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Geometry is the subject where U.S. students are weakest on international assessments, but college 

geometry is an area of proof that is understudied. Since geometry is secondary students’ only 

exposure to proof, it is vital our secondary teachers can prove effectively in this content area. 

However, one obstacle to developing deeper understanding of geometric concepts in college 

geometry courses is that students tend to try recalling prior geometry instruction instead of 

engaging in any new material within a Euclidean geometric context. A document analysis of student 

portfolios revealed that although pre-service teachers in this document study began the semester 

with limited abilities to work with formal definitions, by the end of the semester all were able to 

propose and justify conjectures on novel surfaces. 
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Theoretical background 

Geometry arises from a set of undefined terms and axioms through which all other theorems and 

definitions are constructed. Hence, a thorough understanding of geometry involves a deep 

understanding of proof; yet, teachers possess a narrow understanding of proof. Studies indicate that 

pre- and in-service teachers believe proof only helps explain ideas used in mathematical concepts, 

and they do not recognize the ability of proof to systemize results (Mingus and Grassl, 1999; Knuth, 

2002b). Teachers lack the geometry content knowledge required for geometry proofs, and they are 

convinced by empirical evidence as well (Jones, 1997; Knuth 2002a). Consequently, teachers with 

inadequate proof and geometry understanding cannot be expected to impart adequate proof and 

geometry knowledge to students. Furthermore, college geometry is the only undergraduate proofs 

course that has not been studied in any systematic manner (Speer and Kung, 2016). 

Pre-service teachers in undergraduate proof courses do not adequately understand what arguments 

qualify as proof (Weber, 2001). They lack comprehension of the mathematical language and 

concepts necessary to proof (Selden, 2012), and they possess an incomplete understanding of 

definitions and theorems (Weber, 2001; Selden and Selden, 2008). In typical direct-instruction, 

lecture proof courses, students are expected to develop proficient proof skills with little to no 

guidance. Without guidance, students will fail and likely cultivate ineffective strategies (Weber, 

2001). These ineffective strategies are typically proof schemes dependent upon external and 

empirical convictions, such as the authoritarian, ritual, and perceptual proof schemes (Harel and 

Sowder, 2007). In order to successfully write a proof, students need to employ effective strategies or 

proof schemes with arguments based on axioms and logical deductions, which in turn requires 

understanding of definitions and the idea of conditionally true statements.  

The typical instructor-centered learning environment, is the dominant paradigm, but may not induce 

the logic and proof techniques needed to construct a proof in all students (Fukawa-Connelly, 



Johnson, & Keller, 2016). Alternatively, a proof course should consist primarily of student-student 

and student-teacher interactions (Selden and Selden, 2008). Given the prevalence of lecture-based 

proof courses in the United States (Fukawa-Connelly, Johnson, & Keller, 2016) and preservice 

teachers’ continuing struggles with geometry, one potential approach to help improve pre-service 

teachers’ is an inquiry-based learning pedagogy where students are active learners, and the 

instructor is responsible for facilitating students’ exploration of the content, particularly definitions 

(Padraig and McLoughlin, 2009).   

However, one of the additional challenges of college geometry is that the material is familiar to 

students. Rather than investigating the ideas presented in the current assignment, many students rely 

on recollections from previous geometry courses, especially if the problems seem familiar. Hence, 

an inquiry-based college geometry course in non-Euclidean geometry seems more likely to help pre-

service teachers develop their proving skills and deepen their understanding of the geometric 

concepts they will eventually teach. This study was guided by the question: how, if at all, an inquiry 

based non-Euclidean geometry class helped deepen students’ understanding of definitions and 

Euclid’s postulates? We argue that the deep exploration of a limited number of non-Euclidean 

geometry problems helped students to move from primitive geometric knowledge to formalizing 

definitions and successfully posing and solving conjectures on novel surfaces.  

Methodology 

An adaptation of Pirie and Kieren’s (1994) model for student understanding was used to code 

students’ written assignments for their understanding of definition. Although this eight-level model 

was originally created to model students’ understanding of fractions, it adapts well to geometry, as 

the purpose was to describe the transition from concrete to abstract reasoning to justification to 

problem posting. One level, image having, was not used when coding, since students always had 

access to physical models of whatever non-Euclidean surface they were working with that week, so 

we could not determine students’ facilities for understanding similar exercises without physical 

models. We also did not include looping back within our standards of evidence because it was not 

something we observed in the data. 

This study took place at a midsized, rural, Hispanic-serving research university in the South, and the 

students who participated were those enrolled in a ten student college geometry course. The data 

collected was part of a larger study; this study presents a case study of five pre-service teachers 

Lindsey, Bradyn, Alexis, Mackenzie, and Chase. We also analyzed the work on one non-preservice 

teacher, Florencio, because Florencio’s papers were different from the other participants. While we 

wanted to maintain a purposeful sampling of pre-service teachers, Florencio was enough of a 

disconfirming case that we felt his inclusion was necessary (Patton, 2002). Florencio was an 

engineering major with one prior proofs class. Lindsey has no formal proof experience, Bradyn had 

completed discrete mathematics in one attempt with a B, Alexis had completed discrete 

mathematics and abstract algebra with A’s, and Chase, who has a learning disability, had completed 

discrete mathematics with a C after two attempts and failed another upper level proof class. 

Mackenzie was a non-traditional student in her final semester; she had completed all other upper 

level proof classes with a mixture of A, B, and C grades.  



Students in the course were provided with course notes (Miller, 2010) that presented open-ended 

problems related to a specific learning goal. There were fifteen assignments; five of which were 

focused on formal axiomatic proof, eight on definitions and axioms in various non-Euclidean 

situations, and two assignments (the midterm and final project) which combined both strands in the 

same assignment. Four of the assignments were formal (one revision allowed), and the other ten 

were informal (unlimited revisions). On the midterm (F3), students were given new but similar 

problems to their assignment and asked to work through them individually, and on the final project 

(F4), students were asked to discover as many things as they could about the geometry of the surface 

a cone. For each new assignment, students were assigned a specific problem from the provided 

course notes and a group. If a group appeared to be making little progress or moving in an 

unproductive direction, the teacher would use guided questioning to redirect students’ thoughts. If 

multiple groups stopped progressing, the teacher would initiate a whole class discussion.  

To determine students’ understanding of definitions and postulates, researchers examined the first 

submission students turned in for each assignment. Researchers also used observations to gain 

further understanding of students’ proof comprehension. As students discussed their ideas within 

their group, a researcher sat behind them listening and taking notes on their interactions for about 

ten minutes. The submissions were analyzed by assignment and all the drafts from an individual 

participant were analyzed at the same time. After this initial reading of blinded assignments, 

researchers would journal their impressions of the coding and the overall trajectory exhibited in the 

multiple submissions. These journals were used to operationalize concepts in the literature review, 

and then they were compared to the standards of evidence table (Table 1).  

Level of 

Understanding 

Identifiers 

 

Primitive 

Knowledge (1) 

Students are applying prior knowledge of Euclidean geometry, stating given 

definitions, or providing empirical proofs 

Image Making 

(2) 

Students make distinctions and reclassify prior knowledge or use prior 

knowledge in a new manner 

Property 

Noticing (3) 

Students can apply a definition on a previous surface to a novel surface or 

situation by recognizing commonalities in the learned and novel situation 

Formalizing (4) 
Students can abstract a method, formula, or common property from previous 

property noticing 

Observing (5) Students can propose conjectures and provide justification or counterexample 

Structuring (6) 

The argument is logical and made up of systematic application of axioms and 

theorems/If any portion of the argument could be clarified, the clarification is not 

necessary for the argument’s validity. 

Inventising (7) 
Students can pose new questions and solve them, creating new (to the student) 

knowledge 

 
Table 1: Standards of evidence (Modified from Pirie and Kieren, 1994) 

 



Findings 

With the exception of Mackenzie, all pre-service teachers struggled to complete the initial 

assignments with correct arguments; primitive knowledge from a previous high school geometry 

course was applied to the problem instead of an argued solution. However, by the fourth inquiry-

based task, all participants were able to formalize definitions, and all students were at least able to 

successfully use definitions and postulates in novel situations to construct proofs. All students 

followed a similar trajectory throughout the semester and improved, on average, four levels of 

understanding (Figure 1). 

 

Figure 1: Student levels of understanding throughout the semester 

The first definition centered-assignment of the semester was an inverse categorization problem. 

After finding all possible symmetries on the square, students were asked to use Geogebra to start 

with a subset of these symmetries, construct all possible quadrilaterals with that set of symmetries, 

and justify why they had found all cases. Mackenzie was able to categorize on first assignment, but 

the other preservice teachers either listed the symmetries of each quadrilateral or could not justify 

if/why they had found all cases (Figure 2). Both of these difficulties indicate students making partial 

reclassifications of their prior knowledge.  



 

 

 

Figure 2: Typical solutions on IF2 Chase (left, primitive knowledge); Florencio (right, image making) 

During the middle third of the semester, the two assignments that helped pre-service teachers move 

towards formalizing their understanding of definitions and counterexamples were IF3 and IF6. In 

both assignments, students were asked to justify which, if any of Euclid’s postulates held on a 

sphere (IF3) and the hyperbolic plane (IF6). Students were also asked to prove the existence of 

asymptotic geodesics on the hyperbolic plane. On IF3, the first exposure to the postulates, Alexis 

was not able to work in the spherical context and reasoned through the justification of the postulate 

in terms of the more familiar planar geometry (Figure 3). However, by IF6 Alexis was able to 

provide a counterexample for false postulates (Figure 4). 

 

Figure 3: Alexis’ IF3 (Image Making) Postulate 5 solution 

 

Figure 4: IF 6 (Formalizing) Postulate 5 solution 



In the final third of the semester, the goal of all assignments was to integrate pre-service teachers’ 

improved proof schemes with more formal uses of definitions. IF5 and F3 were major proofs 

assignments that took students most of the middle third of the semester. With their improved proof 

schemas, and understanding of the surfaces, were more easily able to construct proofs for parallel 

lines that were independent of the surface upon which the lines were drawn (IF8 and IF10). Most 

students were able to construct a generally correct proof, with some minor disordering of steps and 

missing justifications. This shows participants possessed a more structural understanding of 

symmetry than the understanding demonstrated in IF2. Bradyn, like Florencio, was image making 

on the first assignment related to symmetry, but by the time symmetry was used to construct proofs 

related to parallel transported lines, Bradyn was much more successful (Figure 5). Although 

Bradyn’s language is not quite standard and he had trouble typesetting his proof, his overall 

structure is systematic and he has a transformational understanding of symmetry not present in his 

initial write-ups. 

 

Figure 5: Bradyn’s second proof in IF8 (observing) 

The final formal assignment asked students to discover (and prove) as many things as they could 

about the geometry of an infinite cone. Groups were expected to prove 2-4 conjectures. Given the 

open nature of F4, one group chose to only investigate properties of a cone where group members 

had successfully revised an assignment on another surface. This limited their levels of 

understanding to observation. The other two groups each had at least one investigation of a 

conjecture about a novel concept with at least one new or newly-modified definition, which is 

summarized in Table 2.  



 

Participant Project Summary Code 

Alexis (+3 

others) 

Using a novel group-invented definition of straightness to 

investigate self-intersecting lines on cones (conjecture: no 

formula possible), angle sums of triangles with self-

intersecting sides 

Structuralizing, 

Inventising 

Mackenzie, 

Lindsey (+1 

other) 

Holonomy, internal angle sums of a triangle with no self-

intersecting sides, triangle congruence theorems, non-

intersecting lines that are not parallel transports 

Inventising 

Bradyn, 

Chase (+1 

other) 

Postulates (some cone angles), collected data for self-

intersecting lines 

Observing 

Table 2: Summary of final project 

Discussion 

Regardless of prior proof course grades or experience all pre-service teachers struggled to complete 

the initial assignments with correct arguments; primitive knowledge from a previous high school 

geometry course was applied to the problem instead of an argued solution. However, by the fourth 

inquiry-based task, all participants except for Chase were able to formalize definitions, and all 

students were at least able to successfully use definitions and postulates in novel situations to 

construct proofs by the end of the semester.  

By centering the college geometry course around understanding core geometric concepts on several 

different surfaces, participants were forced to engage in understanding each new situation rather 

than simply applying their prior Euclidean geometry knowledge to a more familiar problem. As a 

result, students developed more advanced understanding definitions and counterexamples. All 

participants got to at least formalizing definitions and seven of the ten students in the class ended 

the semester at either the structuring or Inventising level.  

The structure of the course maximized students’ opportunities to reify their understanding of 

definitions and postulates. The use of multiple non-Euclidean contexts was key to helping students 

develop better understanding of formal definitions. By switching surfaces, operationalizing 

definitions and determining if they were applicable stayed a problem and not an exercise. Further, 

the repetition of the postulates and determining geodesics in particular were important because these 

concepts were presented in enough slightly different concepts to allow students to develop deeper 

levels of understanding of the definition than a single context would allow. Students also reported 

that the chance to revise their written work was a valuable way to help them reflect on the current 

surface and how it compared to their prior work.  

There are two potential limitations for this study, which could be remedied by further inquiry. First, 

we did not collect students’ interview data; our analysis is a document study coupled with 

observations of students’ in-class discussions. Teaching experiments or task-based interviews of 

students’ understanding of definition in similar inquiry based classes, and comparative data to 



students in axiomatic Euclidean courses would also be of use. We also had non-native English 

speaking students in this class, and further research on their experience with proof and geometry is 

still needed. Finally, although most students followed the same trajectory, Chase was about two 

weeks behind everyone else. However, Chase has dyslexia; and there is a dearth of literature about 

undergraduates with learning disabilities; more work is needed to understand how to support such 

students’ learning. 
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