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Abstract 

The inelastic behavior of Bohus granite is investigated based on experimental and numerical 

results. The yield surface and related dilation angle are determined based on quasi-oedometric 

tests performed in an earlier work. It is shown how to obtain the yield surface and dilation angle 

from this test for hydrostatic pressure levels up to 750 MPa. In the constitutive modeling, a 

Drucker-Prager law is employed together with a variable dilation angle. The constitutive model 

is first applied to simulate the quasi-oedometric test and the stress and strain fields are obtained. 

Furthermore, the validation of the model is investigated by simulation of the spherical 

indentation test. The results are compared with corresponding experimental data and a good 

agreement is found. 
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1 Introduction 

The fragmentation response of quasi-brittle materials subjected to quasi-static (Q-S) or 

dynamic loadings has been widely studied in the literature (Price and Farmer 1979; Cook et al. 

1984; Vermeer and De Borst 1984; Detournay 1986; Pang and Goldsmith 1990; Liu et al. 2002; 

Saksala 2011, 2013; Zhao and Cai 2010; Saksala 2010; Wang et al. 2011; Arzúa and Alejano 

2013; Saadati et al. 2014, 2016, 2018; Tkalich et al. 2016; Weddfelt et al. 2017). Cook et al. 

(Cook et al. 1984) investigated the fracture process by performing Q-S indentation tests on 

rock samples using circular flat-bottomed indenters with different sizes. The authors described 
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different stages of fragmentation based on the recorded force penetration response. The 

formation of a crater, a crushed zone and a region with multiple cracks were studied. In another 

study (Liu et al. 2002), a numerical method was developed in order to analyze the interaction 

between rock and tool. The rock was loaded by single and double indenters and the 

fragmentation process was simulated. Wang et al. (Wang et al. 2011) utilized a numerical tool 

to simulate indented rock fragmentation in which heterogeneity and isotropic damage were 

taken into consideration. In the work of Saksala (Saksala 2010), a damage-viscoplastic cap 

constitutive model was considered when simulating a rock sample behavior under low-velocity 

impact. A phenomenological and isotropic damage model in tension was combined with a 

viscoplastic model and cap in compression. The constitutive model was used to numerically 

investigate the interaction between drill bits and rock under axisymmetric conditions (Saksala 

2011) and later it was also extended to a 3D case (Saksala 2013).  

The fragmentation response of Bohus granite was investigated by some of the present 

authors (Saadati et al. 2014, 2018). A combination of pressure dependent plasticity (i.e. Krieg, 

Swenson and Taylor (KST) model) and an anisotropic damage model (proposed by Denoual, 

Forquin and Hild (DFH) model) was adopted to explain its response (Saadati et al. 2014). The 

results were validated based on a series of experiments. In that work, the size and rate effects 

on the tensile strength of a semi-brittle material such as Bohus granite were assumed to interact 

with each other. This interaction was explained within the framework of a Weibull model 

(Weibull 1939, 1951) and based on a random distribution of initial defects with different sizes 

in the material (Jayatilaka and Trustrum 1977). The rate effect on the tensile strength of Bohus 

granite was investigated using Hopkinson bar experiments and spalling tests. It was shown that 

the tensile strength increased from 8 MPa under Q-S conditions to 19 MPa in the dynamic case 

(Saadati et al. 2016). Further, the size effect on the tensile strength of Bohus granite was 

investigated by performing three-point bend tests on specimens of different sizes and using the 

Weibull size effect and the concept of effective volume (Weibull 1952; Davies 1973; Hild and 

Marquis 1992), namely, the portion of the total volume that is subjected to a positive equivalent 

stress (Saadati et al. 2018). Furthermore in indentation applications the effective volume was 

calculated for a semi-infinite medium loaded by a cylindrical indenter and using a probabilistic 

approach (Weddfelt et al. 2017). In percussive drilling, both rate and size effects on the tensile 

strength play an important role in the fragmentation response and the combination of them is 

needed to explain these phenomena. However, considering the small values of the effective 

volume during indentation testing (Weddfelt et al. 2017), the rate dependence of Bohus granite 
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based on previous studies performed by the authors and also the range of strain rates occurring 

in percussive drilling (Saadati et al. 2016), the rate effect should be less critical than the size 

effect (Weddfelt et al. 2017). It should also be mentioned that any size effect in the compressive 

behavior was excluded in that study. 

In the present work, the inelastic constitutive behavior of the material is investigated based 

on, in particular, quasi-oedometric compression tests performed in an earlier work (Saadati et 

al. 2018). The results from those tests are used herein to obtain the dilation angle for hydrostatic 

pressure levels up to 750 MPa. From these experimental results, together with corresponding 

finite element simulations of the same test, it is suggested that a linear Drucker-Prager law, 

with a variable dilation angle, can be used to model the inelastic behavior of granite. One of 

the other interests of the present work is to investigate the Q-S force-penetration (P-h ) response 

of Bohus granite loaded by a spherical indenter, and thereby also validating the employed 

material model. The attention is primarily put on the loading range up to the first main load 

drop, corresponding to the load capacity of the material (Weddfelt et al. 2017), in order to avoid 

effects due to cracking in the constitutive modelling.  

A number of Q-S indentation tests was carried out in the present work and the 

corresponding P-h response of Bohus granite was obtained. The generated experimental data 

are then compared to the results produced by numerical finite element simulations taking 

advantage of the Abaqus FE software (Abaqus 2014). Additionally, a high speed camera was 

utilized in order to study the upper surface of the specimen during the indentation test. A series 

of images from the sample surface was captured right before and after the load-drops in the 

force penetration response of the studied rock. Furthermore, the tested specimens were scanned 

by x-ray microtomography with the intent of better understanding the cracking mechanism. It 

should be mentioned that Bohus granite, which is selected for experimental purposes, mainly 

contains quartz (33 vol%), plagioclase (33 vol%), potassium feldspar (29 vol%) and biotite (6 

vol%), which was tested by SP, Swedish National Testing and Research Institute (Saadati 

2015). 

A review of the literature reveals that the dilation angle is one of the critical material 

parameters that should be carefully treated since the evaluation of the inelastic behavior is 

significantly influenced by it (Vermeer and De Borst 1984). It is, in some cases either 

neglected, i.e. referred to as incompressible flow rule (Yu 2000), or set equal to the friction 

angle for which an associated flow rule (Bland 1957) is considered. Neither of these two 
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assumptions are necessarily representative of the inelastic behavior of rocks (Price and Farmer 

1979; Vermeer and De Borst 1984). Due to practical difficulties in measuring such a parameter, 

especially at high levels of hydrostatic pressure, the approximation of a constant dilation angle 

is usually made (Saksala 2010). The dilation angle, however, is known to change as a function 

of the inelastic strain level (Detournay 1986; Zhao and Cai 2010; Arzúa and Alejano 2013; 

Tkalich et al. 2016). It should be mentioned that it is not straightforward to obtain the dilation 

angle experimentally at high levels of hydrostatic pressure. For instance, triaxial tests were 

used and experimental results for the dilation angle were obtained for hydrostatic pressures up 

to 200 MPa and assumptions were made for higher levels (Tkalich et al. 2016). For indentation 

applications, much higher pressure levels are expected (Saadati et al. 2014). 

2 Experiments 

In this section, the experimental part of the present analysis is described. These tests were 

conducted in order to investigate the inelastic behavior of the material and to validate the 

employed material model in a situation similar to what could be expected in indentation. 

2.1 Quasi-oedometric compression test 

The inelastic behavior of the material is investigated based on quasi-oedometric compression 

tests performed in an earlier work (Saadati et al. 2018) with the intention of determining the 

yield surface and dilation angle. During the quasi-oedometric test, a cylindrical specimen 

enclosed within a confinement cell was axially loaded in compression (see Figure 1). Both 

axial and radial stresses increase during loading as the material expands in the lateral direction. 

This gives an indication of the strength of the material at different levels of hydrostatic pressure. 

Stress-strain curves, deviatoric and volumetric responses of the rock material were recorded at 

different hydrostatic pressure levels. Granite cylinders 28.9 mm in diameter and 40 mm in 

length were loaded at a strain rate of 10-3 1/s and the maximum load  (1100 kN) of the machine 

reached during the test. The results from those tests are used hereafter to obtain the dilation 

angle for hydrostatic pressure levels up to 750 MPa.  

2.2 Quasi-static indentation 

Quasi-static indentation tests, schematically shown in Figure 2, were performed on Bohus 

granite in order to investigate its mechanical behavior with in particular the cracking behavior. 

Rock blocks 15 × 15 × 15 cm3 in size were indented by means of a tungsten carbide spherical 

indenter 12 mm in diameter (R = 6 mm). The size of the rock block ensures that boundary 
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effects on relevant indentation quantities are negligible. The tungsten carbide elastic modulus 

is almost ten times larger than that of granite (52 GPa) and for this reason the indenter will be 

considered as rigid in the numerical simulations. This rigidity assumption was also employed 

elsewhere (Shaoquan 1995). Quasi-static (Q-S) tests were carried out using a 100 kN servo-

controlled testing machine. A manufactured cylinder was utilized in order to press the indenter 

onto the rock surface, see Figure 3(b). Two linear variable displacement transducers (LVDTs) 

were secured in the manufactured holder by means of two screws (Figure 3(a)). The penetration 

depth was measured by means of LVDTs. The tests were conducted in displacement control 

mode at a constant velocity of 5 µm/s. The response from the load cell of the testing machine 

was recorded, which is used later on to validate the numerical model.  

Figure 4 shows the force-penetration (P-h) response of Bohus granite during four Q-S 

indentation tests that were carried out in the present work. The force versus penetration 

response is almost linear with an initial small non-linearity. This linearity, which is a result of 

the inelastic material behavior, suggests in the case of spherical indentation that strain 

hardening is small or negligible (Storåkers et al. 1997). Small load-drops in the force signal are 

observed before the load capacity of the material is reached. These small load-drops are mainly 

due to conical, Hertzian cracks initiated immediately outside the contact area to be discussed 

in more detail below. The P-h response shows a large load-drop for applied load levels ranging 

from 35 to 42 kN corresponding to indentation (penetration) depths of about 0.5 mm. Prior to 

these large load-drops, the response of the material is very reproducible, which indicates that 

the effect of the material heterogeneities is negligible at this scale of observation. 

In order to investigate the reason behind the detected load-drops in the experimental P-h 

response, a high speed camera was utilized to capture images of the rock specimen surface 

before and after the load-drops. Figure 5(a) shows the force versus axial displacement curve of 

Experiment 5. This displacement is that of the actuator of the testing machine. It should be 

noted that the displacement from the actuator should be corrected for the machine compliance 

to be consistent with the penetration depth from LVDTs in the other tests. LVDTs were not 

utilized during this experiment, since images of the rock surface close to the indentation zone 

were acquired. The images were captured for one of the small load-drops and the large load-

drop, which are shown with the first red circle and the second blue circle in Figure 5(a), 

respectively. These images are shown in Figure 5(b)-(e). Several experiments were performed 

and it was noticed that each load-drop corresponded to material removal on the block surface. 

These observations suggest that the large load-drop in the P-h response was mainly due to 
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chipping caused by lateral expansion of the inelastically deformed material under the 

indenter (Shaoquan 1995) and that the small load drops are due to ring (Hertzian) cracking 

immediately outside the contact boundary. The absence of substantial sub-surface cracking will 

be checked by Computed Tomography (CT) observations discussed below.   

2.3 Computed Tomography (CT) observations 

The tested specimens were scanned in a North Start Imaging X50+ tomograph. The acquisition 

parameters were 90KV-voltage, 220 µA-intensity, 1944 × 1536-pixel flat panel definition. The 

physical size of one voxel was 25.4 µm. One thousand and two hundred radiographs were 

acquired over 360° rotation of the tomographic stage. The total acquisition time was one hour 

and a half. A filtered back-projection algorithm enabled 3D volumes to be reconstructed. The 

CT images are presented in Figure 6, showing a large part of the indented material with the 

extent of the contact surface indicated.  

There are no visible sub-surface cracks in Figure 6. As mentioned above, it cannot be 

ruled out that some small sub-surface median cracks were formed during the initial loading 

stages partially causing some of the small load-drops. As seen in Figure 6, they were trapped 

in the material, with its specific grain formation, by the crushed zone and were not formed at 

higher load levels. Therefore the effect of such damage on the P-h response of Bohus granite 

during Q-S indentation tests up to the load capacity of the material is assumed to be negligible. 

An elastoplastic model can be employed and determined in the absence of any damage 

influencing the inelastic behavior.  

It should be emphasized that the term damage corresponds to tensile failure (i.e. mode I 

fracture) within the context of this work. Any other form of inelastic deformation discussed 

hereafter, due to shear or compaction, is considered as plasticity. 

Furthermore in Figure 6, surface cracking in the form of chipping is seen and, together 

with the observations from the high speed camera images, it can be stated that this surface 

cracking is the reason for the large load-drops. The chipping initiates approximately at the 

contact boundary due to high tensile surface stresses as discussed in more detail below where 

stress distributions from finite element simulations will be presented. In the images of Figure 

6 there are also indications of small side cracks just below the specimen surface outside the 

contact boundary. Most often, such side cracks were formed during unloading (Yu 2000) and 

are indeed predicted by the finite element simulations, see below. 
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2.4  Summary of the experimental results 

The results from quasi-oedometric compression tests performed in an earlier work (Saadati et 

al. 2018) will be used to investigate the inelastic behavior of the material and to obtain the yield 

surface and dilation angle for hydrostatic pressure levels up to 750 MPa. 

The experimental results from the indentation tests, utilizing high speed cameras and 

Computed Tomography, made it possible to draw the following conclusions: 

 Sub-surface cracking is negligible at levels up to the load capacity of the material. 

 The large drop at the load capacity is due to chipping close to the specimen surface 

caused by high tensile surface stresses at the contact boundary. 

 The repeated small load-drops during loading are due to ring (Hertzian) cracking 

immediately outside the contact boundary. These cracks have a negligible influence on 

the P-h response. 

From the experimental part of the present investigation, it is concluded that cracking has a 

limited influence on the macroscopic indentation behavior up to the first major load-drop.  

3 Inelastic constitutive modeling 

The fragmentation response of Bohus granite in percussive drilling has been investigated in the 

literature. A combination of parabolic pressure-dependent plasticity (KST) and anisotropic 

damage model (DFH) was adopted to explain its response (Saadati et al. 2014). It was 

concluded that the fragmentation response was mainly due to the tensile strength and therefore 

a relatively simple plasticity model for the compressive behavior was coupled to a 

comprehensive damage model (Denoual and Hild 2000; Forquin and Hild 2010) for the tensile 

part to explain the fragmentation process. In the present work, the Q-S force-penetration 

response of Bohus granite loaded by a spherical indenter up to the first main load-drop 

(defining the load capacity of the material) is of primary interest.  

As the compressive behavior under the indenter and accordingly the plasticity model plays 

a critical role in the P-h response, special attention is paid to implement such a model, which 

is calibrated with the quasi-oedometric compression test performed in an earlier work (Saadati 

et al. 2018). The yield surface and dilation angle are obtained from this test up to a hydrostatic 

pressure level of about 750 MPa. The yield surface has an almost linear shape up to this 

pressure level and therefore a simple linear Drucker-Prager (D-P) model seems sufficient for 
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the yield surface. However, unlike the KST model that neglects the inelastic volumetric change 

due to shear, the dilation angle obtained from the quasi-oedometric test is added to the plasticity 

model. On the other hand, the damage effect on the P-h response up to the first main load drop 

is assumed to be minor as neither ring cracks nor the possible trapped median cracks have 

significant effects on the stiffness of the material. Therefore, only the plasticity model is 

employed in the absence of any damage description and observation (see Section 2). This 

assumption, however, will be qualitatively and quantitatively validated in the remainder of the 

paper. The methodology in the present study is different from that of (Saadati et al. 2014) in 

which the fragmentation mechanism and accordingly the damage behavior were of primary 

interest, and the indentation was not necessarily limited up to the first main load drop. 

The inelastic constitutive modelling will be described as follows. In Section 3.1, the basis 

for the linear D-P-model will be presented. In Section 3.2, the corresponding material 

parameters for such a model are determined from previous experimental results (Saadati et al. 

2018). Then in Section 3.3, the constitutive model is first applied to simulate the quasi-

oedometric test and the stress and strain fields are compared with corresponding experimental 

data (Saadati et al. 2018). Then a validation of the model will be performed based on the quasi-

static indentation results. 

3.1 Elasto-plastic model 

Geological materials such as rocks exhibit pressure-dependent yield behavior in which they 

yield at higher load levels as the pressure increases (Saadati et al. 2014). Therefore, partly due 

to simplicity, but mainly based on present and previous experimental findings, a linear D-P 

model (Drucker and Prager 1952) is employed in order to numerically simulate the quasi-static 

indentation tests reported herein, see Figure 7. It should be mentioned that nonlinear yield 

surfaces or damage can be incorporated in the model but are deemed unnecessary (Saadati et 

al. 2018). The selected model includes inelastic dilation, which is the volume change when the 

material is subjected to shear strains, and inelastic shearing. The linear Drucker-Prager criterion 

is written as 

 𝐹 = 𝑞 − 𝑝 tan 𝛽 − 𝑑 = 0  (1) 

where F is yield function, 𝑑 the cohesion of the material, 𝛽 the friction angle, 𝑞 von Mises 

equivalent stress 
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 𝑞 = √
3

2
(𝑺: 𝑺) (2) 

𝐒 the stress deviator,  

 𝑺 = 𝝈 + 𝑝𝑰 (3) 

𝛔 the stress tensor, and 𝑝 the pressure  

 𝑝 = −
1

3
𝑡𝑟𝑎𝑐𝑒(𝝈) (4) 

As for inelastic yielding, the flow potential (𝐺) reads  

 𝐺 = 𝑞 − 𝑝 tanΨ (5) 

where 𝛹 is the dilation angle, which is shown schematically in Figure 7(a). If 𝛹 = 0, the 

material is incompressible (i.e., the inelastic strain tensor is deviatoric), and when 𝛹 > 0 the 

material dilates with the applied pressure. For materials such as rocks, the linear D-P model is 

normally employed with non-associated flow rule (Tkalich et al. 2016), which means that the 

inelastic flow is assumed to be at angle 𝛹 with respect to the 𝑞-axis in the 𝑞-𝑝 plane, and 𝛹 ≠

𝛽 (Figure 7). It should be noted that associated flow rule implies that 𝛹 = 𝛽. The inelastic 

strain increment is expressed as 

 𝑑𝜺𝑖 = 𝑑𝜆
𝜕𝐺

𝜕𝝈
 (6) 

where 𝑑𝜆 is the inelastic strain rate multiplier, and 𝛆i the inelastic strain tensor. As mentioned 

in Section 2.2, the linearity in the experimental P-h response suggests that strain hardening is 

negligible, and therefore an ideal inelastic (plastic) behavior is assumed in the numerical 

simulations below.  

3.2 Material parameters 

An experimentally determined set of parameters is presented in this section. The D-P model 

parameters for Bohus granite, which are summarized in Table 1, are the same as in the KST 

model determined in a previous experimental work (Saadati et al. 2018). The elastic modulus 

(𝐸) and Poisson’s ratio (𝜈) were determined from uniaxial tensile and compressive tests. The 

Poisson’s ratio value was initially 0.15 (Saadati et al. 2018) because of pre-existing structural 

cracks in some of the specimens, and later during loading became equal to 0.25 due to closure 
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of those cracks. In this study, the Poisson’s ratio is assumed equal to 0.25, which corresponds 

to an intact specimen.  

The dilation angle (𝛹), which corresponds to the volume change when the material is 

subjected to shear strains, is derived from Equation (6) and formulated as 

 Ψ = tan−1

(

 
 3

3
𝜀𝑎̇
𝑖

𝜀𝑣̇
𝑖 − 1

)

 
 
   (7) 

where 𝜀𝑎̇
𝑖  is the inelastic axial strain rate, and 𝜀𝑣̇

𝑖  the inelastic volumetric strain rate. As seen 

from this equation, the dilation angle is only a function of the ratio between the inelastic axial 

and volumetric strain rates. This ratio is also determined from the previously mentioned quasi-

oedometric compression test results (Saadati et al. 2018). The inelastic axial strain increment 

is plotted against the inelastic volumetric strain increment in Figure 8(a) for the considered 

quasi-oedometric test (Saadati et al. 2018). A piecewise linear approximation function is fitted 

to the test results. This piecewise function is composed of successive lines whose slopes are 

calculated and used to determine the dilation angles. In fact, the dilation angle is approximated 

as a function of the inelastic volumetric strain that is by itself related to the pressure. 

Consequently, the dilation angle can be set dependent on pressure in the constitutive model. 

Additionally the dilation angle is plotted against the pressure level in Figure 8(b). The 

experimentally determined dilation angle is initially equal to 61𝑜 and decreases to 0𝑜 at the 

end of the quasi-oedometric experiment corresponding to approximately 750 MPa pressure. 

Since the quasi-oedometric results show an almost linear yield surface at relatively high 

pressure levels, a simple linear D-P model with constant friction angle is used for numerical 

modeling purposes. It should be mentioned that the dilation angle should not exceed the friction 

angle, i.e. 𝛹 ≤ 𝛽, in order to be thermodynamically consistent (Saksala 2010). Consequently, 

any values of experimentally determined dilation angle that are greater than the friction angle 

in constitutive modeling are set equal to the friction angle in order to be thermodynamically 

consistent.   

3.3 Analysis of the quasi-oedometric test 

A finite element simulation (based on the hypotheses discussed in Sections 3.1 and 3.2) of the 

quasi-oedometric test is performed using Abaqus software (Abaqus 2014) and the results are 
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compared with corresponding experimental data (Saadati et al. 2018). The test setup and 

geometry of the rock sample is defined according to Section 2.1 (see Figure 1). The steel parts 

are assumed to be linearly elastic with Young’s modulus being 205 GPa, and Poisson’s ratio 

equal to 0.29. An axisymmetric model of the quasi-oedometric test using 30,000 4-noded 

elements is used and the axial loading is applied on the rock surface. The contact between the 

rock sample and the confining cell is assumed to be frictionless.  

The comparison between the present finite element results and experimental data (Saadati 

et al. 2018) is detailed in Figure 9. In Figure 9(a) the predicted yield surfaces are compared, 

and correspondingly for inelastic axial strain field in Figure 9(b). The agreement between the 

two sets of results is good, which gives confidence in the presently used model for the inelastic 

behavior of granite.  

As observed in the experimental results, the material behaves linearly up to a hydrostatic 

pressure of about 300 MPa when it is loaded in a quasi-oedometric test (Figure 9(a)). Therefore 

this test is suitable to give inelastic data for higher levels of hydrostatic pressure, which is the 

case in indentation.   

The total axial strain in the rock sample was measured during the experiments using 

LVDTs and the radial strain was calculated based on the strain gauge data glued on the outer 

surface of the confining cell (Saadati et al. 2018). The total strain in the rock is divided into 

elastic and inelastic parts, in which the elastic part is calculated using linear elasticity with 

Young’s modulus being 52 GPa, and Poisson’s ratio equal to 0.25.   

As seen in Figure 9(b), the initial difference between the experimental and simulation 

results for the inelastic axial strain is a consequence of the slight discrepancies in the yield 

surfaces and corresponds to the fact that inelastic deformations initiate slightly earlier in the 

test compared with the simulation. 

4 Numerical analysis and results of the indentation test 

In this section the finite element analysis of the indentation test is detailed and the 

corresponding results are discussed and compared with the experimental findings. A particular 

subsection is used to analyze and discuss the influence of the dilation angle 𝛹 on indentation 

quantities.   
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4.1 Finite element analysis 

The prediction of the force-penetration response of the indented rock specimen is of particular 

interest for validation purposes in this study. Various numerical tools are utilized in the 

literature (Liu et al. 2002; Wang et al. 2011) in order to predict the brittle material response for 

quasi-static loading and different constitutive models coupled with damage are presented 

(Saksala 2010; Tkalich et al. 2016). Hardening is considered in some of those studies. However 

in this investigation, as mentioned above, ideal inelasticity (plasticity) is coupled with a 

confining pressure dependent dilation angle and was found to be sufficient to capture the linear 

P-h response.  

Abaqus explicit and implicit softwares (Abaqus 2014) will be used for the numerical 

simulations reported hereafter. By means of symmetries, only one quarter of the problem is 

modeled in order to reduce the computation time and 8-node linear reduced integration brick 

elements are used for meshing purposes. The indenter is modeled as a 3D analytical rigid body 

since its Young’s modulus is almost ten times larger than that of rock (this hypothesis reduces 

the computational cost as well). The load is applied by subjecting the rigid indenter to a vertical 

displacement. The geometry, mesh and boundary conditions are illustrated in Figure 10. Figure 

10(c) shows that the mesh within the indentation zone is denser due to the fact that the 

stress/strain field gradients are high close to the contact region. An axisymmetric model was 

also analyzed and the results were identical to the 3D case, which is used for illustrative 

purposes. It should be mentioned that the 3D geometry is required for simulations utilizing the 

KST-DFH model to be discussed in more detail below, and therefore most of the simulations 

were performed using the 3D model. It is worth noting that if additional validations are sought, 

say via in situ tests, 3D simulations would also be required since symmetric boundary 

conditions are difficult, if not impossible, to be experimentally prescribed (Bouterf et al. 2014, 

2017).  

The friction effect is studied by assuming a friction coefficient of 0.5 between the 

indenter and the rock. It is found that the P-h response up to the first main load drop in the 

simulation with friction is essentially the same as the P-h response in the simulation without 

friction. Field variables such as stresses are quantitatively more influenced by frictional effects 

but this is of less importance as presently such quantities are only of qualitative concern when 

it comes to the comparisons reported below between experimental and numerical results related 

to the cracking behavior. 
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The Young’s modulus and Poisson’s ratio are defined in the elastic material behavior 

section in Abaqus and the angle of friction as well as dilation angle are provided in the D-P 

material behavior section in Abaqus (Abaqus 2014). The dilation angle dependence with the 

pressure is implemented by using the VUSDFLD user subroutine of Abaqus in order to redefine 

field variables at each material point. Through Abaqus’ input file in the material definition 

section, the dilation angles are provided at different equivalent pressure (𝑝) levels and linearly 

interpolated as discussed above. 

4.2 Numerical results and comparison with experiments 

The resulting force-penetration responses given by the numerical simulations as well as the 

response from Experiment 1 are plotted in Figure 11 for comparison purposes. The numerical 

results corresponding to a linear elastic model, the KST (Krieg 1978; Swenson and Taylor 

1983) model, the DFH model (Denoual and Hild 2000; Forquin and Hild 2010), and the D-P 

model with variable dilation angle are compared with experimental results. The numerical 

results capture Experiment 1 with high accuracy. As also evidenced in Figure 11(a), the slope 

of the predicted P-h response is almost the same as the experimental P-h curve. Therefore it is 

argued that the effect of damage is negligible (as confirmed by the reported tomographic 

observations of Section 2.3).  

For completeness, a series of simulations with a D-P model combined with a tension cut 

off at different hydrostatic stresses, ranging from 10 MPa up to 100 MPa, are also performed. 

The tension cut-off has an almost negligible effect on the P-h curve as it can be seen in Figure 

11(b). However, it should be mentioned that the tension cut off, as a yield criterion, changes 

the stress state in the pressure region. Since cracking is more of an anisotropic damaging 

response, with independent stress components, rather than an inelastic constitutive model with 

yield criterion, it turns out that the tension cut off is not an appropriate choice for the 

interpretation of the load drops due to cracking.  

The pressure (𝑝), the maximum principal and mid principal stress fields at a penetration 

depth of 0.5 mm, which is followed by the large load-drop in the P-h response of Experiment 1, 

are shown in Figure 12. Results of the present model (with variable dilation angle) and with 

zero dilation angle, are reported. The reason behind the formation of a crushed zone under the 

indenter, which is frequently discussed in the literature (Mishnaevsky Jr 1995; Kalyan et al. 

2015), can be understood by looking at Figure 12(b) in which the pressure level is high in the 

vicinity of the contact zone.  
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As discussed previously, median sub-surface cracks may possibly initiate during initial 

loading but are then trapped by the crushed zone due to high pressure levels, see Figure 12(b) 

and volume expansion due to dilation, which reduce the sub-surface tensile stresses along the 

symmetry line beneath the indenter. The small load-drops are the result of Hertzian cracking 

(due to radial stresses) at the continuously growing contact boundary. The crack formation at 

the first large load-drop is facilitated by the first and second principal stresses at the surface of 

the rock specimen. These two eigen stresses reach their maximum levels at the indentation 

(penetration) depth of 0.5 mm corresponding to the first main load drop in the P-h response. 

The response after this load drop is a combination of major cracking and fragmentation in 

addition to inelasticity. Therefore further efforts not related to modeling the macroscopic 

inelastic behavior are needed to simulate such response, which is out of scope of the current 

work. 

Furthermore, some simulations of the unloading stage were also carried through. It is 

found from these simulations that tensile normal stresses (along the z-axis shown in Figure 2) 

are created somewhat below the surface during unloading and due to inhomogeneous stress 

states in the presence of irreversible deformations (Figure 13(a)). These tensile stresses, shown 

in Figure 13(b), are most likely the reason behind the side crack, which is widely discussed in 

the literature (Shaoquan 1995) and also present in the reported tomographic observations in 

Section 2.3. 

4.3 Dilation angle influence 

As was discussed above, dilation is an important feature when it comes to constitutive modeling 

of granite. Dilation is the volume change when the material is subjected to shear strains and it 

was observed in cemented granular materials such as rocks (Vermeer and De Borst 1984). In 

order to investigate this feature in more details finite element analyses are performed with the 

intent of examining its influence on the force versus penetration response for spherical 

indentation. Two different dilation angles are considered assuming no dilation (i.e. 𝛹 = 0°) that 

enforces incompressible inelasticity, and another one with a high degree of dilation angle (i.e. 

𝛹 = 50°). As seen from Figure 14, the forces at penetration depth of 0.5 mm for the simulated 

problem are equal to 30 and 50 kN for 0° and 50° dilation angles, respectively. 

Based on the results of Figure 14 it can first be stated that the P-h response is sensitive 

to the choice of dilation angle, and secondly, that it would be possible to choose a constant 

value on the dilation angle and get a good agreement with the experimentally determined P-h 
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response. In the latter case, however, this would not have a solid physical background 

remembering that the values of 𝛹 determined from quasi-oedometric tests, see Figure 8, were 

far from constant and such assumption might lead to a low accuracy of predictions for other 

types of loading. 

Last, it should be mentioned that both KST and D-P models share almost the same yield 

surface at positive pressures (compression). However, for negative pressures (tension), the 

yield surface in the D-P model is still valid (up to the tensile strength for the D-P case together 

with tension cut off), but in the case of the KST model and in the absence of any damage, the 

yield surface is only defined for positive pressures and the material behaves elastically for 

negative pressures. This is the reason behind the small difference between the P-h response of 

KST and D-P (with 0° dilation angle) models. 

5 Concluding remarks 

The inelastic behavior of granite was investigated based on quasi-oedometric compression tests 

performed in an earlier work (Saadati et al. 2018) with the intention to determine the yield 

surface and dilation angle. The results from those tests were used herein to obtain the dilation 

angle for hydrostatic pressure levels up to 750 MPa. Constitutive modeling of the inelastic 

(plastic) response of Bohus granite was attempted using a linear Drucker-Prager model with 

variable dilation angle. A first validation of the constitutive specification was obtained by 

simulating the quasi-oedometric test using finite element simulations. The results were 

compared with corresponding experimental data and a good agreement was found. 

Furthermore, the model was also applied to spherical indentation tests and the P-h response 

was successfully predicted. 

The linear Drucker-Prager model was chosen since it still yielded good agreement 

between quasi-oedometric test results and the corresponding numerical simulations. The 

indentation test turned out to be an appropriate choice for the validation of the inelastic 

response as no major cracking apart from the crushed zone was captured up to the first major 

load-drop based on high speed imaging and tomographic observations.  

Post-mortem tomographic observations showed that damage did develop significantly in 

the compaction zone while no major crack was observed in other zones. However, this 

conclusion was drawn based on visual observations only. More thorough quantitative analyses 

may be considered in the future to assess the damage state via digital volume correlation (Hild 
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et al. 2015) and in situ tests. Such type of analyses may also allow the proposed model to be 

probed in a more comprehensive way as was performed for another brittle material (i.e. plaster 

(Bouterf et al. 2017)). 
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Table and table legends 

 

Table 1. Material parameters used in the numerical simulations with the linear Drucker-

Prager model. 

 

Material parameter  

𝐸 (GPa) 52 

𝜈 0.25 

𝜌 (kg m3⁄ ) 2630 

𝛽 (𝑜)  51.7 

𝑑 (MPa) 153.3 

𝛹 (o) Figure 8(b) 
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Figure legends 

Figure 1. Experimental quasi-oedometric compression test setup. 

Figure 2. Schematic illustration of the spherical indentation test. P is the contact force, h the 

penetration depth, a the contact radius, and R the spherical indenter radius.   

Figure 3. Experimental setup for the spherical indentation test (a) with LVDTs and (b) without 

LVDTs. The LVDTs are secured in the manufactured holder by means of two screws. The 

manufactured cylinder is utilized to press the indenter onto the rock surface. 

Figure 4. Experimentally determined force-penetration (P-h) response of Bohus granite for the 

spherical indentation tests. 

Figure 5. (a) Force-displacement curve corresponding to indentation experiment 5 (in this case 

axial displacements are reported instead of penetration, which is the actuator displacement of 

the testing machine). The rock surface images are provided for one of the small load-drops 

specified by the red circle as well as the only large load-drop depicted with the blue circle. The 

rock surface images are taken by the high speed camera (b) before the small load-drop, (c) after 

the small load-drop, (d) prior to the large load-drop and (e) after the large load-drop. The 

damaged zones are depicted by dashed boxes. 

Figure 6. CT images from the tested specimen of indentation experiment 5. (a) 2D section and 

(b) 3D view of the indented region. The zone with white color represents removed material 

and cracks. 

Figure 7. (a) Schematic yield surface of the linear Drucker-Prager (D-P) model employed in 

this study. The pressure (𝑝), which is equal to the negative hydrostatic stress, appears on the 

horizontal axis and von Mises equivalent stress (𝑞) on the vertical axis. 𝛽 is the friction angle, 

and 𝛹 the dilation angle. (b) Yield surface for the present (D-P) model and the KST model 

together with the quasi-oedometric test results (Saadati et al. 2018). 

Figure 8. (a) Piecewise linear curve fitted with quasi-oedometric test data in order to determine 

the dilation angle (Ψ). (b) Dilation angle (Ψ) as a function of applied pressure (p). 

Figure 9. (a) von Mises equivalent stress-pressure (q-p) curve from the finite element (FE) 

simulation of the quasi-oedometric test. (b) Inelastic axial strain field versus the applied 
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pressure curves from FE simulations of the quasi-oedometric test for different dilation angles. 

The experimental results are shown for comparison purposes. 

Figure 10. Description of the finite element discretization with (a) the geometry including the 

rock specimen and the rigid indenter, (b) a 3D view and (c) the top view of the finite element 

mesh detailing the mesh design in the region (enclosed in dashed box) surrounding the contact 

zone. A quarter of the rock sample is modeled and the indenter is described by a 3D analytical 

rigid body. 

Figure 11. Force-penetration (P-h) curves from FE simulations of the spherical indentation test 

(a) using different material models, and (b) additional results for a series of D-P models with 

tension cut-offs at hydrostatic stresses equal to 10, 20, 30, 40, 50, and 100 MPa.   

Figure 12. Stress fields determined from the finite element simulations of the spherical 

indentation test corresponding to a penetration depth of 0.5 mm. (a) Pressure (p) field given by 

the present model, and (b) by the model with zero dilation angle. (c) Maximum principal stress 

filed given by the present model, and (d) by the model with zero dilation angle. (e) Mid 

principal stress field given by the present model and (f) by the model with zero dilation angle. 

The stresses are expressed in Pa. Note that a negative pressure corresponds to a positive 

hydrostatic stress. 

Figure 13. (a) Equivalent plastic strain at the end of loading. (b) Tensile normal stress field 

(along the z-axis shown in Figure 2) determined from the finite element simulation of the 

spherical indentation test at the end of unloading. The stresses are expressed in Pa. 

Figure 14. Force-penetration (P-h) curves from finite element simulations of the spherical 

indentation test with different dilation angles.  
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