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Abstract. The problem of discovering spatiotemporal sequential pat-
terns affects a broad range of applications. Many initiatives find se-
quences constrained by space and time. This paper addresses an ap-
pealing new challenge for this domain: find tight space-time sequences,
i.e., find within the same process: i) frequent sequences constrained in
space and time that may not be frequent in the entire dataset and ii)
the time interval and space range where these sequences are frequent.
The discovery of such patterns along with their constraints may lead
to extract valuable knowledge that can remain hidden using traditional
methods since their support is extremely low over the entire dataset. We
introduce a new Spatio- Temporal Sequence Miner (ST'SM) algorithm to
discover tight space-time sequences. We evaluate ST'SM using a proof
of concept use case. When compared with general spatial-time sequence
mining algorithms (GSTSM), STSM allows for new insights by detect-
ing maximal space-time areas where each pattern is frequent. To the
best of our knowledge, this is the first solution to tackle the problem of
identifying tight space-time sequences.

1 Introduction

Space and time are pervasive in our day-to-day lives. As many datasets that
include both time and space data are becoming available, new opportunities to
discover interesting spatiotemporal patterns arise. An event may be classified as
an occurrence of a phenomenon in a given space and time. A spatiotemporal
sequential pattern is a sequence of events that are constrained in space and time
[8]. Due to that, spatiotemporal sequence mining is gaining attention [13,14].

In this work, we investigate a new problem related to spatiotemporal pat-
tern identification. We are interested in finding tight space-time sequences, i.e.,
sequences that are constrained in space and time that may not be frequent in
the entire dataset but are frequent inside a time interval and space range (spa-
tiotemporal blocks). The primary challenge is to discover these blocks and the
frequent sequences they contain. Solving this problem has a valuable impact on
many applications.



Consider, for instance, the quantified-self movement, where people wear con-
nected bracelets giving their position and inferring their activities. By analyzing
the activities of their clients’ bracelets, a brand might discover some habits re-
garding sports and food at coarse grain (say, “people who jog in the morning
step by a vegan shop once a week”). However, there might be fine-grained be-
haviors that cannot be extracted, using existing methods, because they concern
a niche (i.e., they have extremely low support, that hinders their discovery).
Such a niche could be, for instance, that “people in Manhattan who jog at 7 am
and have lunch near Time Square, spend 1 to 2 minutes in front of the buildings
displays”. This kind of pattern is of high interest for marketing and personalized
recommendations. In the meantime, the accumulation of such niches, particu-
larly in massive data, makes their discovery a challenging and valuable target
for data analytics. The challenge is to extract both the pattern (e.g., jog, lunch,
buildings displays), its occurrence time (e.g., from 7 am to lunchtime), and the
location where it occurs (e.g., Time Square).

This paper introduces the problem of discovering tight space-time sequences
and proposes an effective and efficient solution with the Spatio-Temporal Se-
quence Miner (STSM) algorithm to address it. ST SM applies a sequential
pattern mining algorithm to detect spatial ranges where sequences are frequent.
Next, it composes all detected sequences inside each spatial range to discover
time intervals in which these sequences are frequent.

Our group first experienced the spatiotemporal sequence mine problem while
analyzing seismic surveys [5]. Since then we have developed the ST'SM algorithm
and used the seismic motivation as our use case for validating the technique. By
applying constrained space-time sequence mining techniques, we managed to
identify 1,500 tight space-time sequences under high support threshold, which
would not have been found using general spatial-time sequence mining algo-
rithms (GSTSM) [14] for the same frequency threshold. Moreover, the algo-
rithm was able to detect candidate areas for seismic horizons (which stand for
kind of layers) and bright spots (potential areas of hydrocarbon accumulation),
which are known as important characteristics for the domain experts [17].

In addition to this introduction, this paper is organized into five more sec-
tions. Section 2 discusses related works. Sections 3 and 4 formalize the problem
and present the definitions needed to describe our algorithm. Section 5 gives the
STSM algorithm to identify sequential pattern constrained in space and time.
Section 6 details the experimental evaluation. Finally, Section 7 concludes the

paper.

2 Related works

Sequential pattern mining is a broad field of research embracing several ap-
proaches [13,7]. Over the last decades, some works have been developed for
sequential mining of spatiotemporal datasets [14]. We have conducted a sys-
tematic map study querying Scopus using the keywords (“sequence mining” v
“sequential pattern’) A (“space-time” V “spatiotemporal’”). We identified 98



articles that were related to spatiotemporal sequential pattern mining, which
are grouped according to different types of datasets: (i) trajectory datasets, (ii)
event-based datasets, and (iii) emerging patterns datasets.

Trajectories datasets can be classified as a collection of events of the same
moving object at different spatial locations and times. The goal is to retrieve
similar trajectories that might reveal underlying traveling patterns of moving
objects in the dataset [8]. It includes works that search for routes frequently
used [6]. Since commonly the position of moving objects may be inaccurate,
some approaches address the position uncertainty to better recognize common
trajectories [11]. Although trajectory problems are relevant, they differ from our
problem. We are not interested in moving objects that have the same behavior.
Instead, we are interested in regions and time intervals when some events are
related (constrained) and relevant (with high support).

Event-based datasets correspond to the majority of related work. The goal is
to find sequences constrained by space and time. For that, data is partitioned ac-
cording to spatial or temporal dimensions, and events are related whenever they
preserve certain proximity [16]. Huang et al. [8] define sequence index as the sig-
nificance measure for evaluating identified spatiotemporal sequential patterns.
Such approach improves the mining algorithm to identify constrained sequences.
Julea et al. [9] studied satellite images and target patterns with a high connec-
tivity measure. Alatrista-Salas et al. [1] expand the search-space for identifying
sequences by looking at neighbor partitions. Li et al. [10] address the problem
of event prediction from identified spatiotemporal sequence patterns. Finally,
Batu et al. [3] avoid partitioning space and time by computing the most relevant
sequences in the dataset. Although approaches for event-based datasets are in
the same category of our paper, they differ since all identified sequences are fre-
quent in the entire dataset. In our work, sequences may only be frequent inside
spatiotemporal blocks (i.e., a time interval and space range).

Finally, emerging pattern datasets correspond to solve the problem where
data are continuously added to the database. Consider the patterns identified in
the initial dataset and the patterns that are identified in an updated dataset. Pre-
viously identified patterns may become irrelevant, and new patterns may emerge.
Some initiatives in emerging spatiotemporal datasets have been developed so far
[4,15,2]. These problems are complementary to ours since all identified patterns
in both datasets (initial or updated) have high support. The problem tackled
in this paper may find tight space-time sequence in both datasets, which may
emerge or not.

Considering the aforementioned related works, to the best of our knowledge,
we are not aware of similar works that studied tight space-time sequences from
spatiotemporal datasets.

3 Formalization

Let t = <wy,va,--,v,> be a time-stamped sequence (TS), i.e., a se-
quence of items, where [t| = n is the number of items in t. A time index



J is an integer value between 1 and n that is related to item v;. A sequence
s = <wi,ws, -, wE> is included in another sequence t = <vy, vy, -, v,> if
there exist integers i1 < i < --- < 4} such that wy = v;,, w2 = v4,, -+, Wi = v,
Let P = {p1,p2,...,pm} be a set of positions, a spatial time-stamped se-
quence (STS) d is a couple (p,t) where p € P is a position and ¢ is the
associated T'S. A STS dataset D is a set of STS.

An STS d = (p,t) is said to support a sequence s if s is included in ¢. The
support of a sequence s in D is the number of STS in D in which s is included.
The frequency of a sequence s in D is the fraction of STS in D that supports s:
freq(s,D) = %. Given a user’s minimum threshold v €]0..1], a sequence
s is said to be frequent if freq(s,D) > 7. Let I be the set of all possible
sequences s included in D, the set I’ of frequent sequences in D concerning
~ is denoted by F(D,v) = {s € I: freq(s, D) > ~}.

A spatial range (or simply range) r = (ps, pe) is defined by a start position
ps and an end position p.. We define the set of all potential ranges over D as
PR. The set of STS that belong to range r is defined as Tr(r) = {d : d C
D,ps < d.p < pe}. The frequency of s over Tr(r) in STS of a range r is denoted
by freq(s,r) whenever it is clear from the context. The same approach is valid
for support of s over T'r(r), which is denoted by sup(s,r). A ranged sequence
sr is a triple (s,r, fr) where s is a sequence, r is a range, and fr is the frequency
of the sequence s over the range r: fr = freq(s,r). Let k be the size of s; then
s is called a k—sequence.

A time interval (or simply interval) i = (is,.) is defined by a start time i
and an end time é.. The length of an interval i is given by: |i| = i, —is+ 1. Given
a interval i, a sequence s = <wi,ws, -+, w,> is a subsequence of another
sequence t = <v1,Va,--,0,>: § = subseq(t,i) iff i > 1Ai. <mn,l|i] =k and
Vj € [1.k],w; = v;,+;j—1. By definition, s is also included in ¢. We define the
set of all possible intervals over D as PI. A block b is a couple (r,i) where r
is a range (r € PR) and ¢ is an interval (¢ € PI). The size of a block b is the
product of range size with interval length: |b| = |b.7|-|b.i|. We define the set of all
possible blocks over a range r as PB(r). Moreover, a bounding box between
two blocks b;, b;: bb(b;, b;) is the minimum block b that contains them.

The occurrences of a sequence s in a block b refer to the positions in which
all instances of s is present in b. Thus, occur(s,b) is a set of blocks o, such
that Vb; € 0,b; C b | |Tr(bj.r)| = 1 AVd € Tr(b;.r), subseq(d,b;.i) = s. The
support of a sequence s in a block b, sup(s,b) is the number of occurrences
of s in b: |occur(s,b)|. The item-support of a sequence s in a block b, is the
product of support of a sequence s in a block b with the length of the sequence
s: isup(s,b) = sup(s,b) - |s|. The item-frequency of a sequence s in a block b
is the fraction of item-support over the size of b: ifreq(s,b) = %. Given a
user’s minimum threshold ¢ €]0..1], a sequence s is said to be item-frequent
in a block b if ifreq(s,b) > ¢. A blocked sequence sb is a triple (s,b,ifr)
where s is a sequence, b is a block, and ifr is the item-frequency of s over b:

ifr =1ifreq(s,b).



4 Problem statement

Considering an STS dataset D, the problem we address is to find sequences in
D that are frequent in constrained spatial range and time interval. The goal is
to discover these ranges and intervals and the frequent sequences they contain.

In the following definitions, we introduce the notions of solid-ranged sequence
and solid-blocked sequence that are fundamental for STSM algorithm. Their
intuition is to respectively support the identification of spatial range and time-
space blocks where a pattern is frequent.

5 STSM

This section is devoted to the presentation of ST'SM (Spatio-Temporal Sequence
Miner), our algorithm designed for the identification of solid-blocked sequences
in the spatiotemporal dataset. The notion of kernels (range-kernels and block-
kernels) introduced in this section allows for extracting solid-blocked sequences
efficiently. First, we give an overview of our main algorithm in Section 5.2. Later,
each relevant function is described in the following sections.

5.1 STS definitions

Given « and §, user’s minimum thresholds, respectively, for frequency and item-
frequency, we introduce the characteristics of solid-ranged sequence in Defini-
tion 1 and solid-blocked sequence in Definition 2.

Definition 1 Let sr be a ranged sequence of range r, sequence s, and frequency
fr. Then, sr is called a solid-ranged sequence iff the following conditions
hold:
1) fr>~
2)Vrqg € PR | r C ry, we have either a) or b) or both:

a) freq(s,ra) <=y

b) sup(s,r2) = sup(s, )
3) ¥ro € PR such that ro C 1, sup(s,ra) < sup(s,r)

The first condition in Definition 1 ensures that sr represents a sequence that
is frequent over its associated range. The second condition ensures that the size
of r is maximal. If a larger range exists, then, in this range, s is not frequent, or
the support of s is the same (i.e., it is not worth extending the range from r to
ro, since the extension is not going to contribute to the support of s). Finally,
the third condition ensures that the size of r is minimal. In fact, s is supported
by the first and last STS in r, so if a smaller range exists where s is frequent,
the support is going to be lower anyway (i.e., relevant STS supporting s would
have been dropped from the range and should be kept).

Let k be the size of s then sr is a k-solid-ranged sequence. SRy is the set
of all k-solid-ranged sequences.



Definition 2 Let sb be a blocked sequence with a block b, sequence s, and item-
frequency ifr. Then, sb is called a solid-blocked sequence iff the following
conditions hold:
1) 3 sr € SRyg | br C srr and s = sr.s
2)ifr>4
3) Wby € PB(r) \ ba, we have either a) or b) or both:
a) ifreq(s,by) <
b) isup(s,be) = up(s b)
4) Wby € PB(r) | ba C b, isup(s,bs) < isup(s,b)
>1

5) sup(s,b) >

The first condition ensures that the range of sb is within the range of a solid-
ranged sequence sr. In other words, candidate blocks for solid-blocked sequences
are identified from computed solid-ranged sequences. The second condition en-
sures that s corresponds to a sequence that is item-frequent in b. The third
condition ensures that the size of b is maximal. If a larger block exists that
contains b, s is not item-frequent, or the item-support of s is the same (i.e., it
is not worth extending the block from b to by, since the extension is not going
to contribute to the item-support of s). The fourth condition ensures that the
size of b is minimal. In fact, an item of s is present in the first and last range
in b.r, and in the first and last interval in b.7, so if a smaller range or interval
exists where s is solid-item-frequent, the support is going to be lower anyway.
Finally, the fifth condition avoids trivial solid-blocked sequences that contain
only a single occurrence of s in b.

Let k be the size of s; then sb is a k-solid-blocked sequence. SBy is the
set of all k-solid-blocked sequences.

5.2 General principle

Algorithm 1 aims to generate solid-blocked sequences (SB) from size 1 to k. Tt
receives as input an STS dataset D, a solid range threshold v and a solid block
threshold §. It has three main functions: (i) candidate generation, (ii) identifi-
cation of solid-ranged sequences, (iii) identification of solid-blocked sequences.
The algorithm starts from candidates ranged sequences of size 1 (detailed in
Section 5.3). They are built from all distinct items presented in D considering
its entire range.

It starts a repeat-until loop that computes all solid-ranged sequences SRy
with a frequency greater than or equal to v (detailed in Section 5.4). Then,
candidate ranged sequences of size k + 1 are computed from solid ranges SRy.
Once we get empty candidates ranged sequences of size k + 1, the loop stops.

Finally, all solid-blocked sequences S By with item-frequency greater than or
equal to 0 are computed (detailed in Section 5.5) from identified solid-ranged
sequences.



Algorithm 1 Spatio-Temporal Sequence Miner

1: function STSM (D, ~, ¢)
2: C1 + generateCandidates(D, nil)

3: k<0

4: repeat

5: k< k+1

6: SRy < solidRangedSequences(D, Cy,~)
7 Cr+1 < generateCandidates(D, SRy)

8: until Cyy1 # 0

9: for (i € {1---k}) do

10: SB; « solidBlockedSequences(D, SR;, )
11: return {SB1,---,SBk}

5.3 Generation of candidates

Frequent pattern mining algorithms aim at providing efficient algorithms on
larger datasets. The generation of candidates should accomplish the mission:
start with solid-ranged sequences of size 1 (SR;) and explore the support of
larger solid-ranged sequences with a limited number of scans over the dataset.
To this end, we compute range frequencies for candidate solid-ranged sequences
of size k from computed solid-ranged sequences of size kK — 1 in only one scan.
At the end of each scan, solid-ranged sequences of size k are identified.

STSM introduces a spatial aware counting step for generated candidates.
Let us consider xr(sy, r., fr,) to be a ranged sequence that is not a solid-ranged
sequence. Any ranged sequence superset yr = (sy, 1y, fry), such that s; C sy A
ry C ry cannot be a solid-ranged sequence (i.e., since fr, <~ then fr, <=).
Thus, the generate candidates follows an apriori-like principle with an additional
filter on the possible intersection of the candidates (i.e., if two solid-ranged
sequences of size k have a common subsequence, but their ranges do not intersect,
they are not considered for generating a new candidate).

5.4 Selection of solid-ranged sequences

In this section, we define a range kernel, which is the basis of solid-ranged se-
quences described in Algorithm 2. A range kernel for a sequence s is a range
where its frequency is greater or equal to . Let K(s,r,7) be the set of range
kernels for the sequence s over a range r concerning the minimum threshold ~.
K(s,r,7) is defined as follows: Let & C r be a subrange such that s is included
in Tr(k), i.e., sup(s,k) > 0. Let ks be the first position in which s is present in
r. If k, does not exist, then K = (). If k, exists, then let P be the set of positions
such that Vp € P,p € r Ap > ks A frequency(s, [ks..p]) < v (in other words, P
is the set of positions in r such that extending the range k up to any of those
positions leads to a frequency less than v for s). If P is empty, then k. is defined
as the last position in which s is present in 7, and K(z,r,v) = {k}. Otherwise
(i.e. P # (), let ¢ € P such that Vp € P,p > ¢ (q is the first position such that



frequency of s is lost on [k;s..q]). Then, k. is defined as the last occurrence of s
in [ks..q] and K(s,7,v) = {k} UK (s,7 — [ks..kc],7).

The mechanics of computing range kernels is encapsulated by function range K
of Algorithm 2. Intuitively, range kernels of a sequence are the longest ranges
such that: (i) The first and last records support the sequence; (ii) The frequency
of the sequence is always greater than or equal to v when it is counted from the
beginning until the end of the range.

Algorithm 2 solid-ranged Sequences

1: function solidRangedSequences(D, Cy, )
2: SRy < 0
for (c € Cx) do
c.sker < rangeK (D, c,)
c.sker < mergeK (c.s,c.sker, mRS, freq, )
for (r € c.sker) do
SRy < SRy + (c.s,r, frequency(c.s,r))
return SRy

After extracting range kernels for all candidate sequences C}, whenever possi-
ble, Algorithm 2 merges them. Algorithm mergeK finds solid-ranged sequences
of s over r concerning threshold . Given two range kernels ¢ and u, Algo-
rithm mergeK tries to merge them into v using function mRS(t,u) as long as
freq(s,v) > ~ is satisfied, which simply combines their ranges: ¢, . In this case,
v is included in the sker list, and both ¢ and u are marked for removal. Such
approach is repeated until no more pairs of kernels can be merged. Finally, in
lines 6-8 of Algorithm 2, all merged kernels are used to produce solid-ranged
sequences SRy.

5.5 Selection of solid-blocked sequences

In this section, we define a block kernel, which is the basis of solid-blocked
sequences described in Algorithm 3. A block kernel is a block b in a solid range
sr that contains a set of occurrences of s in b such that the item-frequency for s in
b is greater or equal to d. Let B(sr,d) be the set of all possible block kernels in
sr that has item-frequency not less than é: B(sr,b) : by, € PB(sr)Aifreq(s,by) >
0.

Given a block kernel b € B(sr, d), let o be the set of occurrences of srin b: 0 =
occur(s,b). If |o] = 1, then according to this definition, i freq(s,0) > §. We name
this case as trivial block kernel. However, if |o| > 1, then there exists two block
kernels b; and b;(b; C b,b; C b), such that ifreq(s,b;) > d Nifreq(s,b;) > 6 A
o = occur(s,b;)Uoccur(s,bj) A occur(s,b;) Noccur(s,b;) = 0. Let o = occur(s, b)
of s in a block kernel b. Whenever |o| > 1, (s,b,ifreq(s,b)) is a solid-blocked
sequernce.



From the previous definition, Algorithm 3 computes all solid-blocked se-
quences. It starts computing all trivial block kernels. Then, Algorithm mergeK
finds solid-blocked sequences of s over sr concerning threshold §. Given two block
kernels ¢ and u, Algorithm mergeK tries to merge them into v using function
bb(t,u), which produces a bounding box for ¢ and u. If v has an ifreq for s
greater than or equal to d, v is included in the stkernel list, and both ¢ and
are marked for removal. Such approach is repeated until no more pairs of kernels
can be merged. Finally, in lines 6-8 of Algorithm 3, all merged block kernels are
used to produce solid-blocked sequences S By.

Algorithm 3 solid-blocked Sequences

1: function solidBlockedSequences(D, SRy, §)
2: B+ 0
for (sr € SRi) do

sr.stker < spatialTimeK (D, sr,§)

sr.stker < mergeK (sr.stker,bb, ifreq, 0)

for (b € sr.stker) do

if (Joccur(s,b)| > 1) then
B < B+ (s,b, freq(s,b.r),ifreq(s,b))

return B

5.6 Merging kernels

Let us consider that we are provided with a sequence s and L, the set of kernels
of s concerning a threshold o. Algorithm mergeK can be used to compute both
solid-ranged sequences of s over r concerning ~ and solid-blocked sequences of
s over sr concerning . To do so, Algorithm mergeK receives as input m func,
which is a function that merges kernels, and thres func, which is a function that
computes the frequency used to evaluate if a merged kernel respects threshold
.

Proof for merge kernels Lemma: Let K be the set of range kernels of s on r
concerning . Algorithm mergeK makes it possible to find all the solid-ranged
sequences sr = (s,r, fr) on .

Proof Let k € K, be a range kernel of s after Algorithm mergeK (i.e. k
cannot be merged with any other range kernel in K), then:

1. freq(s,k) > ~. According to solid range definition, s is frequent in each
kernel. Furthermore, if &k is the result of a merging process, then Algorithm
mergeK checks the frequency of s on the resulting range.

2. Vq such that k& C ¢, we have one of the following cases:



Algorithm 4 Algorithm Merge Kernels

1: function mergeK (s, L, mfunc,thresfunc, o)
2 mergeable < true

3 while mergeable do

4: mergeable < false

5: fort,ue L |u>tdo

6: v < mfunc(t,u)

7 if thresfunc(s,v) > o then

8

: L+ L+vwv
9: K+ K+t+u
10: mergeable < true
11: for k € K do
12: L+ L—k
13: K<+ 0

— sup(s,q — k) > 0, then s is not frequent in g (otherwise, let us consider
k' the kernel to which s is present in ¢, then k and k' would have been
merged).
— sup(s,q — k) = 0, then sup(z, q)=sup(z, k) (in this case, x may remain
frequent in ¢ or not, depending on the size of ¢).
3. According to Definition 2.1, s is supported by the first and the last STS in
k. Then, s has lower support on any sub-range of k.

Based on the three observations above, let SR, = {(s,r, fr),Vr € K)} be the
set of ranged sequences corresponding to all the merged kernels of s on PR
concerning -, then SR, is the set of all solid-ranged sequences sr = (s, 7, fr)
on PR concerning 7.

A similar proof is analogous to mergeK applied in solid-blocked sequences.

5.7 Toy Example

Figure 1 shows an example of spatiotemporal dataset D to better illustrate the
definitions and mechanics of ST'SM algorithm. Each position p; is associated
with an STS d; in dataset D. Let us consider a frequency threshold v = % given
by the user. In this context, the only frequent sequence for D is <a> with a
frequency of % using GSTSM.

This dataset presents other sequences that can be identified by ST SM ac-
cording to our definitions. Consider the ranges 1 ([d;..ds]), r2([ds..d1o]), r3([d2..d5)),
and r4([d7..ds]). Both r3 and ry are, respectively part of solid-ranged sequences
sr3(<e,0>,rs, j) and srq(<i,u>,r4,1). In fact, considering our generate can-
didate algorithm, solid-ranged sequence sr3 is obtained from (<e>,rs, %) and
(<0>7 73, %)

Additional, r; and ro are not solid-ranged sequences. They correspond to
range kernels for <a> identified by algorithm solid RangedSequences. Later,
they are merged to build a solid-ranged sequence (<a>,[d;..d10], %) As it is,
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Fig. 1. Dataset D for ten spatial-time series with six observations in each.

the sequence <a> may not appear to be interesting, but if frequency threshold
is increased to v = %, both 7y and r4 become part of a solid-ranged sequence for
<a>, whereas no sequence is identified by general spatial-time sequence mining
algorithms (GSTSM).

Taking into account the relationship between time and space, intuitively, se-
quence <a> still does not appear to be interesting. In fact, the goal of STSM
is to identify tight space-time sequences. Consider blocks b1 = ([da..d5], [v3..v5])
and by = ([dr..ds], [v1..v5]). The occurrences of <i,u> in by are {([d7], [v1..v2]),
([ds], [v4--v5])}. Adopting an item-frequency threshold § = %, both blocks are
part of solid-blocked sequences sby (<e, 0>, by, %) and sbo(<i,u>, ba, %) Addi-
tionally, sequence a is not produced by STSM algorithm as a solid-blocked
sequence for such threshold.

‘We can observe that using solid-ranged sequences and solid-blocked sequences
definitions together with ST'SM algorithm, it is now possible to find sequences
that would not be found using higher frequency thresholds. According to the
example, the sequence <e, 0> is supported by the entire dataset with a frequency
of 2 occurs on a particular range (i.e. [ds..d5]) and interval (i.e. [v3..v5]) with
a frequency of % and item-frequency of % Also, it filters unwanted sequences
that are not tight in space-time, such as <i,u> in block ([d1], [vs..vs]). Sequence
<i,u> i is only solid-blocked sequence in bs.

6 Experimental evaluation

This section presents the experimental evaluation. Section 6.1 starts presenting
the dataset used as a proof of concept. Section 6.2 presents the exploratory
analysis of ST SM. Finally, Section 6.3 discusses the behavior of the algorithm
STSM when compared to GSTSM.



6.1 Dataset

The dataset chosen as input data is the inline 401 of the Netherlands Offshore
F3 Block reflection seismic survey [5]. It is composed of 651 inlines. The inline
contains 951 spatiotemporal series of timely-ordered observations collected in
different positions on the surface. Each of spatiotemporal series contains 462 ob-
servations, a sample of every four milliseconds, representing the different depths
of the subsurface.

Seismic surveys are commonly collected by producing pertubations (shots)
on the ground or in the ocean. Such shots generate elastic waves that are prop-
agated in the Earth interior. They are reflected and refracted in each material
layer and are returned to the surface in a given position and time. A set of re-
ceivers positioned on the surface (onshore or offshore) at fixed aligned intervals
records the waveform and wave arrival times. The collected wave amplitudes and
frequencies are related to the reflection location, and the wave traveled distance.
Thus, the early received signals correspond to upper subsurface layers, and vice-
versa. As it can be depicted in Figure 2, for example, each spatiotemporal series
can be interpreted as vertical columns of pixels, where negative amplitude val-
ues correspond to lighter pixels whereas positive amplitude values correspond
to darker pixels. The inline was made available® using SAX with an alphabet of
size 7 [12].

6.2 Exploratory Analysis

The algorithm proposed in this work allows for users to set solid range threshold
~ and solid block threshold § constraints. Finding adequate values for these
thresholds depends on the characteristics of input dataset/application. Lower
values for such constraints can lead to the identification of a large number of
non-useful frequent sequences. Conversely, higher values for these thresholds can
result in the detection of a small number of frequent sequences that may become
too small to be interesting. All code, experimental data, and results are made
availableS.

We explored the combination of solid range threshold v (60%, 70%, 80%,
90%, and 100%) with solid block threshold ¢ (10%, 20%, 30%, 40%, and 50%).
For sake of comparison, consider the identified sequence <a,a,g,g>. In this
scenario, when + is under 80%, a single solid range for this sequence is detected
covering the entire dataset. Values between 80% and 100% divide the dataset
into more fine-grained solid ranges. A consequence of having better solid range
division is that the computation required for identifying solid-blocked sequences
is reduced. Relaxing 7 from 80% to 60% led to an increase 18% in computing
time without improving the detection of a solid-blocked sequence. Adopting the
extreme value of 100% may, however, limit too much the detection of solid block
sequences. Figure 2.a depicts sequence occurrences for v = 80%.

Similarly, examining the solid block threshold §, when relaxing it to 10%,
many larger solid-blocked sequences are identified with many overlapping among

5 https://github.com/eogasawara/stsm



them. Conversely, when increasing the § threshold to higher values (30%), it is
possible to observe a significant decrease in the number of identified solid-blocked
sequences, many of them lose their overlapping. In Figure 2.a, § is set to 20%.

6.3 Discussions

The goal of this paper is to provide a way to discover sequences that are frequent
in tight time and space. By applying STSM, we managed to identify sequences
that would not have been found using traditional spatiotemporal techniques
using the same support. We ranked the identified sequences by density. The
density of a sequence s was computed by the mean block size of all solid-blocked
sequences for s. A representative high-ranked sequence (<e,e, f>) is depicted
in Figure 2.b.

Despite the simplicity of used ranking and the absence of any significant
seismic concept in its logic, it was good enough to prioritize interesting areas.
In the seismic domain, it is of particular importance to identify horizons, i.e.,
zones of major nonconformities between geologic boundary materials, usually
associated to different lithologies, which produces variations in the collected
reflection values [17]. STSM algorithm was able to identify known horizons.
The majority of high-ranked sequences made available in our site match known
seismic horizons previously known for this dataset [5]. Additionally, STSM was
also able to find potential areas of accumulation of hydrocarbon, known as bright
spots. Bright spots are rare patterns that occur when there is an inversion of the
wave phase. Such pattern is important not only because gas can be interesting
for exploration, but also since it can be near to rocks containing oil. For example,
in Figure 2.a, the discovered patterns, evidenced in red, are plotted on the top
of yellow marks obtained from the previously known bright spots for this dataset
[5]. Figure 2.a shows that ST'SM algorithm has discovered patterns that cover
large parts of known bright spots.

Figure 2.b shows a comparison between GSTSM and STSM. The sequence
<e,e, f> is identified by both algorithms. In GSTSM it has high support,
whereas in STSM it is mid-term ranked results obtained the chosen configu-
ration. It can be observed that although many solid-blocked sequences (depicted
in red) are covering the majority of known horizons, many isolated occurrences
identified by GSTSM (marked as black) correspond to noise. Considering Fig-
ure 2, it is possible to conclude two important differences between GSTSM and
STSM. Not only STSM can identify sequences that GSTSM is not capable of
identifying without lowering too much the frequency threshold, but it also can
filter-up sequence occurrences regarding space and time. Such approach allows
for researchers to focus on tight sequences.

7 Conclusion

This paper presented a challenging problem with high potential impact: spa-
tiotemporal sequential mining that focuses on discovering frequent tight pat-
terns, along with their constraints of frequency in both space and time. Our



Fig. 2. Identified solid-blocked sequence <a,a,g,g> for inline 401, alphabet size 7,
solid range threshold v = 80% and solid block threshold 6 = 20%. Its density was
206. Solid-blocked sequences are marked in red. The results follow the yellow pattern
produced using the previously known bright spots for this dataset [5]. (a) Comparison
of quality between GSTSM and STSM for sequence <e,e,d,d> in inline 401 using
alphabet size 7, with support of 80% for GST'SM and with solid range threshold () of
80% and solid block threshold (d) of 20% for ST'SM. Identified occurrences are marked
as red when identified by ST'SM and as black in GSTSM. Although occurrences from
STSM correspond to seismic horizons, many occurrences from GSTSM correspond
to noise. (b)

formal background provides us with the necessary conditions of such discovery.
We proposed ST'SM, a novel algorithm that performs an efficient extraction of
these patterns and their spatiotemporal constraints. To the best of our knowl-
edge, this is the first study on this topic. Our experiments, using a real-world
seismic dataset, highlighted significant insights according to the feedback of spe-
cialists in the domain. STSM allows for extracting patterns that follow areas of
major nonconformities between geologic boundary materials of the subsurface,
such as horizons and bright spots. The existence of these discovered patterns
was confirmed comparing them with a previously known survey on this dataset,
while their meaning was assessed by domain experts. Owing to its novelty and
the characteristics of the extracted patterns, ST'SM is opening new research for
tight spatial-time sequences discovery.

Although we have evaluated STSM algorithm using seismic data, it has
been conceived to be sufficiently generic for different spatiotemporal datasets
(such as IoT domain). The plot of detected solid-blocked sequences according to
space and time, as shown in this paper, can aid specialists to analyze identified
sequences. Additionally, in scenarios in which a large number of frequent con-
strained sequences are produced, we can explore specialized ranking functions
to prioritize the most interesting ones.
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