Skip to Main content Skip to Navigation
Journal articles

A conserved mechanism drives partition complex assembly on bacterial chromosomes and plasmids

Abstract : Chromosome and plasmid segregation in bacteria are mostly driven by ParABS systems. These DNA partitioning machineries rely on large nucleoprotein complexes assembled on centromere sites (parS). However, the mechanism of how a few parS-bound ParB proteins nucleate the formation of highly concentrated ParB clusters remains unclear despite several proposed physico-mathematical models. We discriminated between these different models by varying some key parameters in vivo using the plasmid F partition system. We found that ‘Nucleation & caging’ is the only coherent model recapitulating in vivo data. We also showed that the stochastic self-assembly of partition complexes (i) does not directly involve ParA, (ii) results in a dynamic structure of discrete size independent of ParB concentration, and (iii) is not perturbed by active transcription but is by protein complexes. We refined the ‘Nucleation & Caging’ model and successfully applied it to the chromosomally-encoded Par system of Vibrio cholerae, indicating that this stochastic self-assembly mechanism is widely conserved from plasmids to chromosomes.
Complete list of metadata

Cited literature [63 references]  Display  Hide  Download
Contributor : L2c Aigle Connect in order to contact the contributor
Submitted on : Tuesday, May 21, 2019 - 5:50:50 PM
Last modification on : Wednesday, November 24, 2021 - 9:42:08 AM


Publisher files allowed on an open archive


Distributed under a Creative Commons Attribution 4.0 International License



Roxanne Debaugny, Aurore Sanchez, Jérôme Rech, Delphine Labourdette, Jerome Dorignac, et al.. A conserved mechanism drives partition complex assembly on bacterial chromosomes and plasmids. Molecular Systems Biology, EMBO Press, 2018, 14 (11), pp.e8516. ⟨10.15252/msb.20188516⟩. ⟨hal-01926457⟩



Record views


Files downloads