as soon as the minimal wave length equals ≈ 10−12 km
in mean).
The mean value of the Bedmap2 ice thickness (denoted by h̄b) [14] in the 6 Antp areas equals≈ 2.7 km. In the considered
regimes, the velocity field is co-linear to the slopes S ; therefore to be fully consistent, the smoothing of surface data
should be done non-isotropically by defining a streamline minimal wave length and a cross-line one. For a sake of sim-
plicity, here an isotropic smoothing is performed. To do so, a Gaussian with standard deviation σ = 4 km is convoluted
with each given surface field: elevation and velocity norm. Then the smoothing effects are sensitive in disks of diameter

2 Open-source computational software DassFlow: Data Assimilation for Free Surface Flows. Python version for 2D shallow generalised Newtonian
fluids. INSA, University of Toulouse, CNES. www.math.univ-toulouse.fr/DassFlow.
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≈ 2× (3σ)≈ 10h̄b km.

Next a finite element mesh is built up using Gmsh software [15] with a grid size δx ≈ 3 km. Indeed δx = 3 km
provides≈ 10 points per minimal wave length L∗, therefore respecting the minimal number of points to properly approx-
imate all fields. The lineic flight tracks are meshed with cells of δx≈ 2 km. The given thickness measurements (provided
in the Bedmap2 database [14]) are interpolated along the flight tracks .

3.2 Recalls of the origins of Bedmap2 values

Bedmap2 values hb are considered as reference values; moreover they are employed to set the first guesses of the VDA
processes at Step 1) and Step 3) (see paragraph 2.3.2). hb and its a-priori uncertainty as derived in [14] are plotted for each
test area Antp in figures 6, 9, 12, 13, 14 and 15 (Middle)(Left). In Bedmap2 database [14], the interpolation - extrapola-
tion of airborne measurements are performed throughout the domain by the ArcGIS Topogrid routine (ESRI Ltd, ArcGIS
9); the latter is based on the ANUDEM algorithm [26]. This algorithm uses an iterative finite difference interpolation
technique which is essentially a thin plate spline technique [53]. Next, empirical uncertainty values are stated as follows,
see [14]. The thickness measurements are split into two datasets (D1) and (D2). Dataset (D1) is used to build up an inter-
polation including at Dataset (D2) location points; values of (D2) being not used at this stage. Next, Dataset (D2) is used
to quantify the misfit with the ”predicted” - interpolated values; and basic statistics on the results with dependence on the
distance to data are deduced. For cells located between 5 and 20km from any data, [14] suggests that the interpolation
error is an increasing function of distance from the closest data; beyond it would be not correlated. (Observe that this
distance corresponds approximatively to the minimal wave length of the RU-SIA model). For cells that are more than 50
km from airborne measurements, the thickness estimation is based on gravity-field inversion (gravity-derived thickness);
the proposed related uncertainty equals ±1000m. This is how the uncertainty values on Bedmap2 values hb are defined;
see figures 6, 9, 12, 13, 14 and 15 (Middle)(Right).

4 Analysis of each inversion algorithm step

4.1 Step 1: Estimation of η by VDA

The effective diffusivity η defined in (1) is estimated in each area Antp by VDA following Step 1) described in Paragraph
2.3.1. The convergence of this iterative VDA process is very slow (a few hundreds of iterations) but very robust in
particular with respect to the first guess value; it has been thoroughly assessed in [39]. The stopping criteria is the
stationarity of ‖η‖. Here the RHS ȧ provided by [52] is supposed to be exact. After convergence of the VDA process,
given the ice thickness along the flights tracks, the computed optimal value γ∗ is saved for Step 2), that is:

γ
∗
tr(x) =

η∗

hb
(x) for x ∈ Γtr

4.2 Step 2: Estimation of γ by NNRK

The ANN algorithm input values, see Fig. 3, are datasets along all flight tracks in all test areas Antp, p = 1, ..,6 plus the
values of γ∗tr computed at Step 1). This dataset is denoted by D . Following Step 2b) (see paragraph 2.3.2), the K-fold
cross-validations are performed with K = 6. The results are presented in Fig. 5. (The value K = 6 is completely indepen-
dent of the total test cases number). Here, the training sets D itrain contains 16774 examples and a test set D itest contains
3354 examples; each example being an (input, output) pair of ANN.
It can be read on Fig. 5 (Left) that all ANN models trained from the different data sets D itrain provide very close cost
values j(D itrain) (see (10)). Moreover, the cost values of all test sets j(D itest) are almost all equal. This shows that all
ANN have very close prediction capability, all being excellent. Indeed after optimisation, j(D itest) ≈ 5 10−3 (Fig. 5
(Right)); this corresponding to ≈ 1% of the mean value of γ̄ . The ANN trained from D2train is selected since having a
slightly smaller misfit value ( j(D itrain)+ j(D itest)). These tests of prediction capabilities demonstrate the robustness and
accuracy of the trained ANN.
Next, values of γ̄ are predicted in the whole domains Ωp, p = 1, · · · ,6 by performing the selected ANN.
Next by performing the Kriging step (Step 2c) described in Paragraph 2.3.2), the predictor γ̂ is obtained.
Following the a-priori estimation derived in Section 2.2, the upper bound 0.9 is imposed to the estimation; this upper
bound is active at very few locations only; moreover it is in great majority where the uncertainty on hb is low.
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Fig. 5 Misfit functional j(D) defined by (10), vs minimization iterations for: (Left) different train sets D itrain; (Right) different test sets D itests. The
learning rate (gradient descent step size) is decayed by 0.2 every 30 epochs (1 epoch = 1 forward pass and 1 backward pass of all the training examples),
see e.g. [30] for details on this classical method.

Table 1 Difference between values of H the response of RU-SIA equation (1) if changing the RHS value: ȧb the Racmo2 value, ȧ∗ the infered value at
Step 3). Domain Ωp=Ant1.

Difference of H Median Mean Max
|H(ȧb)−H(ȧ∗)| 3.3m 6.0m 26.3m

For each test area, the predicted values of γ are plotted; see figures 6, 9, 12, 13, 14 and 15 (Up) (R).

4.3 Step 3: Estimation of h (and adjustment of ȧ) by VDA

After Step 2), the dimensionless parameter γ in RU-SIA equation (1) is given. Then the thickness h is infered by VDA
following the method presented in paragraph 2.3.1. The optimisation algorithm converges in∼ 20−50 iterations depend-
ing on the test case. Its convergence is robust: it has been thoroughly analysed in [39].
At this step, h is simultaneously infered with ȧ. Indeed this enables to adjust the value of ȧ within its uncertainty range
which is here∼±20%, see [52]. It can be noticed in tables 2, 5, 8, 9, 10 and 11 that the corrections made remains in great
part within this a-priori uncertainty range. Indeed the upper bound is active at few locations only. In other words, this
adjustment based on the physical-based model RU-SIA is consistent with the (totally independent) estimations derived
in [52].
Of course, given the surface data, any change of ȧ in RU-SIA equation (1) has an effect on the infered value of h. As an
example let us compute the response H of RU-SIA equation (1) in Ant1 area with: i) the RACMO2 value ȧb in the RHS
(providing H(ȧb)); ii) the infered value ȧ∗ by VDA in the RHS (providing H(ȧ∗)). The obtained difference are the ones
indicated in Tab. 1. Therefore the correction made on the RHS ȧ = (∂th− a) implies a correction on the ice thickness
h negligible (∼ 1%) compared to the one obtained by the complete inversioin method, see Tab. 2 in next section. This
remark holds for all the domains Ωp.

The assessment analysis presented here is complimentary to those proposed in [39]. Moreover in [39], Step 2) is
based on a more basic ordinary Kriging algorithm; also a single test area only is considered. The assessment analysis in
[39] focuses on: i) the uncertainty on γ; ii) the proximity or not of flight tracks; iii) the smoothing length scale of the
surface data; iv) the first guess value (chosen here as Bedmap 2 hb).

4.4 On the RU-SIA model accuracy

For each test area Antp, domain information and basic statistics on the results are presented, see tables 2, 8, 5, 9, 10, 11.
Statistics on the computed surface elevation H, output of RU-SIA model, are indicated. It can be noticed that the RU-SIA
equation solved from Bedmap2 value hb and the (purely data-driven) estimation of γ obtained at Step 2) already fits very
well the measured surface elevation Hobs, see ”Direct model validation” lines in the tables. This very good accuracy
(based on the Bedmap2 bed elevation hb i.e. without any additional calibration of h) demonstrates the validity and the
relevance of the RU-SIA model. After Step 3) of the inversion algorithm i.e. after the identification of h and ȧ by VDA,
of course the RU-SIA model fits even better the measured surface elevation Hobs, see ”|H(h∗)−Hobs| (after h-inversion)”
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in the tables.

5 Results and sensitivity tests (Ant1 and Ant3 areas)

In this section, the bed elevation b (equivalently the ice thickness h) is infered by the inverse method described in Section
2.3 for the two areas Ant1 and Ant3, see Fig. 4, tables 2 and 5. Different estimations of h are compared, depending if:

a) isolated flight tracks (hence locally highly constraining) are considered or not;
b) the learning method at Step 2) is the NNRK algorithm described in Paragraph 2.3.2, or an ordinary Kriging method

as in [39].

These comparisons aim at analysing the robustness and accuracy of the present inverse method.
Ant1 is a 370809 km2 area north-east upstream of Bailey, Slessor and Recovery ice-streams; Ant3 is a 250268 km2 area
in Wilhelm and Queen Mary lands, upstream of Shackleton ice shelf and Davis sea.
Among the considered six areas, Ant1 and Ant3 are those presenting the largest uncovered parts during airborne cam-
paigns. As a consequence they contain large areas where Bedmap2 estimation hb is based on gravity field inversions,
therefore presenting very large uncertainties.
For each case, the domain information and basic statistics on the numerical results are presented in tables 2 and 5. For
each case, the most relevant fields are plotted, see figures 6 and 9: the surface velocity norm |uH | and the flight tracks lo-
cations (Up)(L), the NNRK estimation γ̂ defined by (11) (Up) (R), the Bedmap2 value hb (Middle)(L) with its uncertainty
as presented in [14] (Middle)(R), the present thickness estimation h∗ (Down)(L) and its difference with hb (Down)(R).

5.1 Results for Ant1 area

This domain presents large unexplored areas during the airborne campaigns therefore huge uncertainty on hb values, see
Fig. 6 (Middle).

5.1.1 The ice thickness estimation h∗

Recall that γ̂ is the NNRK estimation of the dimensionless parameter γ defined by (2).No correlation is observed between
h and γ; the only clearly observed correlation is : γ is small where |uH | is small, see Fig. 6 (Up). This observation is fully
consistent with the a-priori analysis done in Section 2.2, see (2) and Fig. 2.
Recall that hb values are thin plate spline based estimations (see [14] and paragraph 3.1) hence intrinsically smooth, Fig. 6
(Middle)(Left). The present estimation h∗ is the optimal solution of a data-driven model combined with a physical-based
model; no additional smoothing has been added, then the obtained value h∗ is much less smooth than hb. It is worth to
notice that a non isotropic smoothing of the surface data (see the previous section) would have provided bed elevation
patterns more correlated to the surface streamlines.
The difference between h∗ and hb is not correlated to the distance to the nearest measurement (flight track), on contrary to
the empirically stated uncertainty in [14]. Indeed large corrections of hb (up to 1500 m) are obtained close to flight tracks;
close meaning at 1−2 minimal wave lengths of the RU-SIA model that is∼ 20−40 km, see e.g. in Fig. 6 (Down)(R) the
areas around coordinates (2750,1950)(2900,1550)(3050,2050). At the opposite, h∗ may remain very close to hb in areas
relatively far from any flight tracks.
Recall that the flight tracks are meshed as 1d lines; along these segments (≈ 2 km long), the infered depth value can
vary of ±150m around the measured values (inequality constraints imposed in the VDA processes). Therefore in the
adjacent triangles (which are nearly equilateral with ≈ 2km edges), the plotted mean depth values may be already much
different than the measured ones. This large scale smoothing may explain the potential great differences between the two
estimations even relatively close to the flight tracks.
The basic statistics presented in Tab. 2 show that after the VDA processes, the RU-SIA equation fits extremely well the
measured surface elevation. The correction made on ȧ is relatively consequent, 17% in mean (it is the highest correction
made among the 6 test cases Antp). However it remains lower than the maximal authorised correction: ±20%.
Finally the correction made on hb is non negligible: 13.3% (356.8 m) in mean, with a 1.6% (1.6 104 km3) of volume
change only (for 370809 km2).

5.1.2 Ant1: if removing some flight tracks

In this paragraph, a new ice thickness estimation is computed. It differs from h∗ since the flight tracks indicated in
Fig.6 (Up)(L) are not considered anymore. The original complete set of flight tracks is denoted by Γ all ; the partial one
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Table 2 Domain Ωp=Ant1, information and results.

Domain Ωp & mesh information
Surface |Ωp| 370809km2

Mean ice thickness of hb (Bedmap2) 2696.2m
# mesh vertices: in Ωp / on flight tracks 57661 / 2152

RU-SIA model output (with γ̂) Median Mean Max
|H(hb)−Hobs| (before h-inversion) 7.0m 10.3m 53.0m
|H(h∗)−Hobs| (after h-inversion) 2.6m 3.7m 44.6m

Infered RHS ȧ
|ȧ∗− ȧb| 0.7cm/y 0.7cm/y 3.6cm/y
|ȧ∗− ȧb|/|ȧb| 19.2% 17.0% 20.0%

Infered thickness h
|h∗−hb| 275.2m 356.8m 1953.5m
|h∗−hb|/|hb| 10.4% 13.3% 65.7%

Ice volume change in km3 / in % 1.6 104 km3 / 1.6%

Fig. 6 Domain Ωp=Ant1 (the plotted coordinates equal the Eastings-Northings plus (2800,2800)km): (Up)(L) Surface velocity module |uH | and flight
tracks (R) γ̂ computed by NNRK, see (11). (Middle)(L) Thickness hb from Bedmap2 [14] (R) Empirical uncertainty on hb from [14]. (Down)(L) Infered
thickness with γ̂: h∗(γ̂) (R) Difference (h∗(γ̂)−hb).
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Fig. 7 Domain Ωp=Ant1: comparison if not considering the flights tracks indicated in Fig.6 (Up)(L). (Up)(L) Field γ̂(Γ less
tr ) (i.e. without the flights

tracks indicated in Fig.6 (Up)(L)). (R) Difference (γ̂(Γ all
tr )− γ̂(Γ less

tr )). (Down)(L) Infered thickness h∗(Γ less
tr ) (R) Difference between the two estima-

tions: (h∗(Γ all
tr )−h∗(Γ less

tr )).

Table 3 Domain Ωp=Ant1. Comparison of the estimations if considering or not the flights tracks indicated in Fig.6 (Up)(L).

Infered thickness difference Median Mean Max
|h∗(Γ all

tr )−h∗(Γ less
tr )| 151.3m 196.9m 1524.5m

|h∗(Γ all
tr )−h∗(Γ less

tr )|/|h∗(Γ less
tr )| 5.6% 6.6% 80.0%

is denoted by Γ less. In Γ less case, the mesh of the entire area has been re-builded (since in each mesh, the lineaic flight
tracks are meshed differently). The inverse problem based on Γ less is less constrained in particular the two VDA processes
(Steps 1 and 3). Indeed the removed flight tracks are isolated, see Fig. 6(Up)(L); no constraint is imposed in the vicinity
of these removed flight tracks anymore.
The statistical learning at Step 2) is unchanged, therefore values of γ̄ are unchanged too. However the estimation γ̂

defined by (11) is not the same since the Kriging step is changed. Indeed the latter is based on less flight tracks data.
The difference between the two estimations (γ̄(Γ all)− γ̂(Γ less)) is plotted in Fig. 3 (Up)(R). It can be noticed that γ̂ is
changed all over the domain and not particularly in the vicinity of the missing flight track. Indeed, the Kriging method
(Step 2c) in Paragraph 2.3.2) aims at computing the minimal variance in norm 2 (least square) and not point-wise; hence
the global change of γ̂ .
Next the infered thickness h∗ is different for two reasons: 1) values of γ are different; 2) the VDA process of Step 3)
is not locally constrained at the missing flight tracks locations. The difference between the two thickness estimations is
plotted in Fig. 3 (Down)(R). For a sake of readability, the legend in Fig. 7(Down)(R) has been bounded at ±400m (very
few locations were greater than this bound). Basic statistics on the difference are presented in Tab. 3. Differences of 300
m correspond to ≈ 10− 15% of change. As expected, see (12), the variations of h are correlated to the variations of γ:
compare Fig. 7 (Up)(R) to (Down)(R). Since the global change of γ , the change of h is not particularly important around
the missing flight tracks.
Finally, it is worth to mention that the present inversion method is relatively global with local constraints (”in-situ”
measurements along the flight tracks); it is not purely local inversions. In the present experiment, the obtained variations
of h∗ are roughly half than the ones obtained from hb, see tables 2 and 3: difference of 6.6% in mean vs 13.3%, and 5.6%
vs 10.4% for median values.
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Table 4 Domain Ωp=Ant1. Comparison the original thickness estimation (obtained using NNRK) to the one obtained using ordinary Kriging at Step2)

Infered thickness difference Median Mean Max
|h∗(γ̂)−h∗(γkrig)| 145.5m 183.5m 1264.2m

|h∗(γ̂)−h∗(γkrig)|/|h∗(γ̂)| 5.3% 7.2% 117.2%

5.1.3 Ant1: with a different statistical learning method at Step 2)

It has been previously shown that uncertainties on γ generates uncertainties on h of same order of magnitude, see (12). In
this paragraph, the influence of the statistical estimator considered at Step 2) is investigated. To do so, first we compare:

a) γ̄ obtained by ANN algorithm at Step 2a) to γ̂ obtained by the complete NNRK algorithm (see (11);
b) γkrig obtained by an ordinary Kriging of values infered along the flights tracks to γ̂ .

It may be a-priori guessed that a deep learning method (as the present NNRK algorithm) is more reliable than a
Kriging inter/extrapolation of its values between the flight tracks.

Second, we compare the infered thickness h∗ obtained from γ̂ (that is the original estimation plotted in Fig. 6
(Down)(L)) to the one obtained from γkrig.

As expected, the difference between γ̄ and γ̂ (i.e. before and after the Kriging Step 2c) are localised in the vicinity
of the flight tracks. In Ant1 case, these differences may be up to ∼±20%, see Fig. 8(Up)(R). More interestingly and as
expected too, the differences between γ̂ and γkrig are not clearly correlated to the distance to the nearest flight track. The
observed difference in Ant1 case may be consequent: ∼±40%, see Fig. 8(Middle)(R).
Next, like in the previous sensitivity test (and for the same reasons), the variations of h are correlated to the variations
of γ: compare Fig. 8 (Middle)(R) to (Down)(R). Some statistics on the differences are presented in Tab. 4. Again the
obtained variations in h are roughly half than the ones obtained from hb, see tables 2 and 4: difference of 7.2% in mean
vs 13.3%, and 5.3% vs 10.4% for median values.

5.2 Results for Ant3 area

Like Ant1, Ant3 area presents large uncovered areas during the airborne campaigns, corresponding to huge uncertainty
on hb, see Fig. 9.

5.2.1 The ice thickness estimation h∗

Like in Ant1 case, the only observed correlation is: γ is small if uH is small, see Fig. 9 (Up). Again the difference between
h∗ and hb is uncorrelated to the distance to the nearest flight track (on contrary to the empirically established uncertainty
in [14]). Large corrections of hb (up to 700 m) are found close to flight tracks see e.g. the area around coordinates
(5550,2800) in Fig. 6 (Down)(R); at the opposite, h∗ may remain very close to hb in areas relatively far from any flight
tracks, see e.g. the area around coordinates (5250,2800).
The few statistics presented in Tab. 5 show that again after the VDA processes, the RU-SIA equation fits extremely
well the measured surface elevation. The correction made on ȧ is much lower than the authorised maximal variation:
11.2% in mean. In Ant3, the global correction made on hb is relatively low: 6.6% in mean (3.5% median) with a 0.5%
of volume change only. However in the most uncertain areas, the corrections made can be either low, see e.g. the areas
around coordinates (5000,2650) (5200,3250), or important (±∼ 700m), see e.g. the area around coordinates (5000,2650).

5.2.2 Ant3: if removing some flight tracks

The ice thickness obtained if not considering the flight tracks indicated in Fig.9 (Up)(L) is compared to the original
estimation h∗ (the one plotted in Fig.9 (Down)(L)). For the same reason as in Ant1 case, both γ̂ and h are changed all over
the domain and in the vicinity of the missing flight track only. Largest changes are obtained in areas far to the missing
tracks; also it may close to (assimilated) flight tracks, see e.g. the area around coordinates (5100,3200). The difference
between the two estimations are plotted in Fig. 6 (Up)(R) and (Down)(R). (Again for a sake of readability, the legend
in Fig. 10(Down)(R) has been bounded at ±400m; very few values being greater than this bound). Basic statistics on
the difference are presented in Tab. 6. (A difference of 200m corresponds to ≈ 10% of change). Again, the obtained
variations on h are roughly half than the ones obtained from hb, see tables 5 and 6: difference of 2.8% in mean vs 6.6%,
and 2.2% vs 3.5% for median values.
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Fig. 8 Domain Ωp=Ant1: comparison between different statistical learning methods at Step 2). (Up)(L) γ̄ computed by ANN only. (R) Difference
(γ̂ − γ̄). (Middle)(L) γkrig computed by ordinary Kriging. (R) Difference (γ̂ − γkrig). (Down)(L) Infered thickness h∗(γkrig). (R) Difference (h∗(γ̂)−
h∗(γkrig)).

Table 5 Domain Ωp=Ant3, information and results.

Domain Ωp & mesh information
Surface |Ωp| 250268km2

Mean ice thickness of hb (Bedmap2) 1822.8m
# mesh vertices: in Ωp / on flight tracks 42881/2443

RU-SIA model output (with γ̂) Median Mean Max
|H(hb)−Hobs| (before h-inversion) 7.8m 12.7m 274.0m
|H(h∗)−Hobs| (after h-inversion) 2.8m 4.0m 110.6m

Infered RHS ȧ
|ȧ∗− ȧb| 2.2cm/y 2.5cm/y 22.1cm/y
|ȧ∗− ȧb|/|ȧb| 11.2% 11.4% 20%

Infered thickness h
|h∗−hb| 70.0m 124.5m 862.2m
|h∗−hb|/|hb| 3.5% 6.6% 63.5%

Ice volume change in km3 / in % 3.0 103 km3 / 0.5%

Table 6 Domain Ωp=Ant3. Comparison if considering or not the flights tracks indicated in Fig.9 (Up)(L).

Infered thickness difference Median Mean Max
|h∗(Γ all

tr )−h∗(Γ less
tr )| 42.7m 56.3m 904.6m

|h∗(Γ all
tr )−h∗(Γ less

tr )|/|h∗(Γ less
tr )| 2.2% 2.8% 78.7%
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Fig. 9 Domain Ωp=Ant3 (the plotted coordinates equal the Eastings-Northings plus (2800,2800)km): (Up)(L) Surface velocity module |uH | and flight
tracks (R) γ̂ computed by NNRK, see (11). (Middle)(L) Thickness hb from Bedmap2 [14] (R) Empirical uncertainty on hb from [14]. (Down)(L) Infered
thickness with γ̂: h∗(γ̂) (R) Difference (h∗(γ̂)−hb).

Table 7 Domain Ωp=Ant3. Comparison of the original thickness estimation (obtained using NNRK) to the one obtained using ordinary Kriging at
Step2).

Infered thickness difference Median Mean Max
|h∗(γ̂)−h∗(γkrig)| 58.3m 84.9m 1418.7m

|h∗(γ̂)−h∗(γkrig)|/|h∗(γ̂)| 2.9% 4.3% 124.5%

5.2.3 Ant3: with a different statistical learning method at Step 2)

Similarly to the Ant1 case, the difference between γ̄ and γ̂ (i.e. before and after the Kriging Step 2c)) are mainly localised
in the vicinity of the flight tracks with amplitudes up to ∼±0.20, Fig. 11 (Up)(R). Again too, the differences between γ̂

and γkrig are not in the vicinity of the tracks only; they may be anywhere. The observed difference is up to ∼±0.45, see
Fig. 11(Middle)(R). Statistics on the differences on the corresponding estimated thicknesses are presented in Tab. 7. The
obtained differences on h are about one third lower than the ones obtained from hb, see tables 2 and 7: difference of 4.3%
in mean vs 6.6%, and 2.9% vs 3.5% for median values.

In summary, these empirical sensitivity analyses highlight the robustness and the reliability of the inversion method.
If not considering some in-situ measurements (along some flight tracks), see figures 6 and 9 (Up)(L), the obtained differ-
ences on h are roughly half than the ones obtained between h∗ and hb.
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Fig. 10 Domain Ωp=Ant3: comparison if not considering the flights tracks indicated in Fig.9 (Up)(L). (Up)(L) Field γ̂(Γ less
tr ) (i.e. without the flights

tracks indicated in Fig.9 (Up)(L)). (R) Difference (γ̂(Γ all
tr )− γ̂(Γ less

tr )). (Down)(L) Infered thickness h∗(Γ less
tr ). (R) Difference between the two estima-

tions: (h∗(Γ all
tr )−h∗(Γ less

tr )).

If considering a simple Kriging method to estimate γ instead of the NNRK algorithm, the obtained differences on h in
Ant1 case (resp. in Ant3 case) are roughly 1/2 (resp. 2/3) the ones obtained between h∗ and hb.
Therefore in all investigated cases, the obtained variations are lower than the ones obtained from hb, see sections 5.1.1
and 5.2.1.

6 Conclusion

In this study, a method to infer the bedrock topography beneath glaciers at wave length∼ 10h̄, h̄ a characteristic thickness
value (with a resolution at∼ h̄) is developed. The key ingredients of this inversion method are the following: a) a dedicated
Reduced-Uncertainty flow model (RU-SIA) taking into account a relatively complete physics (including depth-varying
internal deformation) while presenting a single dimensionless parameter γ; b) two advanced VDA processes; c) an Ar-
tificial Neural Network (ANN) estimating γ from the surface data and in-situ measurements (acquired during airborne
campaigns). A guiding idea of the method is to consider at each step robust (somehow well-posed) inverse problems, or
at least not trivially ill-posed ones. All steps of the algorithm have been thoroughly assessed, partly in [39] next in the
present study, in particular the estimation sensitivity with respect to the presence or not of local in-situ measurements
(airborne campaings). The ANN capabilities to infer the single dimensionless parameter γ turned out to be excellent for
all considered datasets in EAIS.

Observe that it is straightforward to apply the same ANN to estimate the ice thickness h (instead of γ) with the ANN
trained from the in-situ datasets acquired along the flight tracks. We have performed such estimations; they turned out to
be too much dependent on the training datasets. In particular they are sensitive to the presence or not of local in-situ mea-
surements. In other words these purely data driven estimations turned out to be not robust enough. It seems definitively
more consistent to estimate a single dimensionless parameter of the flow model which accurately represent the measured
surface data.
The present hybrid physically-constrained data-driven method enables to estimate the bed elevation between in-situ mea-
surements, in poorly covered areas and even in large uncovered areas e.g. in EAIS where the current estimations are
gravimetry-based (hence highly uncertain). Indeed the method is relatively global (with local constraints along the flight
tracks) and not purely local. It has been shown to be relatively robust. The estimations in large uncovered areas remain
accurate as elsewhere since based on the surface signature (measured by altimetry and InSAR). In the considered six
large EAIS areas, the corrections made to Bedmap2 may be large (up to 1000m) even at 2 wave lengths (≈ 50km) away



Physically-constrained data-driven inversions to infer the bed topography beneath glaciers flows. Application to East Antarctica 19

Fig. 11 Domain Ωp=Ant3: comparison between different statistical learning methods at Step 2). (Up)(L) γ̄ computed by ANN only. (R) Difference
(γ̂ − γ̄). (Middle)(L) γkrig computed by ordinary Kriging. (R) Difference (γ̂ − γkrig). (Down)(L) Infered thickness h∗(γkrig). (R) Difference (h∗(γ̂)−
h∗(γkrig)).

to ”in-situ” measurements (flight tracks). Away from the flight tracks, the correction obtained to Bedmap2 may be signif-
icant or not, depending on the surface signature. The obtained corrections led to a total ice volume change of 0.5−5.6%,
depending on the area.
In view to edit new bedrock maps, these bed elevation estimations should be more investigated by adding additional prior
information, in particular regularisation length scales of h. In a mathematical point of view, this can be easily done by
adding extra regularisation terms in the optimisation formulation(s). However the difficulty is to quantify such terms.
This prior information may be introduced for example from geomorphologic analyses. Moreover the smoothing of the
observational surface term |UH |/S may be defined as non-isotropic to distinguish the streamline minimal wave length
from the cross-line one.
This bed estimation method may be applied to any ice-sheets or ice-caps, as soon as the method domain of validity
is compatible with the observed flows, that is highly to moderately sheared flows (i.e. not highly slipping flows). The
method may be extended to unsteady flows if the surface observations (elevation and velocity) are given in time and
assuming that the initial condition is either not important at the considered time scale or approximatively known.
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A Results for other EAIS areas

In this section, the estimation of ice thickness is performed in the four other areas indicated in Fig. 4: Ant2, Ant4, Ant5 and Ant6. Ant2 is located
upstream of Fisher and Merllor ice-streams (upstream Amery ice shelf). Ant4 is located upstream Totten ice-streams (Wilkes land and Terre Adlie),
one of the largest discharger of ice in EAIS. Ant5 is located upstream Ninnis and Mertz ice-streams in Terre Adlie and George V land. Ant6 is located
upstream Byrd ice-streams (east of Ross Ice shelf), see Fig. 4.
These areas have been relatively well covered during the airborne campaigns excepted the north-east part of Ant2, see Fig. 12. Distances between flight
tracks are relatively low, therefore the empirical uncertainty assigned to Bedmap2 estimations hb is low too: ≈±[100−250]m, see figures 12, 13, 14,
15 (Middle).
For each area, domain information and statistics on the numerical results are presented, see tables 8-11.
As already noticed, RU-SIA model already fits well with the surface topography after the data-driven model (Step 2) only; that is with γ̂ and hb as
parameters in (1): see lines ”(|H(hb)−Hobs| (before h-inversion)” in the tables. Next RU-SIA model fits accurately the surface topography after the
re-calibration / estimation of h. Indeed, misfit values range within ≈ [4−5]m in mean; see lines ”(|H(hb)−Hobs| (after h-inversion)” in tables.
The corrections made on ȧ are ∼ [10−17]% in mean, that is within the a-priori uncertainty range indicated in [52].
The estimated thickness h∗ is plotted in each case, see figures 12-15 (Down)(L); its difference with hb is plotted (Down)(R). The corrections made
to hb are non negligible: they are ranging within [7.0− 15.9]% in mean (corresponding to [185− 373] m, see the lines ”|h∗− hb|” in tables). These
corrections lead to changes of total ice volume by [1.5,5.6]%. Again, the obtained difference with hb is independent of the distance to the closest flight
track. Maximum values of correction to hb can be locally high. In the uncovered north-east Ant2 area, corrections are up to ≈ 2000m. At ≈ 50km from
the nearest flight track (that is ∼ 2 minimal wave lengths of the model) correction may reach 1000m (even in area surrounded by well covered areas),
see e.g. figures 14 and 15 (Down)(R). Beyond ≈ 100km from the nearest data, the correction of hb may be significant or not, depending on the surface
signature, see e.g. figures 14 and 15 (Down)(R).
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Table 8 Domain Ωp=Ant2, information and results.

Domain Ωp & mesh information
Surface |Ωp| 431860km2

Mean ice thickness of hb (Bedmap2) 2144.4m
# mesh vertices: in Ωp / on flight tracks 65123/5194

RU-SIA model output (with γ̂) Median Mean Max
|H(hb)−Hobs| (before h-inversion) 8.7m 17.3m 149.9m
|H(h∗)−Hobs| (after h-inversion) 3.9m 5.1m 49.2m

Infered RHS ȧ
|ȧ∗− ȧb| 0.6cm/y 0.8cm/y 4.0cm/y
|ȧ∗− ȧb|/|ȧb| 14.8% 13.2% 20%

Infered thickness h
|h∗−hb| 171.1m 302.4m 2025.6m
|h∗−hb|/|hb| 8.3% 14.2% 80.0%

Ice volume change in km3 / in % 5.2 104 km3 / 5.6%

Table 9 Domain Ωp=Ant4, information and results.

Domain Ωp & mesh information
Surface |Ωp| 439045km2

Mean ice thickness of hb (Bedmap2) 2745.4m
# mesh vertices: in Ωp / on flight tracks 61219/4977

RU-SIA model output (with γ̂) Median Mean Max
|H(hb)−Hobs| (before h-inversion) 6.3m 8.4m 66.9m
|H(h∗)−Hobs| (after h-inversion) 3.0m 4.1m 45.3m

Infered RHS ȧ
|ȧ∗− ȧb| 2.0cm/y 2.7cm/y 15.0cm/y
|ȧ∗− ȧb|/|ȧb| 8.7% 10.1% 20%

Infered thickness h
|h∗−hb| 147.6m 185.0m 1241.6m
|h∗−hb|/|hb| 5.7% 7.0% 50.4%

Ice volume change in km3 / in % 1.5 104 km3 / 1.5%

Table 10 Ant 5, information and results.

Domain Ωp & mesh information
Surface |Ωp| 362019km2

Mean ice thickness of hb (Bedmap2) 2415.3m
# mesh vertices: in Ωp / on flight tracks 41597/2351

RU-SIA model output (with γ̂) Median Mean Max
|H(hb)−Hobs| (before h-inversion) 18.3m 23.9m 173.3m
|H(h∗)−Hobs| (after h-inversion) 3.9m 5.1m 43.1m

Infered RHS ȧ
|ȧ∗− ȧb| 3.9cm/y 4.4cm/y 14.5cm/y
|ȧ∗− ȧb|/|ȧb| 18.8% 15.4% 20%

Infered thickness h
|h∗−hb| 275.1m 373.1m 1989.2m
|h∗−hb|/|hb| 12.1% 15.9% 68.8%

Ice volume change in km3 / in % 3.8 104 km3 / 5.6%

Table 11 Domain Ωp=Ant6, information and results.

Domain Ωp & mesh information
Surface |Ωp| 406388km2

Mean ice thickness of hb (Bedmap2) 2672.9m
# mesh vertices: in Ωp / on flight tracks 63981/3012

RU-SIA model output (with γ̂) Median Mean Max
|H(hb)−Hobs| (before h-inversion) 8.3m 11.0m 46.8m
|H(h∗)−Hobs| (after h-inversion) 2.7m 3.4m 21.3m

Infered RHS ȧ
|ȧ∗− ȧb| 0.4cm/y 0.5cm/y 1.8cm/y
|ȧ∗− ȧb|/|ȧb| 15.8% 14.2% 20%

Infered thickness h
|h∗−hb| 218.6m 313.9m 1777.3m
|h∗−hb|/|hb| 8.1% 11.6% 63.8%

Ice volume change in km3 / in % 2.6 103 km3 / 1.7%
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Fig. 12 Domain Ωp=Ant2 (the plotted coordinates equal the Eastings-Northings plus (2800,2800)km): (Up)(L) Surface velocity module |uH | and
flight tracks. (R) γ̂ computed by NNRK, see (11). (Middle)(L) Thickness hb from Bedmap2 [14]. (R) Empirical uncertainty on hb from [14]. (Down)(L)
Infered thickness with γ̂: h∗(γ̂). (R) Difference (h∗(γ̂)−hb).
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Fig. 13 Domain Ωp=Ant4 (the plotted coordinates equal the Eastings-Northings plus (2800,2800)km): (Up)(L) Surface velocity module |uH | and
flight tracks. (R) γ̂ computed by NNRK, see (11). (Middle)(L) Thickness hb from Bedmap2 [14]. (R) Empirical uncertainty on hb from [14]. (Down)(L)
Infered thickness with γ̂: h∗(γ̂). (R) Difference (h∗(γ̂)−hb).
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Fig. 14 Domain Ωp=Ant5 (the plotted coordinates equal the Eastings-Northings plus (2800,2800)km): (Up)(L) Surface velocity module |uH | and
flight tracks. (R) γ̂ computed by NNRK, see (11). (Middle)(L) Thickness hb from Bedmap2 [14]. (R) Empirical uncertainty on hb from [14]. (Down)(L)
Infered thickness with γ̂: h∗(γ̂). (R) Difference (h∗(γ̂)−hb).
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Fig. 15 Domain Ωp=Ant6 (the plotted coordinates equal the Eastings-Northings plus (2800,2800)km): (Up)(L) Surface velocity module |uH | and
flight tracks. (R) γ̂ computed by NNRK, see (11). (Middle)(L) Thickness hb from Bedmap2 [14]. (R) Empirical uncertainty on hb from [14]. (Down)(L)
Infered thickness with γ̂: h∗(γ̂). (R) Difference (h∗(γ̂)−hb).


