Time optimal internal controls for the Lotka-McKendrick equation with spatial diffusion

Abstract : This work is devoted to establish a bang-bang principle of time optimal controls for a controlled age-structured population evolving in a bounded domain of R^n. Here, the bang-bang principle is deduced by an L^∞ null-controllability result for the Lotka-McKendrick equation with spatial diffusion. This L^∞ null-controllability result is obtained by combining a methodology employed by Hegoburu and Tucsnak-originally devoted to study the null-controllability of the Lotka-McKendrick equation with spatial diffusion in the more classical L^2 setting-with a strategy developed by Wang, originally intended to study the time optimal internal controls for the heat equation.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01925980
Contributeur : Nicolas Hegoburu <>
Soumis le : dimanche 18 novembre 2018 - 17:44:15
Dernière modification le : vendredi 30 novembre 2018 - 01:49:25

Fichier

BangBang_2018_11_18_soumis.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01925980, version 1

Collections

Citation

Nicolas Hegoburu. Time optimal internal controls for the Lotka-McKendrick equation with spatial diffusion. 2018. 〈hal-01925980〉

Partager

Métriques

Consultations de la notice

19

Téléchargements de fichiers

24