R. S. Abiev, Simulation of the slug flow of a gas-liquid system in capillaries, Theor. Found. Chem. Eng, vol.42, issue.2, pp.115-127, 2008.

R. S. Abiev, Bubbles velocity, Taylor circulation rate and mass transfer model for slug flow in milli-and microchannels, Chem. Eng. J, vol.227, pp.66-79, 2013.
DOI : 10.1016/j.cej.2012.10.009

P. Aussillous, D. Quéré, G. Be?-ci?ci?ci?, and A. Pintar, The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries, Chem. Eng. Sci, vol.12, issue.10, pp.3709-3719, 1997.

F. P. Bretherton, The motion of long bubbles in tubes, J. Fluid Mech, vol.10, issue.2, pp.166-188, 1961.

J. D. Bugg and G. A. Saad, The velocity field around a Taylor bubble rising in a stagnant viscous fluid: numerical and experimental results, Int. J Multiph. Flow, vol.25, issue.5, pp.791-803, 2002.

C. Butler, E. Cid, and A. Billet, Modelling of mass transfer in Taylor flow: investigation with the PLIF-I technique, Chem. Eng. Res. Des, vol.115, pp.292-302, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01411112

A. Charogiannis, J. S. An, and C. N. Markides, A simultaneous planar laser-induced fluorescence, particle image velocimetry technique for the investigation of thin liquid-film flows, Exp. Therm. Fluid Sci, vol.68, pp.516-536, 2015.

A. Dani, P. Guiraud, and A. Cockx, Local measurement of oxygen transfer around a single bubble by planar laser-induced fluorescence, Chem. Eng. Sci, vol.62, pp.7245-7252, 2007.

F. Fairbrother and A. E. Stubbs, Studies in electroendosmosis: the bubble method of measurement, J. Chem. Soc, vol.0, pp.527-529, 1935.

D. F. Fletcher and B. S. Haynes, CFD simulation of Taylor flow: should the liquid film be captured or not?, Chem. Eng. Sci, vol.167, pp.334-335, 2017.

R. Gupta, D. F. Fletcher, and B. S. Haynes, On the CFD modelling of Taylor flow in microchannels, Chem. Eng. Sci, vol.64, pp.2941-2950, 2009.

S. Haase, D. Y. Murzin, and T. Salmi, Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid Taylor flow, Chem. Eng. Res. Des, vol.113, pp.304-329, 2016.

T. Häber, M. Gebretsadik, H. Bockhorn, and N. Zarzalis, The effect of total reflection in PLIF imaging of annular thin films, Int. J. Multiph. Flow, vol.76, pp.64-72, 2015.

M. Haghnegahdar, S. Boden, and U. Hampel, Investigation of mass transfer in milli-channels using high-resolution microfocus X-ray imaging, Int. J. Heat Mass Transf, vol.93, pp.653-664, 2016.

Y. Han and N. Shikazono, Measurement of the liquid film thickness in a micro tube slug flow, Int. J. Heat Fluid Flow, vol.30, issue.5, pp.842-853, 2009.

A. Hassanvand and S. H. Hashemabadi, Direct numerical simulation of mass transfer from Taylor bubble flow through a circular capillary, Int. J. Heat Mass Transf, vol.55, pp.5959-5971, 2012.

K. Hayashi, S. Hosoda, M. Schlüther, and A. Tomiyama, Effects of shape oscillation on mass transfer from a Taylor bubble, Int. J. Multiph. Flow, vol.58, pp.236-245, 2014.

M. Heil, Finite Reynolds number effects in the Bretherton problem, Phys. Fluids, vol.13, issue.9, pp.2517-2521, 2001.

S. Hosoda, S. Abe, S. Hosokawa, and A. Tomiyama, Mass transfer from a bubble in a vertical pipe, Int. J. Heat Mass Transf, vol.69, pp.215-222, 2014.

J. A. Howard and P. A. Walsh, Review and extensions to film thickness and relative bubble drift velocity prediction methods in laminar Taylor or slug flows, Int. J. Multiph. Flow, vol.55, pp.32-42, 2013.

V. Huntsova, S. Gay, P. Nowak-sliwinska, S. K. Rajendran, M. Zellweger et al., In vivo measurements of tissue oxygenation by time-resolved luminescence spectroscopy: advantageous properties of dichlorotris(1,10-phenanthroline)-ruthenium(ii) hydrate, J. Biomed. Opt, vol.19, issue.7, p.77004, 2014.

T. Janke and K. Bauer, Visualizing dissolved oxygen transport for liquid ventilation in an in vitro model of the human airways, Meas. Sci. Technol, vol.28, p.55701, 2017.

M. Jimenez, N. Dietrich, J. R. Grace, and G. Hébard, Oxygen mass transfer and hydrodynamic behaviour in wastewater: determination of local impact of surfactants by visualization techniques, Water Res, vol.58, pp.111-121, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268763

M. Jimenez, N. Dietrich, and G. Hébrard, Mass transfer in the wake of non-spherical air bubbles quantified by quenching of fluorescence, Chem. Eng. Sci, vol.100, pp.160-171, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268232

M. Jimenez, N. Dietrich, G. Hébrard, and A. Cockx, Experimental study of O 2 diffusion coefficient measurement at a planar gas-liquid interface by planar laser-induced fluorescence with inhibition, AIChE J, vol.59, pp.325-333, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268214

T. A. Johnson and V. C. Pattel, Flow past a sphere up to a Reynolds number of 300, J. Fluid Mech, vol.378, pp.19-70, 1999.

S. Kastens, S. Hosoda, M. Schlüther, and A. Tomiyama, Mass transfer from single Taylor bubbles in minichannels, Chem. Eng. Technol, vol.38, issue.11, pp.1925-1932, 2015.

S. Kastens, C. Meyer, M. Hoffmann, and M. Schlüter, Experimental investigation and modelling of local mass transfer rates in pure and contaminated Taylor Flows, Transport Processes at Fluidic Interfaces. Advances in Mathematical Fluid Mechanics, pp.609-637, 2017.

C. King, E. Walsh, and R. Grimes, PIV Measurements of flow with plugs in a microchannel. Microfluid, Nanofluid, vol.3, pp.463-472, 2007.

M. T. Kreutzer, F. Kapteijn, J. A. Moulijn, and J. J. Heiszwolf, Multiphase monolith reactors: chemical reaction engineering of segmented low in microchannels, Chem. Eng. Sci, vol.60, pp.5895-5916, 2005.

R. Kurimoto, K. Nakazawa, H. Minagawa, and T. Yasuda, Prediction models of void fraction and pressure drop for gas-liquid slug flow in microchannels, Exp. Therm. Fluid Sci, vol.88, pp.124-131, 2017.

H. Liu, C. O. Vandu, and R. Krishna, Hydrodynamics of Taylor flow in vertical capillaries: flow regimes, bubble rise velocity, liquid slug length, and pressure drop, Ind. Eng. Chem. Res, vol.44, pp.884-888, 2005.

M. Mac-giolla-eain, V. Egan, and J. Punch, Film thickness measurements in liquid-liquid slug flow regimes, Int. J. Heat Fluid Flow, vol.44, pp.515-523, 2013.

R. M. Machado, R. R. Broekhuis, A. F. Nordquist, B. P. Roy, and S. R. Carney, Applying monolith reactors for hydrogenations in the production of specialty chemicalsprocess and economic considerations, Catal. Today, vol.105, pp.305-317, 2005.

C. Meyer, M. Hoffman, and M. Schlüter, Micro-PIV analysis of gas-liquid Taylor flow in a vertical orientated square shaped fluidic channel, Int. J. Multiph. Flow, vol.67, pp.140-148, 2014.

K. Nakamaru, Synthesis, luminescence quantum yields, and lifetimes of trischelated ruthenium(II) mixed-ligand complexes including 3,3'-dimethyl-2,2'-bipyridyl, Bull. Chem. Soc. Jpn, vol.55, pp.2697-2705, 1982.

S. Nogueira, M. L. Riethmuller, J. B. Campos, and A. M. Pinto, Flow patterns in the wake of a Taylor bubble rising through vertical columns of stagnant flowing newtonian liquids: an experimental study, Chem Eng Sci, vol.61, pp.7199-7212, 2006.

P. O'neal, A. Meledeo, J. R. Davis, B. L. Ibey, V. A. Gant et al., Oxygen sensor based on the fluorescence quenching of a ruthenium complex immobilized in a biocompatible poly (ethylene glycol) hydrogel, IEEE Sens J, vol.4, issue.6, pp.728-734, 2004.

M. Roudet, A. Billet, S. Cazin, F. Risso, and V. Roig, Experimental investigation of interfacial mass transfer mechanisms for a confined high-reynolds-number bubble rising in a thin gap, AIChE J, vol.63, issue.6, pp.1547-5905, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595794

R. Sander, Compliation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys, vol.15, pp.4399-4981, 2015.

A. Sciacchitano and B. Wieneke, PIV Uncertainty propagation, Meas. Sci. Technol, vol.27, issue.8, p.84006, 2016.

G. S. Settles, Schlieren and Shadowgraphy Techniques: Visualizing Phenomena in Transport Media, 2001.

N. Shao, A. Gavriilidis, and P. Angeli, Mass transfer during Taylor flow in microchannels with and without chemical reaction, Chem. Eng. J, vol.160, pp.873-881, 2010.

P. Sobieszuk, J. Aubin, and R. Pohorecki, Hydrodynamics and mass transfer in gas-liquid flows in microreactors, Chem. Eng. Technol, vol.35, issue.8, pp.1346-1358, 2012.

G. I. Taylor, Deposition of a viscous fluid on the wall of a tube, J. Fluid Mech, vol.10, issue.2, pp.161-165, 1961.

T. C. Thulasidas, M. A. Abraham, and R. L. Cerro, Flow patterns in liquid slugs during bubble-train flow inside capillaries, Chem. Eng. Sci, vol.52, issue.17, pp.2947-2962, 1997.

A. N. Tsoligkas, M. J. Simmons, and J. Wood, Influence of orientation upon the hydrodynamics of gas-liquid flow for square channels in monolith supports, Chem. Eng. Sci, vol.62, pp.4365-4378, 2007.

P. Valiorgue, N. Souzy, M. El-hajem, H. Ben-hadid, and S. Simoëns, Concentration measurement in the wake of a free rising bubble using planar laser-induced fluorescence (PLIF) with a calibration taking into account fluorescence extinction variations, Exp. Fluids, vol.54, pp.1-10, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01296874

J. M. Van-baten and R. Krishna, CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries, Chem. Eng. Sci, vol.59, issue.12, pp.2535-2545, 2004.

R. Van-hout, A. Gulitski, D. Barnea, and L. Shemer, Experimental investigation of the velocity field induced by a Taylor bubble rising in stagnant water, Int. J. Multiph. Flow, vol.25, issue.4, pp.579-596, 2002.

C. O. Vandu, H. Liu, and R. Krishna, Mass transfer from Taylor bubbles rising in circular capillaries, Chem. Eng. Sci, vol.60, pp.6430-6437, 2005.

D. R. Webster, P. J. Roberts, and L. Ra'ad, Simultaneous DPTV/PLIF measurements of a turbulent jet, Exp. Fluids, vol.30, pp.65-72, 2001.

F. Xu, M. Jimenez, N. Dietrich, and G. Hébrard, Fast determination of gas-liquid diffusion coefficient by an innovative double approach, Chem. Eng. Sci, vol.170, pp.68-76, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606812

L. Yang, N. Dietrich, K. Loubière, C. Gourdon, and G. Hébrard, Visualization and characterization of gas-liquid mass transfer around a Taylor bubble right after the formation stage in microreactors, Chem. Eng. Sci, vol.143, pp.364-368, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01886381