
HAL Id: hal-01924403
https://hal.science/hal-01924403

Submitted on 15 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The First-Order Logic of Signals
Alexey Bakhirkin, Thomas Ferrère, Thomas Henzinger, Dejan Nickovic

To cite this version:
Alexey Bakhirkin, Thomas Ferrère, Thomas Henzinger, Dejan Nickovic. The First-Order Logic of
Signals. International Conference on Embedded Software (EMSOFT), Sep 2018, Torino, Italy. �hal-
01924403�

https://hal.science/hal-01924403
https://hal.archives-ouvertes.fr

The First-Order Logic of Signals
Alexey Bakhirkin∗, Thomas Ferrère†, Thomas A. Henzinger†, and Dejan Ničković‡
∗Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France

†IST Austria
‡AIT Austrian Institute of Technology

Abstract—Formalizing properties of systems with continuous
dynamics is a challenging task. In this paper, we propose a
formal framework for specifying and monitoring rich temporal
properties of real-valued signals. We introduce signal first-order
logic (SFO) as a specification language that combines first-order
logic with linear-real arithmetic and unary function symbols
interpreted as piecewise-linear signals. We first show that while
the satisfiability problem for SFO is undecidable, its membership
and monitoring problems are decidable. We develop an offline
monitoring procedure for SFO that has polynomial complexity in
the size of the input trace and the specification, for a fixed number
of quantifiers and function symbols. We show that the algorithm
has computation time linear in the size of the input trace
for the important fragment of bounded-response specifications
interpreted over input traces with finite variability. We can
use our results to extend signal temporal logic with first-order
quantifiers over time and value parameters, while preserving its
efficient monitoring. We finally demonstrate the practical appeal
of our logic through a case study in the micro-electronics domain.

I. INTRODUCTION

Cyber-physical systems (CPS) are networks of computa-
tional and physical elements that interact with their environ-
ment via sensors and actuators. CPS applications are today
everywhere around us, deeply impacting our society. Medical
devices that enable adaptive therapy based on the continuous
measurement of patients’ parameters, smart buildings that
optimize heating strategy to the users’ habits, and industrial
plants that collaborate to minimize production costs are just
a few examples of CPS applications. The inherent complexity
of CPS and the intricate interactions with their physical
environment makes their verification a challenging task.

Property-based monitoring is a light-weight verification
technique that combines formal specifications with the analysis
of individual system behaviors. It is a pragmatic, yet rigorous
approach to reason about complex systems. Central to the
property-based monitoring approach is the specification lan-
guage that allows to precisely describe the intended system
behaviors. Signal temporal logic (STL) [1] is a specifica-
tion formalism for expressing real-time temporal properties
of real-valued signals. It extends linear-time temporal logic
(LTL) [2] with linear inequalities over signal values and with
real-time bounds associated to temporal operators [3]. The

This research was supported in part by the Austrian Science Fund
(FWF) under grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgen-
stein Award), by the EU ICT COST Action IC1402 (ARVI), and by the
European Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013) / ERC Grant Agreement nr. 306595 “STATOR”.

monitoring of STL enjoys an efficient procedure [1], with
time complexity linear in the size of the signals. Several
research directions around STL have been explored in the
recent years: the extension of the language with quantitative
semantics and robust monitoring [4]–[6], parameter estimation
[7]–[9], specification mining [10]–[12] and diagnosis [13].
STL specifications were used to analyze complex systems in
the automotive, biomedical, robotics, analog system design
and education application domains (see the survey [14] for
more details).

The success of STL in recent years is mainly due to
the simple monitoring procedures and the ability to capture
many asynchronous sequential behaviors of real-valued signals
observed in control applications. The bounded stabilization
requirement is a typical example of a temporal specification
than can be naturally expressed in STL. Given a Boolean
signal b and a real-valued signal f , the bounded stabilization
requirement is formulated as follows: “Whenever the control
signal b is on its rising edge, the absolute value of f must
go inside the interval [4.5, 5.5] within 10 time units and
continuously remain within that same interval for at least 8
time units”. This informal requirement, illustrated in Figure 1,
is expressed as the following STL specification.

0(↑ b→1[0,10]0[0,8](|f − 5| ≤ 0.5)

t

5 + 0.5

5− 0.5

t + 10 t′ + 8t′

b

f

Fig. 1. Bounded stabilization with fixed threshold r = 5.

Nevertheless, the expressiveness of STL has some limita-
tions. For instance, the bounded stabilization property requires
apriori knowledge of thresholds and timing bounds. In real-
life applications, these bounds may not be known in advance
and may even change dynamically during system execution. A
more general formulation of the bounded stabilization property
requires the signal f to stabilize around some value of r, which
can vary during the execution of the system as shown in Fig-
ure 2. This more general specification cannot be expressed in
STL. Intuitively, the general bounded stabilization requirement

could be formulated in STL extended with quantification over
the threshold value as follows.

0(↑ b→ ∃r :1[0,10]0[0,8](|f − r| ≤ 0.5)

7 + 0.5

7− 0.5

5 + 0.5

5− 0.5

t + 10 t′ + 8t′t

b

f

Fig. 2. Bounded stabilization without fixed threshold r.

When introducing variable time parameters, temporal logic
operators become unnecessary because the quantification over
time implicit in temporal operators is then made explicit in
syntax. In particular, by using first-order quantification, the
modality 1[s,s], where s is a free variable, can express all
other forms of temporal operators.

Motivated by the lack of a clean specification language that
is sufficiently expressive to capture rich temporal properties,
we propose signal first-order logic (SFO) as a powerful declar-
ative formalism for expressing real-valued signal requirements.
SFO combines first-order logic with linear real arithmetic and
uninterpreted unary function symbols, which represent real-
valued signals over time. The syntax of SFO allows quantifi-
cation over time and value variables. This constitutes a general
semantic framework with a syntax that can be used to directly
specify rich temporal requirements and that provides a clean
theoretical basis from which other specification formalisms
can be derived. Quantified signal temporal logic (QSTL) is
one such formalism, which, as we will demonstrate, is equally
expressive as SFO.

SFO is an expressive formalism with undecidable satisfi-
ability. In contrast, we show that the membership problem
for SFO relative to piecewise-linear signals is decidable in
time that is doubly exponential in the number of quantifiers
and function symbols appearing in the specification, which is
typically small in practice. A problem related to membership is
known as monitoring. The monitoring problem takes as input
a signal trace w and a formula ϕ with one free (time) variable
and asks for the Boolean signal u such that u(t) = 1 iff ϕ is
satisfied by w at time t. We propose an efficient monitoring
algorithm based on a polyhedral representation of the set of
free variables interpretations that satisfy a formula for a given
input signal. We then define a class of bounded-response
SFO specifications, over which we show that our algorithm
performs in time linear in the length of the input signal.
Informally, a bounded-response property ϕ can be associated
with a horizon h such that the satisfaction of ϕ[t] by a trace
w does not depend on values of w at any t′ with |t′− t| > h.
Finally, we illustrate the expressiveness of SFO specifications
on a case study from the micro-electronics application domain.

II. EXAMPLES

In this section, we introduce SFO with several examples.
We first formulate the bounded stabilization property from
Section I by using the SFO syntax, and then introduce control
and rise time specifications. Function symbols f, g range over
real-valued signals and b ranges over Boolean signals. Value
variable r and time variables c, c′, d, d′, e, e′ and t range over
the reals.

Example 1 (Bounded stabilization). Before formulating the
main stabilization formula, we define what is a rising edge ↑ b
of a Boolean signal b at time t.

↑ b[t] ≡ b(t) = 1 ∧ ∃c ∈ (0,∞) : ∀c′ ∈ (0, c) : b(t− c′) = 0

We now express the bounded stabilization property in SFO as
follows.

ϕ1 ≡ ↑ b[t]→ ∃r : ∃c ∈ [0, 10] : ∀d ∈ [0, 8] :

|f(t+ c+ d)− r| ≤ 0.5

Example 2 (Control). Consider the following property.

ϕ2 ≡ ∀r : (∀c ∈ [0, 10] : |f(t+ c)− r| ≤ 1)

→ (∀d ∈ [5, 10] : |g(t+ d)− r| ≤ 2)

Formula ϕ2 requires that if f is stable (stays within 1.0 of
some value r for 10 time units), then g stabilizes around the
same value (stays within 2.0 of r within 5 time units).

Example 3 (Rise time). Consider the following property.

ϕ3 ≡ ∀c ∈ (0, 10) :

(
f(t) = 1 ∧ f(t+ c) = 2
∧ ∀c′ ∈ (0, c) : 1 < f(t+ c′) < 2

)
→∃d ∈ (0, 10) : 9c ≤ 10d ≤ 11c ∧ ∃e ∈ (0, 20) : ∀e′ ∈ (0, e) : g(t+ e′) < 1

∧ g(t+ e′) = 1 ∧ g(t+ e+ d) = 2
∧ ∀d′ ∈ (0, d) : 1 < g(t+ e+ d′) < 2


Formula ϕ3 expresses the fact that if signal f has a positive
edge (from 1.0 to 2.0 in less than 10 time units) then signal g
subsequently (in less than 20 time units) has a positive edge
whose rise time is within 10% of that of f .

III. SIGNAL FIRST-ORDER LOGIC

In this section we define signal first-order logic (SFO),
and study the decidability of its satisfiability and membership
problems.

A. Definitions

A time domain T is a non-singular interval of R, and a (real-
valued) signal is a function T→ R. Let F = {f1, f2, . . .} be
a set of function symbols. We call Boolean a signal with value
in {0, 1}. A trace w is an interpretation of functions symbols
f ∈ F as signals, denoted JfKw. Let X = {x1, x2, . . .} be a
set of variables. A valuation v is an interpretation of variables
x ∈ X as real numbers, denoted JxKv .

Signal first-order logic is obtained from variables in X and
the signature 〈f1, f2, . . . ,Z,−,+, <〉 where f1, f2, . . . ∈ F

are uninterpreted unary function symbols, Z are integer con-
stants, and −,+, < are the usual arithmetic binary functions
and order relation. For practical purposes, we partition the set
of variables X into T∪R where t ∈ T are called time variables
and r ∈ R are called value variables.

Definition 4 (SFO syntax). Terms τ and ρ of SFO are given
by the grammar

τ ::= t | n | τ1 − τ2 | τ1 + τ2

ρ ::= r | f(τ) | n | ρ1 − ρ2 | ρ1 + ρ2

where n ∈ Z, r ∈ R, and t ∈ T . A term θ is either a time
term τ or a value term ρ as above.

Formulas ϕ of SFO are given by the grammar

ϕ ::= θ1 < θ2 | ¬ϕ | ϕ1 ∨ ϕ2 | ∃r : ϕ | ∃t ∈ I : ϕ

where n ∈ Z, θ1, θ2 are terms, and I are real intervals with
bounds in Z ∪ {±∞}.

We use standard abbreviations such as ϕ1→ϕ2 ≡ ¬ϕ1∨ϕ2,
ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2), and ∀r : ϕ ≡ ¬∃r : ¬ϕ. We also
write ∀t ∈ I : ϕ as a shorthand for ¬∃t ∈ I : ¬ϕ.

Definition 5 (SFO semantics). The value of a term θ over a
trace w and valuation v, denoted JθKw,v , extends the interpre-
tation of function symbols and variables given by w inductively
as follows: JnKw,v = n for all n ∈ Z, Jθ1 − θ2Kw,v =
Jθ1Kw,v − Jθ2Kw,v and Jθ1 + θ2Kw,v = Jθ1Kw,v + Jθ2Kw,v .
The satisfaction of a formula ϕ over a trace w and valuation
v, denoted (w, v) |= ϕ, is inductively defined by letting
(w, v) |= θ1 < θ2 iff Jθ1Kw,v < Jθ2Kw,v , (w, v) |= ∃r : ϕ
iff (w, v[r ← a]) |= ϕ for some a ∈ R, similarly for quan-
tification over time variables, and as expected for Boolean
connectives.

We can also consider variants of SFO extented to:

• non-linear arithmetic, with formulas over the signature
〈f1, f2, . . . ,Z,−,+,×, <〉;

or restricted to:

• difference logic, with formulas over 〈f1, f2, . . . ,+Z, <〉;
• linear order, with formulas over 〈f1, f2, . . . , <〉.

Here by +Z we denote the set of functions t 7→ t+ n for all
n ∈ Z.

The proposed syntax of SFO may appear overly restric-
tive as compared to arbitrary formulas over the signature
〈f, g, . . . ,Z,−,+, <〉 for f, g, . . . ∈ F . Two natural restric-
tions are enforced; we show that neither are essential.

1) The nesting of uninterpreted function symbols is disal-
lowed. We did not encounter examples of properties of
real-valued signals requiring such a nesting. Remark that
nesting of function symbols can be eliminated by change
of variable: any atomic formula of the form γ[f(τ)]
can be rewritten as ∃r : r = f(τ) ∧ γ[r] and applying
this rewrite repeatedly will yield terms without nested
function symbols.

2) Quantification over time variables is according to the
form ∃t ∈ I : ϕ. This is a natural way of express-
ing many temporal properties. Enforcing this particular
form is obviously not a restriction since taking I =
(−∞,+∞) is allowed.

We sometimes use variable bounds in quantification over
time, as in formula ∀c′ ∈ (0, c) : ϕ. Such bounds can also
be eliminated and replaced by integers when the correspond-
ing free variables are themselves bounded. In our example,
assuming c is bounded by (0, 1), the formula can be rewritten
as ∀c′ ∈ (0, 1) : 0 < c′ < c ∧ ϕ. The general motivation for
restricting the quantification over time to a fixed or variable
interval is to obtain an efficient monitoring algorithm. The
bounds on time variables can be used to limit the scope of the
resulting operations over signals to a neighborhood of each
linear segment, as we shown in Section IV-C.

Notice that time and value variables are not fully separated
since they can be compared in formulas θ1 < θ2 where θ1 and
θ2 feature both types of variables. If this was undesirable one
could enforce that θ1 and θ2 are of the same type. Comparing
times with signal values is necessary in order to constrain
derivatives of signals.

B. Satisfiability

We show that the satisfiability of SFO is undecidable.

Theorem 6. The satisfiability of SFO is undecidable in
general, and remains undecidable

1) over piecewise-linear or piecewise-constant signals;
2) over a fixed, bounded or unbounded time domain;
3) restricted to linear order;
4) restricted to difference logic over Boolean signals.

Proof. In general, we can proceed by reduction to the halting
of two-counter machines, a well-known undecidable prob-
lem [15]. The run of a two-counter machine can be encoded
using functions f1, f2 whose value at integer times is directly
that of counters, and a function f3 holding the instruction num-
ber. Then every instruction of a given two-counter machine can
be encoded as an SFO formula. For instance, an instruction
i incrementing counter 1 is written ∀t ∈ [0,+∞) : f3(t) =
i→ f1(t + 1) = f1(t) + 1 ∧ f3(t + 1) = i + 1. The state of
the machine can be maintained at integer times, definable via
some signal f0 satisfying f0(0) = 0∧∀t ∈ [0,+∞) : f0(t) =
0 → f0(t + 1) = 0 ∧ ∀c ∈ (0, 1) : f0(t + c) 6= 0. This does
not pose any difficulty. We now show that the undecidability
still holds under the various restrictions.

1) We can use the same reduction as in the general case.
Since nothing is required of f1, f2, and f3 between
integer times the formula is satisfiable over restricted
models iff it is satisfiable over unrestricted models.

2) We can modify the previous reduction by maintaining
the state of the two-counter machine not at integer times
but at times of the form c + id for i ∈ N, given an
initial time c ∈ (−∞,+∞) and a period d ∈ (0, 1). For
instance, incrementing the counter 1 in instruction i is

now written ∀t ∈ [c,+∞) : f3(t) = i→ f1(t + d) =
f1(t) + 1 ∧ f3(t + d) = i + 1. The main formula is
prefixed by existential quantification over c and d.

3) We introduce function symbols g, h that we use to mark
the beginning of time slots where the state of the counter
machine is encoded. We require ∃t ∈ (−∞,+∞) :
g(t) = h(t) ∧ ∀t ∈ (−∞,+∞) : g(t) = h(t)→ ∃t′ ∈
(t,+∞) : g(t′) = h(t′) ∧ ∀t′′ ∈ (t, t′) : g(t′′) 6= h(t′′).
This ensures the existence of a monotone, infinitely
countable sequence of times t0, t1, . . . where g and h
are equal at ti and differ in between ti and ti+1 for
all i. We then encode machine configurations between
ti and ti+1 as follows. Signals f1, f2 do not hold the
value of counters or instruction numbers, but assume a
sequence of unique values. As an example, to increment
a counter, we require the existence of a unique value that
is in the next time slot but not in the previous one, and
symmetrically for decrementing.

4) We proceed by reduction to the satisfiability of met-
ric temporal logic [3], which is undecidable in dense
time [16]. Propositions p of metric temporal logic
translate as atomic formulas fp(t) = 1 for some time
variable t. The temporal operator until, denoted ϕUI ψ
with timing interval I , can be defined as ∃c ∈ I :
ϕ[t + c] ∧ ∀c′ ∈ (0, c) : ψ[t + c′] where ϕ and ψ are
formulas with one free time variable.

C. Membership

We show that by contrast to the satisfiability problem, the
simpler membership problem for SFO is decidable.

Theorem 7. The membership problem of SFO relative to
piecewise-linear traces is decidable.

Proof. Let w be a piecewise-linear trace and ϕ a closed
formula. We reduce the membership of w in the language of
ϕ to the satisfiability of first-order linear arithmetic. Formulas
Wi translating signals JfiKw can be constructed with size
|Wi| = O(|w|). They guarantee Wi[a, b] iff JfiKw(a) = b
for all a ∈ T, b ∈ R. Then we replace every term ρ[fi(τ)]
by ∃x : ρ[x] ∧Wi[τ, x] recursively until all function symbols
are eliminated. We obtain a formula of linear real arithmetic,
i.e. without function symbols. The satisfiability of linear real
arithmetic formulas is decidable by quantifier elimination.

Fischer and Rabin showed that the complexity of satisfia-
bility of linear real arithmetic is at least exponential time for
nondeterministic computations [17]. The input to the member-
ship problem is given as a formula and a trace, and while the
complexity relative to the formula size is subject to this lower
bound, the complexity relative to the size of the trace is not.
In particular, we show that the reduction of Theorem 7 yields
an algorithm that for a fixed formula decides the membership
problem relative to piecewise-linear traces in polynomial time.
The quantifier elimination problem in linear real arithmetic
produced by this reduction can be solved by the method of
Ferrante and Rackoff [18], or its improvement by Loos and

Weispfenning [19], both proceeding by virtual substitution.
Such a method eliminates each existential quantifier ∃x in
some subformula ∃x : F [x] in two steps that we briefly recall.

In the first step, terms featuring variable x are put in the
form x < θ or θ < x where θ is a term not featuring x. Note
that this may create rational coefficients, we temporarily allow
them. Such terms θ form a set Θ.

In the second step, the subformula ∃x : F [x] is replaced by a
finite disjunction

∨
γ∈Γ F [x�γ] over a set of terms Γ. Ferrante

and Rackoff take Γ = { θ1+θ2
2 | θ1, θ2 ∈ Θ} ∪ {±∞}, while

Loos and Weispfenning take Γ = {θ, θ± ε | θ ∈ Θ} for some
infinitesimal ε. The substitution is virtual because such terms
are not proper, but one can define atomic formulas equivalent
to their substitution, for example y

3 < z + ε is equivalent to
y < 3z. The process is repeated for each quantifier.

By applying the method of [18] or [19], eliminating k
quantifiers from a linear real arithmetic formula of size m

can be done in time m2O(k)

. We thus obtain the following:

Theorem 8. The membership problem of an SFO formula ϕ
relative to a piecewise-linear trace w is computable in time
(m+n)2O(k+l)

where k is the number of quantifiers in ϕ, l is
the number of occurrences of function symbols in ϕ, m is the
length of ϕ, and n is the length of w.

Proof. We translate the SFO formula ϕ into a quantified
formula F of linear real arithmetic, using the procedure of
Theorem 7. Formula F has size O(m + nl) and k + l
quantifiers. Eliminating all quantifiers from F can be done in
time (m+n)2O(k+l)

, and deciding the validity of the resulting
ground formula can be done in linear time.

The cylindric algebraic decomposition method of Collins
[20], although much more involved, has time complexity with
the same bounds so that Theorem 8 also extends to SFO with
non-linear arithmetic and piecewise-polynomial signals. In the
case of difference logic, the quantifier elimination problem
can be decided in exponential time by a similar method
[21], so that the membership problem of SFO restricted to
difference logic over piecewise-constant signals is decidable
in exponential time.

We first remark that the (doubly) exponential complexity
comes solely from the number of function symbols and
quantifiers, which is expected to be small in practice. The
complexity relative to trace size still appears prohibitive of
practical applications that involve long traces. We will show
in Section IV that for a fairly large class of formulas, the
complexity relative to the trace size can be reduced to linear
time.

D. Signal Second-Order Logic

Let us call signal second-order logic (SSO) the extension of
SFO with quantifiers over uninterpreted function symbols. We
briefly survey the theoretical properties of this extension. Since
SSO contains SFO, its satisfiability problem is evidently not
decidable. We show that indeed even its membership problem
is not decidable.

Theorem 9. The membership problem of SSO relative to
piecewise-linear traces is undecidable.

Proof. For any closed SFO formula ϕ whose uninter-
preted function symbols are f1, . . . , fn, the membership in
∃f1∃f2 . . . ∃fn : ϕ is equivalent to the satisfiability of ϕ. By
Theorem 6, the satisfiability of an arbitrary SFO formula ϕ is
undecidable.

IV. MONITORING

In this section, we study the monitoring problem for SFO,
defined as follows. We call temporal a formula ϕ with exactly
one free variable t, of type time, and such that t appears with
coefficient 0 or 1 in every term τ argument of a function
symbol.

Definition 10. The satisfaction signal of formula ϕ relative to
trace w is the Boolean signal denoted wϕ such that wϕ(t) = 1
iff (w, t) |= ϕ for all t ∈ T.

We restrict our attention to piecewise-linear traces over a
bounded time domain. The satisfaction signal of some formula
ϕ relative to such a trace w is a piecewise-constant Boolean
signal, and can be represented as a finite union of intervals
over which the formula is true.

Definition 11. The monitoring problem is the task of com-
puting, given a temporal formula ϕ and a signal w, the
satisfaction signal of ϕ relative to w.

The monitoring problem provides a slight generalization
of the membership problem. It is particularly relevant when
seen as an online computation problem, where the satisfaction
signal should be produced along with the trace. It is also
relevant as an offline computation problem, when used for
testing. The time at which the formula is true and false
provides valuable information for the debugging of simulation
traces. Such information is explicitly computed for monitoring,
but not strictly required for membership.

A. Polyhedral Representation

The interpretation of every term and every formula can be
represented as a set of convex polyhedra. Our monitoring
procedure of piecewise-linear signals for SFO over linear
real arithmetic is based on this principle. Below, we give
a high-level polyhedral characterization of operations over
SFO terms and formula and later we give the corresponding
concrete algorithms. We denote convex polyhedra as a set
of linear equalities and inequalities, and use operations t,
u, complement , and eliminate denoting the union, inter-
section, complement, and projection of polyhedra or sets of
polyhedra. Their implementation is presented in full details in
Section IV-B.

Functions We assume that the interpretation of every function
f is given as a set of (convex) polyhedra Pf with two free
variables: tf denoting time and vf denoting the value of f at
the given time point.

Terms In general, the interpretation of a term can be seen as
a function from the values of its free variables to a real value.
Thus a term θ (as in Definition 4) can be represented as a set
of convex polyhedra Pθ, with variables corresponding to free
variables of the term and one extra variable vθ that corresponds
to the value of the term. Polyhedron Pθ and variable vθ can
be defined by induction over the term structure as follows.
• For θ ≡ τ , Pθ = {v′ = τ}, vθ = v′, where τ is a time

term as in Definition 4, i.e., a linear constraint over time
variables, and v′ is a fresh variable.

• For θ ≡ r, Pθ = {v′ = r}, vθ = v′, where r is a value
variable, and v′ is a fresh variable.

• For θ ≡ n, Pθ = {v′ = n}, vθ = v′, where n ∈ Z and
v′ is a fresh variable.

• For θ ≡ f(τ), Pθ = Pf [tf 7→ τ, vf 7→ v′], vθ = v′,
where τ is a linear expression as in Definition 4, v′ is
a fresh variable, and u denotes intersection of sets of
polyhedra.

• For θ ≡ θ1 ± θ2, Pθ = eliminate(vθ1 , vθ2 , {v′ =
vθ1 ± vθ2}uPθ1 uPθ2), where v′ is a fresh variable, and
eliminate denotes the elimination of the given variables
from the set of polyhedra.

Formulas Similarly, the interpretation of a formula ϕ can
be seen as a function from the values of its free variables
to a Boolean value and thus can represented as a set of
polyhedra Pϕ, with variables corresponding to free variables of
the formula. Pϕ can be defined by induction over the formula
structure as follows.
• For ϕ ≡ θ1 < θ2, Pϕ = eliminate(vθ1 , vθ2 , {vθ1 <
vθ2} u Pθ1 u Pθ2), where eliminate(V,P) denotes the
elimination of variables V in the polyhedral set P .

• For ϕ ≡ ¬ϕ′, Pϕ = complement(Pϕ′), where
complement takes the complement of a polyhedral set.

• For ϕ ≡ ϕ1 ∨ ϕ2, Pϕ = Pϕ1
t Pϕ2

, where t stands for
the union of two sets of polyhedra.

• For ϕ ≡ ∃r : ϕ′, Pϕ = eliminate(r,Pϕ′).
• For ϕ ≡ ∃t ∈ I : ϕ′, Pϕ = eliminate(t, {t ∈ I} u Pϕ′).

B. Monitoring Algorithm

In this section we present a monitoring algorithm for SFO.
The key idea behind this algorithm is that for a temporal
formula ϕ, its free time variable t is often the most significant
dimension in the following sense: for a fixed value of t the
interpretation of ϕ as a non-convex polyhedron has few convex
parts. We internally represent every convex polyhedron P in
the form {t ∈ I} uQ, where I is an interval with bounds in
Z ∪ {±∞}. We use interval I to order polyhedra along the
time axis according to sup(I), which enables to rule out many
empty intersections of polyhedra.

Representing the interpretations An interpreted function f
that corresponds to an input signal is assumed to be piecewise-
linear, have bounded domain and finite variability and thus
can be represented as a list of polyhedra that are disjoint and
ordered by time tf ; each polyhedron represents the value of
the function on a separate bounded interval of time.

For every term and every formula, we represent its inter-
pretation as a list ordered by the upper bound on variable
t, the free variable of the top-level formula. We make sure
that every operation on lists of polyhedra (union, intersection,
complement) preserves this ordering. Operations on polyhedra
used as subroutines in our algorithm all admit efficient imple-
mentations based the double description method, see [22].

Terms Algorithm 1 implements the function term that builds
a list of polyhedra representing the term θ (as in Definition 4).
The function returns a pair of values: list of polyhedra and the
variable denoting the value. The extra argument Pdom is a set
of constraints on bound time variables that was collected when
traversing the formula.

Algorithm 1 Creating a list of polyhedra for a term.

function term(θ, Pdom)
if θ ≡ τ then
v′ ← fresh variable
return {v′ = τ}, v′

else if θ ≡ r then
v′ ← fresh variable
return {v′ = r}, v′

else if θ ≡ n then
v′ ← fresh variable
return {v′ = n} u Pdom, v

′

else if θ ≡ f(τ) then
v′ ← fresh variable
return Pf [tf 7→ τ, vf 7→ v′] u Pdom, v

′

else if θ ≡ θ1 ± θ2 then
P1, v1 ← term(θ1, Pdom)
P2, v2 ← term(θ2, Pdom)
v′ ← fresh variable
return

eliminate(v1, v2, {v′ = v1 ± v2} u P1 u P2), v′

end
end

We note that when constructing the list of polyhedra for
f(τ), the term τ is a linear expression over time variables, and
thus substitution of tf with τ is a valid polyhedral operation.
Since t can only appear positively in τ , the resulting list will
naturally be sorted by the upper bound on variable t.

Formulas Fig. 2 shows the function formula that builds a list
of polyhedra representing the formula ϕ. Again, θ ranges over
the terms as in Definition 4. The extra argument Pdom is again
a set of constraints on bound variables that was collected when
traversing the formula. For the top-level formula, we pass {>}
as the Pdom argument.

Variable elimination The operation eliminate traverses the
given list of polyhedra and eliminates from every polyhedron
the given set of variables, which is a standard polyhedral
operation. The projection operation leaves the time-ordering
of polyhedra unaffected.

Algorithm 2 Creating a list of polyhedra for a formula.

function formula(ϕ, Pdom)
if ϕ ≡ θ1 < θ2 then
P, v ← term(θ1 − θ2, Pdom)
return eliminate(v,P u {v < 0})

else if ϕ ≡ ¬ϕ′ then
P ← formula(ϕ′, Pdom)
return Pdom u complement(P)

else if ϕ ≡ ϕ1 ∨ ϕ2 then
P1 ← formula(ϕ1, Pdom)
P2 ← formula(ϕ2, Pdom)
return P1 t P2

else if ϕ ≡ ∃r : ϕ′ then
P ← formula(ϕ′, Pdom)
return eliminate(r,P)

else if ϕ ≡ ∃s ∈ I : ϕ′ then
P ← formula(ϕ′, Pdom u {s ∈ I})
return eliminate(s,P)

end
end

Union The operation t denotes the union of two lists of
polyhedra. When the input lists are ordered, we can merge
them into a new list that is also ordered. This is a standard
algorithm on ordered lists, which preforms in linear-time.

Intersection The operation u denotes the intersection, and we
use the same symbol to denote one of the three operations:
• The intersection of two convex polyhedra.
• The intersection of a polyhedron and a list, which can be

implemented with pairwise intersection. This intersection
operation preserves the time-ordering of polyhedra.

• The intersection of two lists of polyhedra, which can be
implemented efficiently by exploiting the time ordering
and the fact that two polyhedra, whose time projections
do not intersect, themselves do not intersect.

Complement In general, a list of polyhedra can be com-
plemented by following De Morgan’s laws. For sets of poly-
hedra representing formulas, we can make the procedure
more efficient by following the intuition that the projec-
tions of polyhedra on the main time variable t are in most
cases bounded and every projection intersects only a small
number of projections of “nearby” polyhedra. The function
complement in Algorithm 3 implements this intuition. It starts
with P being the list of polyhedra to complement and C being
a singleton containing the “universal” polyhedron that only
restricts t to the time domain. In every step, the function takes
the first polyhedron P in the list P which is presented in
the form P = {t ∈ I} u Q and partitions C according to I .
Polyhedron P is subtracted from C, by subtracting {t ∈ I}
on one hand, subtracting Q from the intersection of C with
{t ∈ I} on the other hand, and then taking the union of
the two. Subtraction (denoted by subtract) can be done by
a straightforward intersection with complement, following De

Algorithm 3 Complementation over a list of polyhedra. The
operation subtract between a list of polyhedra and a single
polyhedron denotes straightforward intersection with comple-
ment following De Morgan’s laws.

function complement(P)
C ← {t ∈ T}
while P 6= ∅ do

pick P ∈ P
{t ∈ I} uQ← P
S ← C u {t ∈ I}
C ← subtract(C, {t ∈ I}) t subtract(S, Q)
P ← P \ P

end
return C

end

Morgan’s laws. Since C is ordered by t and polyhedra are
often bounded in t, subtracting {t ∈ I} from C can usually
be done by scanning only a few elements of C. Intersecting C
with {t ∈ I} is done similarly, and by the same intuition we
usually only need to scan a few elements in the neighborhood
of interval I . The result of this intersection, denoted S, is
expected to contain few elements. Then Q is subtracted from
S. Taking the union of the two parts is done using the merge
subroutine previously discussed. We are done processing P
and we remove it from the list P .

C. Bounded-Response Formulas

We now define a fragment of SFO that we call bounded-
response. In the following section, we show that for the
bounded-response fragment of SFO and bounded-variability
traces, Algorithm 2 has time complexity linear in the trace
length.

Definition 12 (Bounded-Response SFO). We call bounded-
response the fragment of SFO in which all intervals I in
subformulas of the form ∃t : t ∈ I are such that inf I 6= −∞
and sup I 6= +∞.

One may argue that the bounded-response restriction is
too strong. We observe that properties involving unbounded
time can still be expressed. In the context of monitoring, this
still allows for one unbounded time variable. This fragment
is thus sufficient to monitor safety properties in which bad
prefixes can be identified by a segment of the input of bounded
duration, a very common situation in practice.

D. Complexity

In this section, we characterize the complexity of our
algorithm, first in the general case, and then we identify a
fragment of SFO for which the complexity is reduced to linear-
time relative to the trace length.

Theorem 13. Algorithm 2 operates in time 2(m+n)2
O(k+l)

where k is the number of quantifiers in ϕ, l is the number

of occurrences of function symbols in ϕ, m is the length of ϕ,
and n is the length of w.

Proof. For any union of polyhedra P , we denote by #(P)
the number of unique linear constraints that appear (possi-
bly repeated) in P . We show that for any formula ϕ and
trace w, if P is a polyhedral representation of JϕKw, then
#(P) ≤ (m + n)2O(k+l)

, where k, l,m, n are as in the
statement of Theorem 7. One can see that #(P) = nl when
ϕ is atomic, #(complement(P)) = #(P), and #(P1 t
P2) ≤ #(P1) + #(P2). The projection operation is such
that #(eliminate(x,P)) ≤ #(P)2. Thus the bound holds by
induction on the formula structure.

Now any set of convex polyhedra P has at most 2#(P)

elements, each with at most #(P) constraints. Algorithm 2
ensures that convex polyhedra are not duplicated, since it
removes every convex polyhedron that is already covered by
another convex polyhedron. Observe that every subroutine
of Algorithm 2 has running time polynomial in the size of
their combined input and output. This gives us the bound as
desired.

In the general case the complexity of monitoring is related
to that of the membership problem. One notable difference
is that the membership problem is a decision procedure,
and its output has constant size. When using a quantifier
elimination procedure, it is best not to enforce disjunctive
normal form [18]. Since the formula is closed, the result
will be a ground formula that can easily be decided without
using such a special form. By contrast the output of the
monitoring can grow fast with the size of the signal. When
using a quantifier elimination procedure, we must at least in
the last step use a disjunctive normal form, since the required
format of the output is a union of intervals. Algorithm 2
indeed enforces a disjunctive normal form at every step of the
quantifier elimination, as with Fourier-Motzkin elimination.
We note that the complexity of such a procedure is not worse
than virtual substitution method when the output is required
to be in disjunction normal form, see also [23].

Let us now consider the bounded-response fragment of SFO.
We call horizon of a bounded-response formula the sum of the
absolute value of all its time constants. We call variability of
a piecewise-linear signal w relative to some bounded-response
formula ϕ the maximum number of linear segments in w
during any time period as long as the horizon of ϕ.

Theorem 14. Algorithm 2 operates in time n2(m+j)2
O(k+l)

over the class of bounded-response formulas, where j is the
variability of w relative to ϕ, k is the number of quantifiers
in ϕ, l is the number of occurrences of function symbols in ϕ,
m is the length of ϕ, and n is the length of w.

Proof. Let h be the horizon of formula ϕ, and (t, t′) be an
interval over which signal w is linear. It follows from the
definition variability that the size of the restriction of w to the
time interval [t − 2h, t′ + 2h] is at most 5h. Similarly as in

the proof of Theorem 13, we have that if P is a polyhedral
representation of the set

St,t′ = {(t′′, v) | t− h ≤ t′′ ≤ t′ + h and (t′′, v) ∈ JϕKw},

then the number of unique constraints in P is (m+h)2O(k+l)

.
This is because the part of the signal that can influence the
set St is contained in [t − 2h, t′ + 2h]. The set JϕKw is
covered by the St,t′ obtained from all t, t′ chosen as endpoints
of linear pieces of w. Thus the polyhedral representation of
JϕKw has size n2(m+h)2

O(k+l)

. Subroutines of Algorithm 2
have running time at most proportional to the size of their
input multiplied by maximum the number of polytopes that
overlap in time. Indeed the only superlinear operation is that
of complement . For bounded-response formulas, the set of
polyhedra that overlap in time is 2(m+h)2

O(k+l)

. This gives us
the desired computation time upper bound.

Remark that following a similar argument, one could obtain
an online monitoring algorithm with matching complexity for
bounded-response SFO.

V. QUANTIFIED SIGNAL TEMPORAL LOGIC

In this section we define quantified signal temporal logic
(QSTL), which extends STL [1] with first order quantification,
and study its relation with SFO.

Terms of type time and value of QSTL are given by the
grammar:

τ ::= t | n | τ1 − τ2 | τ1 + τ2

ρ ::= r | f | x | n | ρ1 − ρ2 | ρ1 + ρ2

where n ∈ Z, t ∈ T , r ∈ R, and f ∈ F . Formulas of QSTL
are given by the grammar:

ϕ ::= θ1 < θ2 | ¬ϕ | ϕ1 ∨ ϕ2 | ∃x : ϕ

| ϕ1 U ϕ2 |1[τ1,τ2] ϕ | ϕ1 S ϕ2 |Q[τ1,τ2] ϕ

where x ∈ X and τ1, τ2, θ1, and θ2 are QSTL terms, such
that τ1 and τ2 are of type time.

In our SFO framework, the temporal modalities of QSTL
are seen as syntactic sugar that may be applied to SFO
temporal formulas. Let us assume a distinguished time variable
t, standing for the absolute time. Atomic formulas θ1 < θ2 are
defined as θ1(t) < θ2(t), where for some term θ, writing θ(t)
means applying the argument t to all function symbols in θ.
Operator until, denoted U , is defined by letting

ϕU ψ ≡ ∃c ∈ (0,+∞) : ϕ[t+ c] ∧ ∀d ∈ (0, c) : ψ[t+ d]

for all temporal formulas ϕ and ψ. The definition of operator
since S is symmetrical. Operator eventually, denoted1[τ1,τ2]

for time terms τ1, τ2, is defined by letting

1[τ1,τ2] ϕ ≡ ∃c : 0 ≤ τ1 ≤ c ≤ τ2 ∧ ϕ[t+ c]

for all temporal formulas ϕ. The definition of operator once,
denoted Q[τ1,τ2], is symmetrical. One can also define op-
erator always, denoted 0[τ1,τ2], by letting 0[τ1,τ2] ϕ ≡

¬1[τ1,τ2] ¬ϕ, and operator historically, denoted `[τ1,τ2], by
letting `[τ1,τ2] ϕ ≡ ¬Q[τ1,τ2] ¬ϕ.

It is easy to see that every SFO formula can be written
in QSTL form, so that QSTL is complete for SFO. This is
because the modality ∃r : 1[t,t] f(t) = r allows to access
the value r of function f at any time t explicitly. In more
details, putting an SFO formula in QSTL form is a two-stage
process. The first stage recursively moves signals outside of
inequalities by rewriting a formula ϕ into formula ϕ defined
as follows:

γ[f(τ)] ≡ ∃t ∈ (−∞,+∞) : ∃r : r = f(t) ∧ t = τ ∧ γ[r]

¬ϕ ≡ ¬ϕ
ϕ1 ∨ ϕ2 ≡ ϕ1 ∨ ϕ2

∃x : ϕ ≡ ∃x : ϕ

The second stage consists in replacing every subformulas r =
f(t) by 1[t,t] f = r. We have removed all arguments of
function symbols and thus obtain a QSTL formula. Since this
formula has no nested temporal operators, it is equivalent at
time zero to the original SFO formula.

VI. CASE STUDY

We present in this section the DDR2 memory interface case
study. DDR2 memory interface acts as a bus between the
memory and other components and exhibits communication
of digital data implemented at the analog level of abstraction.
In DDR2, the data access is controlled by a single-ended or
differential strobe signal, which acts as an asynchronous clock.
In the remainder of this section, we consider the single-ended
data strobe DDR2-400 memory interface.

We focus more specifically on the alignment property
between data signal DS and data signal strobe DQS. The
alignment between the two signals is defined with respect to
their respective crossings of thresholds defined in Table I. In
the remainder of the section, we refer to different thresholds
by their identifier.

TABLE I
DDR2-400 SPECIFICATION OF THRESHOLD VALUES.

Threshold name Threshold id Value (V)
VDDQ V1 1.800
VIH(AC)min V2 1.250
VIH(DC)min V3 1.025
VREF(DC) V4 0.900
VIL(DC)max V5 0.775
VIL(AC)max V6 0.650

More specifically, the proper alignment between DS and
DQS is determined by two values, the setup time tDS and
hold time tDH. The setup and hold times of DS and DQS are
checked both on their falling and rising edges of the strobe
signal. We focus on the setup time tDS at the falling edge of
DQS, the other three cases are symmetric. We illustrate this
property with the timing diagram shown in Figure 3.

Informally, we can express the setup time alignment prop-
erty at the falling edge of DQS as follows: Whenever DQS is

slew rate

nominal

V2

V3

V4

V5

V6

DQS

DS

V7

V1

V2

V3

V4

V5

V6

V7

V1

∆TF ∆TR

tDS tDH

Fig. 3. Data DS and data strobe DQS alignment with tDS setup and tDH
hold time on the falling edge.

on its falling edge, the distance from the previous falling edge
in DS is at least tDS time. The falling edge of DQS (DS) is
characterized by DQS (DS) crossing V3 (V6) from above.

In order to express the above requirement in SFO, we first
define the falling edge operator ↓(s, c)[t], which holds at t iff
signal f crosses the threshold c from above. We formalize this
operators as follows:

↓(f, c)[t] ≡ f(t) = c ∧ ∃d ∈ (0,+∞) :

∀d′ ∈ (0, d) : f(t+ d′) < c

It is now straightforward to define the alignment require-
ment as the following SFO ψ[t] formula:

ψ[t] ≡ ↓(DQS, V3)[t]→`[0,tDS] ¬↓(DS, V6)[t]

We note that falling edges of a signal f below threshold
c can also be captured in pure STL by letting ↓(f, c) ≡
(f = c) ∧ (f < c)U >. As a consequence, the alignment
requirement does not seem to need the power of SFO. In
fact, the above STL specification relies on the assumption that
tDS is a constant value. In reality, this is not the case. The
setup time tDS varies dynamically according to the slew rates
(slopes) of DS and DQS. According to the DDR2 standard, the
setup time tDS is the sum of a constant base term tDS(base)
and a variable correction term

∆tDS = tDS− tDS(base)

where tDS(base) equals to 150ps for single-ended DDR2-400
and the correction term ∆tDS is a value that depends directly
on slew rates ssrDS and ssrDQS measured in DS and DQS. The
setup slew rate ssrs of a falling signal s being defined as

ssrs =
V2 − V4

∆TFs
where ∆TFs is the time that the signal s spends between V4

and V2 (see Figure 3). The exact computation of ∆tDS =
δ(∆TFDQS,∆TFDS) is done by interpolating the values from
the look-up table depicted in Table II.

TABLE II
FRAGMENT OF THE LOOK-UP TABLE USED TO COMPUTE THE CORRECTION

TERM ∆tDS AS A FUNCTION OF ssrDQS AND ssrDS .

DQS slew rate (V/ns)
2 1.5 1 0.9 0.8

DS slew rate (V/ns)

2 188 146 63 - -
1.5 167 125 42 43 -
1 125 83 0 -2 -13

0.9 - 69 -14 -13 -27
0.8 - - -31 -30 -44

To summarize, checking the setup time for DQS and DS
requires dynamically measuring their nominal slew rates via
∆TFDQS and ∆TFDS and adapting accordingly the setup time
bound tDS. This specification is clearly beyond the expres-
siveness of STL.

In the remainder of this section, we will demonstrate the
formalization of the full alignment property in SFO. We We
first define two auxiliary operators�c,c′

d (f)[t] and2c,c′

d (f)[t]
as the shorthands

�c,c′

d (f)[t] ≡ ∃e ∈ (0,∞) :
∀e′ ∈ (0, e) : f(t− e′) < c
∧ f(t− e) = c
∧ ∀e′ ∈ (e, e+ d) : c < f(t− e′) < c′

∧ f(t− e− d) = c′


and

2c,c′

d (f)[t] ≡ ∃e ∈ (0,∞) :
∀e′ ∈ (0, e) : f(t+ e′) < c
∧ f(t+ e) = c
∧ ∀e′ ∈ (e, e+ d) : c < f(t+ e′) < c′

∧ f(t+ e+ d) = c′


Intuitively, �c,c′

d (f)[t] (2c,c′

d (f)) holds at time t iff the
previous (next) duration that f spends in the region defined
by the interval [c, c′] has the duration d.

We are now ready to express the alignment requirement
ψ′[t] is SFO as follows:

ψ′[t] ≡ ↓(DQS, V3)[t]→ ∃∆TFDQS,∆TFDS :

�V6,V4

∆TFDS
(DS)[t] ∧2V6,V4

∆TFDQS
(DQS)[t]∧

tDS = δ(∆TFDQS,∆TFDS) ∧`[0,tDS] ¬↓(DS, V6)[t]

The specification states that whenever DS is on its falling
edge, there exist timing parameters ∆TFDQS and ∆TFDS such
that (1) ∆TFDQS is the duration that DQS spends in the region
[V6, V4] used to measure its slew rate, (2) ∆TFDS is the
duration that DS spends in the region [V6, V4] used to measure
its slew rate, (3) tDS is the setup time as a function of ∆TFDQS

and ∆TFDS, and (4) the previous falling edge of DS is at least
tDS time away.

VII. CONCLUSION

We introduced signal first-order logic (SFO) for the purpose
of specifying and monitoring properties of real-valued signal.
On the specification side, we show that this logic is equivalent

in expressive power as signal temporal logic extended with
quantifiers (QSTL). We believe that SFO provides a clear and
general framework for studying the specification of real-valued
temporal behaviors. On the monitoring side, the algorithm that
we propose works recursively on the SFO formula structure,
and computes the satisfaction set (or validity domain) of the
formula at every time point. The monitoring of SFO is hard,
and part of it is due to the lack of temporal structure of
the formula. The hardness of this problem is indeed already
present for monadic first-order logic. The simpler membership
problem of SFO is at least nondeterministic exponential time
relative to the formula size. We identify the fragment of
bounded-response formulas, for which our monitoring algo-
rithm terminates in linear-time relative to the trace length.

The problem of monitoring SFO or QSTL can be related
to the parametric identification of STL. In the latter problem,
the objective is to find the set of (tightest) parameter values
such that the STL formula is satisfied. Variables in parametric
signal temporal logic (PSTL) [7] can be seen as free variables
in QSTL. We also remark that QSTL semantically contains
STL* [24], which supplements STL by freeze quantifiers [25].
The monitoring algorithm of [24] proceeds by representing the
satisfaction set using several time dimensions: the reference
time, and the time at which values are frozen. On the other
hand, our algorithm represents the satisfaction set relative to
value dimensions.

In the future, we plan to implement our monitoring algo-
rithm and assess its performance. We will also investigate the
adaptation of our SFO monitoring algorithm to the problem
of pattern matching. The problem of pattern matching over
Boolean and real-valued signals is studied in [26] and in [27],
respectively. Both work consider timed regular expressions
of [28] as a specification language. A star-free variant of such
expressions could readily be encoded in SFO. The problem of
finding an adequate counterpart in logic to the Kleene closure
remains open.

ACKNOWLEDGMENTS

We thank Eugene Asarin and Oded Maler for their helpful
comments.

REFERENCES

[1] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems (FORMATS/FTRTFT), 2004, pp. 152–166.

[2] A. Pnueli, “The temporal logic of programs,” in Foundations of Com-
puter Science, 1977., 18th Annual Symposium on. IEEE, 1977, pp.
46–57.

[3] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-time systems, vol. 2, no. 4, pp. 255–299, 1990.

[4] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic
specifications for continuous-time signals,” Theor. Comput. Sci., vol.
410, no. 42, pp. 4262–4291, 2009.

[5] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in Formal Modeling and Analysis of Timed Systems
(FORMATS), 2010, pp. 92–106.

[6] A. Donzé, T. Ferrere, and O. Maler, “Efficient robust monitoring for
STL,” in International Conference on Computer Aided Verification.
Springer, 2013, pp. 264–279.

[7] E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric identifica-
tion of temporal properties,” in Runtime Verification, 2011, pp. 147–160.

[8] H. Yang, B. Hoxha, and G. Fainekos, “Querying parametric temporal
logic properties on embedded systems,” in IFIP International Confer-
ence on Testing Software and Systems. Springer, 2012, pp. 136–151.

[9] A. Bakhirkin, T. Ferrère, and O. Maler, “Efficient parametric identifica-
tion for STL,” in Proceedings of the 21st International Conference on
Hybrid Systems: Computation and Control (part of CPS Week). ACM,
2018, pp. 177–186.

[10] E. Bartocci, L. Bortolussi, and G. Sanguinetti, “Data-driven statistical
learning of temporal logic properties,” in Formal Modeling and Analysis
of Timed Systems (FORMATS), 2014, pp. 23–37.

[11] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining re-
quirements from closed-loop control models,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 34, no. 11, pp. 1704–1717, 2015.

[12] Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning and
detection of anomalous behavior,” IEEE Trans. Automat. Contr., vol. 62,
no. 3, pp. 1210–1222, 2017.

[13] T. Ferrère, O. Maler, and D. Nickovic, “Trace diagnostics using temporal
implicants,” in Automated Technology for Verification and Analysis,
2015, pp. 241–258.

[14] E. Bartocci, J. V. Deshmukh, A. Donzé, G. E. Fainekos, O. Maler,
D. Nickovic, and S. Sankaranarayanan, “Specification-based monitoring
of cyber-physical systems: A survey on theory, tools and applications,”
in Lectures on Runtime Verification - Introductory and Advanced Topics,
2018, pp. 135–175.

[15] M. L. Minsky, Computation: finite and infinite machines. Prentice-Hall,
1967.

[16] R. Alur, T. Feder, and T. A. Henzinger, “The benefits of relaxing
punctuality,” Journal of the ACM (JACM), vol. 43, no. 1, pp. 116–146,
1996.

[17] M. J. Fischer and M. O. Rabin, “Super-exponential complexity of pres-
burger arithmetic,” in Quantifier Elimination and Cylindrical Algebraic
Decomposition. Springer, 1998, pp. 122–135.

[18] J. Ferrante and C. Rackoff, “A decision procedure for the first order
theory of real addition with order,” SIAM Journal on Computing, vol. 4,
no. 1, pp. 69–76, 1975.

[19] R. Loos and V. Weispfenning, “Applying linear quantifier elimination,”
The computer journal, vol. 36, no. 5, pp. 450–462, 1993.

[20] G. E. Collins, “Quantifier elimination for real closed fields by cylindrical
algebraic decompostion,” in Automata Theory and Formal Languages
2nd GI Conference Kaiserslautern, May 20–23, 1975. Springer, 1975,
pp. 134–183.

[21] M. Koubarakis, “Complexity results for first-order theories of temporal
constraints,” in International Conference on Principles of Knowledge
Representation and Reasoning (KR), 1994, pp. 379–390.

[22] R. Bagnara, P. M. Hill, and E. Zaffanella, “Not necessarily closed convex
polyhedra and the double description method,” Formal Asp. Comput.,
vol. 17, no. 2, pp. 222–257, 2005.

[23] D. Monniaux, “A quantifier elimination algorithm for linear real arith-
metic,” in International Conference on Logic for Programming Artificial
Intelligence and Reasoning. Springer, 2008, pp. 243–257.

[24] L. Brim, P. Dluhoš, D. Šafránek, and T. Vejpustek, “STL*: Extending
signal temporal logic with signal-value freezing operator,” Information
and Computation, vol. 236, pp. 52–67, 2014.

[25] R. Alur and T. A. Henzinger, “A really temporal logic,” Journal of the
ACM (JACM), vol. 41, no. 1, pp. 181–203, 1994.

[26] D. Ulus, T. Ferrère, E. Asarin, and O. Maler, “Timed pattern matching,”
in Formal Modeling and Analysis of Timed Systems (FORMATS).
Springer, 2014, pp. 222–236.

[27] A. Bakhirkin, T. Ferrère, O. Maler, and D. Ulus, “On the quantitative
semantics of regular expressions over real-valued signals,” in Formal
Modeling and Analysis of Timed Systems (FORMATS). Springer, 2017,
pp. 189–206.

[28] E. Asarin, P. Caspi, and O. Maler, “Timed regular expressions,” Journal
of the ACM, vol. 49, no. 2, pp. 172–206, 2002.

