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ABSTRACT

Depth estimation from a single monocular image has reached
great performances thanks to recent works based on deep net-
works. However, as various choices of losses, architectures
and experimental conditions are proposed in the literature, it
is difficult to establish their respective influence on the perfor-
mances. In this paper we propose an in-depth study of various
losses and experimental conditions for depth regression, on
NYUv2 dataset. From this study we propose a new network
for depth estimation combining an encoder-decoder architec-
ture with an adversarial loss. This network reaches top ones
state of the art on NUYV2 dataset while being simpler to train
in a single phase.

Index Terms— Depth estimation, deep learning, loss
function.

1. INTRODUCTION

Depth estimation is a major problem in computer vision
with several applications in human machine interaction, aug-
mented reality and robotics. Standard approaches were based
on stereoscopic vision, structured light, or Structure from
Motion (SfM). However, these techniques often have limita-
tions that depend on the environment (e.g. sun, texture) or that
require several views of the scene. Thanks to easily generated
Red Green Blue Depth (RGB-D) data, several approaches
based on deep learning have been proposed in recent years,
starting from [1]. They exploit geometrical aspects of a scene
from a single point of view (a single image) to estimate the
3D structure with the use of convolutional neural networks
(CNNs) [2, 3, 4, 5].

These networks usually optimize a regression on the ref-
erence depth map. The first main challenge faced by the
aforementioned papers is defining an appropriate loss func-
tion for depth regression. L9 has often been a popular choice
for this task, but a custom loss [1] and, more recently, an ad-
versarial loss [6] have also been adopted with success. The
second challenge concerns the network architecture, which
usually followed the advances proposed every year in this
flourishing field: VGG16 [2, 3], fully convolutional encoder-
decoders [7], and recently Residual Networks (ResNet) [8].
Thus, the relationship between networks and objective func-

tions is intricate, and their respective influences are difficult
to distinguish. In this paper, we investigate how particular
choices of loss functions and experimental conditions affect
depth prediction performances.

Concretely, we lead an in-depth study of the various losses
adopted until now, also analyzing standard regression losses.
We highlight the main contributions of this paper as follows:

e We show that on small training datasets, the simple
L1 loss usually performs better than previously pro-
posed losses alongside with scale-invariant loss;

e We also show that with large training data, we can
benefit from an adversarial loss to get even finer details
in depth estimates, possibly because there is no mode
collapse [9] in such cases.

e We show that our approach, which consists of an
encoder-decoder network with dense blocks and skip
connections and an adversarial loss, is among the top
ones of the state of the art on NYUv2 [10] while being
simpler to train than previous works.

The paper is organized as follows. Section 2 summarizes
last contributions to deep depth prediction field. The pro-
posed method is presented in details in section 3 and section
4 presents our experiments and analysis of results.

2. RELATED WORK

Several machine learning techniques have been proposed to
solve the problem of depth estimation on a single image. One
of the first solutions was the Make3D approach of Saxena et
al. [12, 13], which formulates the problem as the capture
of properties of the image (e.g., planarity, co-linearity) com-
bined with regression on the true depth using a Markov Ran-
dom Field (MRF). Recently, most new methods are based
on deep convolutional neural networks (DCNN). This was
made possible by the release of a large-scale RGB-D dataset:
NYUv2 [10]. The first network architecture was proposed by
Eigen et al. [1] who adopted a multi-scale DCNN. They care-
fully designed a scale-invariant loss (cf. L¢igen, in Table 1)
to encourage neighbor pixels to have similar depth values.
Wang et al. [4] extended this work by exploring joint depth
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Table 1: List of common losses for regression. Let y; and
y; be the ground truth and the estimated distance in meters,
li = vi—0i, di = log(y;)—log(7;), G, the generator network,
D, the discriminator network and z, the input image.

and semantic prediction with a hierarchical Conditional Ran-
dom Field (HCRF) and, in [2], Eigen ef al. included first
order gradients in the 10ss (L¢igengraq) to enforce close local
structure on depth prediction.

However, most subsequent works which base training on
pixel-wise regression, simply used standard regression losses
like mean absolute (£1) and mean square (L) to train their
networks [8, 14, 15]. Most contributions lie in the network
architectures and the use of Condition Random Fields (CRF).
Laina et al. [8] claim empirical improvements due to the loss
design using the Lpe,pq, instead of Lo alone, but their method
also includes a new network and a new component, the up-
projection blocks. Comparison between losses is performed
only between Lpe,p,, and Lo. This work was extended in [15]
with adoption of an £; loss.

A recent method for regression is performed by Gener-
ative Adversarial Networks (GANs). They were first intro-
duced by Goodfellow et al. [16] to produce realistic images
from noise vectors and extended in [11] to condition the gen-
erated outputs to an input image (cGAN). They work by defin-
ing an adversarial loss which is modeled by a network that
classifies the likeliness of the output, often regularized with
a Ly term. Jung et al. [6] successfully used this idea of the
adversarial loss to perform depth prediction with a two-phase
training strategy: network is first trained with a £, and poste-
riorly fine-tuned with the adversarial loss.

Finally, Kendall and Gal [17] proposed a Bayesian net-
work based on [18, 19, 20] combined to a novel regression
function that captures the uncertainty of the data (noisy ob-
servations) to improve learning.

skip-connections
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BN-+relu+conv3x3 BN-+relu+conv3x3
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BN+relu+convlxl BN+Tanh

Fig. 1: D3-Net architecture. The encoder part corresponds
to a modified version of DenseNet-121, where we replaced
a max-pooling by a 4x4 convolution with stride=2 (yellow
block).

All the aforementioned works made use of the latest state
of the art networks to improve performance while adopting
new losses. However, none of them performed a complete
comparison between all the already proposed cost functions.
In this work, we conduct a comparison of standard and cus-
tom losses including the long-discarded Lcjger,. Also, we
bring a new insight to the use of the adversarial loss which
requires a large amount of data to be effective. The network,
which eventually get close to best performances on NYUv2,
is also much simpler to train with respect to [14, 6] as it can
be performed end-to-end.

3. DEEP DEPTH PREDICTION NETWORK

D3-Net architecture. To conduct the experiments, we pro-
pose an encoder-decoder architecture, referred to as D3-Net,
illustrated in Figure 1, which is based on DenseNet-121 [19]
for the contractive part, where we replaced a max-pooling by
a 4x4 convolution with stride=2 (yellow block). Here, dense
blocks, DBxs, x € [1,2, 3, 4], contain 6, 12, 24 and 16 con-
volutions respectively. The decoder comprises blocks of 4x4
transposed convolutions with stride 2 and 3x3 convolutions
with stride 1 to upsample feature maps to a higher resolution.
The encoder and decoder parts are connected through skip
connections like proposed by [21] to improve context-aware
learning. In contrast to precedent architectures [14, 6], our
network can be trained in a single phase and does not require
any additional analytical model like CRFs [4, 14].
Patch-GAN. We modify the conditional patch GAN pre-
viously proposed in [11] to the task of depth estimation. The
discriminator network is designed to measure and classify if
an input depth map is true or false. True maps correspond to
the ground truth depths and false maps correspond to gener-
ated depths. This network is trained to replace handcrafted
loss functions as it tries to find a implicit definition of the loss
function by learning a metric in the image space. However,
to smooth GAN predictions and guide training, we add an £
term to the output of D3-Net. The patch structure allows the
discriminator to penalize the predictions per patches instead
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Fig. 2: Performance evolution for different dataset sizes and
different losses using D3-Net architecture.

of penalizing the whole image, which leads to results with
finer details. The output of the patch-discriminator is 78x62
for an input image of 320x256.

4. EXPERIMENTS

To compare the performances on depth estimation, we adopt
standard error measurements proposed in [1, 22] and also
a standard benchmark dataset for deep depth prediction:
NYUv2. NYU-Depth V2 (NYUv2) dataset [10] has approx-
imately 230k pairs of indoor images from 249 scenes for
training and 215 scenes for testing. NYUv2 also contains a
smallest dataset with 1449 pairs of aligned RGB and depth
images, of which 795 pairs are used for training and 654 pairs
for testing. Original frames from Microsoft Kinect output
are 640x480. Pairs of images from the RGB and Depth sen-
sors are posteriorly aligned, cropped and processed to fill-in
invalid depth values. Final resolution is 561x427.

In the first experiment, we observe, for all regression
losses in Table 1, the RMS error and accuracy variation ac-
cording to different loads from the original dataset. We also
study the convergence speed of the network to improve re-
sults. Note that to conduct direct comparisons, we carefully
perform all training processes keeping network parameters
without any change. Finally, to generalize our conclusions,
we guide a second experiment where the front-end network of
D3-Net, originally DenseNet-121, is replaced by ResNet-50,
already adopted in [8, 14, 15]. We then study the variations
of three error metrics for the different losses when changing
the architecture.

Quantitative performance comparison. Figure 2 shows
the evolution of the network performance with different losses
when trained with different sizes of dataset. We adopt three
different splits with the 795 pairs from the small NYUv2
dataset, 12k pairs from equally spaced samples of the com-
plete dataset and 230k pairs of images from the whole dataset.

As one can expect, more data leads to better results in
all cases. However, losses evolves differently from one split
to another. In general terms, £1 and Lc;gen present the best

performances for different sizes of the dataset. On the other
hand, L,,, becomes highly efficient when trained with a
great amount of data. GANs have a well known instability
(mode-collapse [9]) that, in our case, can be circumvented
with more data.

From Figure 3, £; and Lc;ger, also appear to converge
more effectively than the other losses and then obtain better
predictions faster. This remains true for the two smaller splits,
but when training the model with 230k, we can notice the
GAN model and L;g4cr, outperform other error functions.

Qualitative performance comparison. For better com-
parison between the models, we also provide visualization of
predicted depth maps in Figure 4 for models trained on the
complete NYUv2 dataset. In general, we notice that L per
and L5 tend to smooth predictions. Even though L1, ben-
efits from £y for small errors, £, factor seems to degrade
estimations as well. It is important to notice that standard Lo
encourages residuals where error is small, but £ can encour-
age sparse solutions where error is zero. Lpe,p,, proposes to
take advantage of £; for very small errors and use Lo other-
wise. From the presented quantitative and qualitative exper-
iments the squared term seems to favor smooth predictions
when adopting Lpe,hy as well as Ly, 46 and Lo. On the other
hand, Lg4n, Leigen and £q present nice visual predictions
confirming previous quantitative results. The patch-GAN ap-
proach can lead the model to capture high-frequency details
(e.g., contours, small objects).

These characteristics can be clearly observed for example
in the first row, where the contours of the different chairs in
the back are well predicted when compared to Lpep, and
Lpuper, for example, that almost ignore them. Other very fine
details can be seen in the L, predictions of the second row
for the shelves and the television.

Different front-end architectures. In order to general-
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Fig. 3: Comparison of the convergence speed between the
losses in Table 1 on test data.
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Fig. 4: Qualitative result of D3-Net trained to minimize different regression losses from the literature of depth from monocular
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Fig. 5: Performance comparison of regression losses with
different front-end architectures.

ize our study, we evaluate the performances of the presented
losses with another front-end architecture: ResNet. The main
difference with DenseNet is that ResNet learns by optimiz-
ing the residual information and DenseNet learns by feeding
later layers with feature maps from precedent ones and more
importantly, this allows gradients to flow directly to input sig-
nal diminishing cases of vanishing gradients. Figure 5 shows
on the same graph performance of both front-end networks.
We adopt the training split with 12k images to fasten train-
ing compared to the whole dataset. Our results show that
Ly and Le;gen, show better results for both architectures. Be-
sides, DenseNet encoder presents globally better results than
ResNet with the only exception of slightly poorer RMSE.

Comparison with state of the art methods Finally, we
show in Table 2 that the proposed D3-Net architecture com-
bined with Ly, and trained with NYUv2 230k reaches the
top state of the art methods. Our method using adversarial
loss can be trained end-to-end in a single phase, in contrast

Methods Error Accuracy T

rel logl0 rms rmslog §<1.25 5<1.252 §5<1.25%

Saxena [12] 0.349 - 1214 - 447%  745%  89.7%
Eigen [2] (VGG16)  0.158 - 0641 0214 769%  950%  98.8%
Laina [8] 0.127 0055 0573 0.195  81.1%  953%  98.8%

Xu [14] 0.121 0.052 0.586 81.1% 95.4% 98.7%
Cao [23] 0.141  0.060 0.540 - 81.9% 96.5% 99.2%
D3-Net 0.135 0.059 0.600  0.199 81.9% 95.7% 98.7%
Jung[6] 0.134 - 0.527 - 82.2% 97.1% 99.3%
Kendall and Gal [17]  0.110  0.045  0.506 - 81.7% 95.9% 98.9%

Table 2: Performance metrics obtained by state of the art
methods of deep depth estimation with NYUv2 dataset. Re-
sults extracted from original papers. Our best result consists
on the D3-Net trained with £, with 230k pairs of images.

to [6]. Compared to [18], it does not require the use of a
Monte Carlo method to capture the uncertainty of the model
and improve performance, like [17].

5. CONCLUSION

In this paper, we have presented a study of the influence of
regression losses and experimental conditions on depth esti-
mation using deep learning. Several losses from the literature
as well as standard losses have been considered. Performance
tests have been conducted on NYUV?2 datasets with various
sizes, and two different encoder-decoder architectures. We
have shown that on small datasets, £ and L.;ge, losses pro-
duce the best performances and when the size of the dataset
increases, the performance benefits from the use of adver-
sarial loss. Finally, based on this study we have proposed
a network combining a simple encoder-decoder architecture
with dense blocks and skip connections and an adversarial
loss. This network reaches the top ones results on the NYUv2
dataset while being simpler to train than previous works such
as [14, 17].
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