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We investigate the application of the Adaptive Multilevel Splitting algorithm for

the estimation of tail probabilities of solutions of Stochastic Differential Equations

evaluated at a given time, and of associated temporal averages.

We introduce a new, very general and effective family of score functions which

is designed for these problems. We illustrate its behavior on a series of numerical

experiments. In particular, we demonstrate how it can be used to estimate large

deviation rate functionals for the longtime limit of temporal averages.
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I. INTRODUCTION

Fast and accurate estimation of rare event probabilities, and the effective simulation of

these events, is a challenging computational issue, which appears in many fields of science

and engineering. Since rare events are often the ones that matter in complex systems,

designing efficient and easily implementable algorithms is a crucial question which has been

the subject of many studies in the recent years.

Since the pionnering works on Monte-Carlo methods, several classes of algorithms have

been developed, see for instance the monographs3,15,41. The most popular strategies are

importance sampling and splitting. On the one hand, importance sampling consists in

changing the probability distribution, such that under the new probability distribution the

events of interest are not rare anymore. Appropriate reweighting then yields consistent

estimators. This strategy has for instance been applied recently to simulate rare events in

climate models37. On the other hand, splitting techniques, consist in writing the rare event

probability as a product of conditional probabilities which are simpler to estimate, and in

using interacting particle systems in order to estimate these conditional probabilities.

In this manuscript, a class of splitting algorithms is considered. Splitting techniques

have been introduced in the 1950s29, and have been studied extensively in the last two

decades16,20,25,26. Many variants have appeared in the literature: Generalized multilevel

splitting6,7, RESTART47,48, Subset simulation4, Nested sampling43,44, Reversible shaking

transformations with interacting particle systems1,27, genealogical particle analysis21,49, etc...

The Adaptive Multilevel Splitting (AMS) algorithm18 is designed to estimate rare event

probabilities of the type P(τB < τA), where τA and τB are stopping times associated with

a Markov process X, typically the entrance times of X in regions A and B of the state

space. In many applications, A and B are metastable states for the process. The algorithm

is based on selection and mutation mechanisms, which leads to the evolution of a system

of interacting replicas. The selection is performed using a score function, which is often

referred to as a reaction coordinate when dealing with metastable systems.

The objective of this article is to design and test new score functions, using the AMS

strategy, to estimate probabilities of the type P(Φ(XT ) > a) or P
(

1
T

∫ T
0
φ(Xt)dt > a

)
, where

a is a threshold, Φ and φ are real-valued functions, and
(
Xt

)
0≤t≤T is a Markov process. In

fact, as will be explained below, the probabilities of interest can be rewritten as P(τB < τA),
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associated with an auxiliary Markov process. Our main contribution is the identification of

appropriate score functions related to this interpretation, and which return a non-zero value

for the estimator of the probability of interest. By using then an AMS algorithm which fits

in the Generalized Adaptive Multilevel Splitting framework11, one can construct unbiased

estimators of the probability (and possibly of other quantities of interest).

The efficiency of the approach is investigated with numerical experiments, using several

test cases taken from the literature on rare events. First, validation is performed on one-

dimensional Gaussian models (Brownian Motion46, Ornstein-Uhlenbeck process49). More

complex test cases then illustrate the efficiency of the approach and of the new score functions

introduced in this article: drifted Brownian Motion, three-dimensional Lorenz model5,32. Es-

timations of probabilities depending on temporal averages 1
T

∫ T
0
φ(Xs)ds are also considered

for two models24: the one-dimensional Ornstein-Uhlenbeck process and a driven periodic

diffusion. In these examples, values of large deviations rate functionals for the longtime

limit T →∞ are estimated.

In the last decade, many works have been devoted to the analysis and applications of

AMS algorithms. A series of work has been devoted to the analysis of the so-called ideal

case9,13,14,28, namely when the AMS algorithm is applied with the optimal score function

(namely the so-called committor function). In practice, this optimal score function is un-

kown. Beyond the ideal case, consistency11 (unbiasedness of the small probability estimator)

and efficiency17 (variance of the small probability estimator) have been studied. Moreover,

the adaption of the original algorithm to the discrete-in-time setting has been studied in

details in11. It can be used to compute transition times between metastable states19, re-

turn times30, or other observables associated with the rare event of interest34. The AMS

algorithm has been successfully applied in many contexts: the Allen-Cahn stochastic partial

differential equation12,39, the simulation of Bose-Einstein condensates36, molecular dynamics

and computational chemistry2,19,31,45, nuclear physics33–35 and turbulence8,38, for example.

This article is organized as follows. Section II presents the precise mathematical setting,

in particular the rare event probability of interest is defined by (7). A general formulation of

the AMS algorithm designed to estimate this quantity is provided in Section III, in particular

see Section III B for the full algorithmic description. Examples of appropriate score functions

are discussed in Section IV. To overcome the limitations of a vanilla strategy, Section IV A,

our main contribution is the construction of the score functions presented in Section IV B.
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Finally, numerical experiments are reported in Section V.

II. SETTING

We consider stochastic processes, with values in Rd, in dimension d ∈ N, which are

solutions of Stochastic Differential Equations (SDEs) of the type: for 0 ≤ t0 ≤ t ≤ T and

x0 ∈ Rd,

dX t0,x0
t = f(t,X t0,x0

t )dt+ σ(t,X t0,x0
t )dW (t) (1)

where X t0,x0
t ∈ Rd, with initial condition,

X t0,x0
t0 = x0. (2)

The noise
(
W (t)

)
t≥0

is given by a standard Wiener process with values in RD, for some

D ∈ N. The coefficients f : [0, T ]×Rd → Rd and σ : [0, T ]×Rd → Rd×D are assumed to be

sufficiently smooth to ensure global well-posedness of the SDE.

In this work, two types of rare events associated with (X t0,x0
t )0≤t≤T are considered. Let

a ∈ R denote a threshold, and let Φ, φ : Rd → R be two measurable functions. First, we are

interested in tail probabilities for the random variable Φ(X t0,x0
T ), namely in

P
(
Φ(X t0,x0

T ) > a
)
. (3)

Second, we are interested in tail probabilities for temporal averages, defined as

P
(

1

T − t0

∫ T

t0

φ(X t0,x0
t )dt > a

)
. (4)

We will investigate numerically the performance of AMS estimators for both (3) and (4)

on various examples. In particular, we will consider the regime T → ∞ for (4) in order to

estimate large deviation rate functionals.

Notice that the case of temporal averages (4) can be rewritten in the form of (3). Indeed,

the probability (4) may be written as (3) for the auxiliary process defined by X̃ t0,x0
t =(

X t0,x0
t , Y t0,x0

t

)
, where Y t0,x0

t = φ(x0), and for t > t0

Y t0,x0
t =

1

t− t0

∫ t

t0

φ(X t0,x0
s )ds,

and with Φ̃(x, y) = y. The process
(
Y t0,x0
t

)
t0≤t≤T

is solution of the following ODE,

dY t0,x0
t =

1

t− t0
(
φ(X t0,x0

t )− Y t0,x0
t

)
, t > t0 , Y t0,x0

t0 = φ(x0),
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coupled with the SDE for the diffusion process
(
X t0,x0
t

)
t0≤t≤T

. This trick will be used for our

numerical experiments below. Therefore, in the following, we present the AMS algorithm

and discuss its theoretical properties only for (3).

For future purposes, observe that the target probability (3) may be written as ua(t0, x0),

where

ua(t, x) = P
(
Φ(X t,x

T ) > a
)

(5)

is the solution (under appropriate regularity assumptions) of the backward Kolmogorov

equation 
∂ua(t,x)

∂t
+ Ltua(t, x) = 0 for t ∈ [0, T ] and x ∈ Rd,

ua(T, x) = 1Φ(x)>a for x ∈ Rd,
(6)

where the infinitesimal generator Lt is defined by: for all test functions ϕ, Ltϕ(x) = f(t, x) ·

∇ϕ(x) + 1
2
σ(t, x)σ(t, x)? : ∇2ϕ(x). Approximating the solutions of PDEs of this type using

deterministic methods is in general possible only when the dimension d is small. Instead,

Monte Carlo methods may be used. However, naive Monte Carlo algorithms are not efficient

in the rare event regime, e.g. when a → ∞ or when the diffusion coefficient is of the type

σε =
√
εσ and ε→ 0.

In practice, discrete-time approximations are implemented. Let ∆t > 0 denote the time-

step size of the integrator (for instance the standard Euler-Maruyama method), with T =

N∆t and t0 = n0∆t, where n0 ∈ N0, N ∈ N, n0 ≤ N . With a slight abuse of notation, let

us denote the discrete-time process obtained after discretization of (1) by
(
Xn0,x0
n

)
n0≤n≤N

.

The time-discrete counterpart of (3) is then

P
(
Φ(Xn0,x0

N ) > a
)
. (7)

The algorithms presented below are used to estimate probabilities of the type (7).

Remark 1. It is assumed that the initial condition is deterministic: Xn0,x0
n0

= x0. The adap-

tation of the algorithms presented below to the case of a random initial condition is straight-

forward, by simply using the Markov property: P
(
Φ(XN) > a

)
=

∫
P
(
Φ(Xn0,x0

N ) > a
)
dµ0(x0)

where µ0 denotes the law of Xn0.
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III. GENERAL FORMULATION OF THE ADAPTIVE MULTILEVEL

SPLITTING ALGORITHM

A. Context

The goal is to estimate the probability p given by (7), in the regime where p is small,

which is for example the case when a is large.

It is convenient to introduce an auxiliary process
(
Zn
)
n0≤n≤N

, such that Zn =
(
n∆t,Xn0,x0

n

)
.

Indeed, let

A = {(T, x); Φ(x) ≤ a} , B = {(T, x); Φ(x) > a} ,

and define the associated stopping times

τA = inf {n ≥ n0, n ∈ N0; Zn ∈ A} , τB = inf {n ≥ n0, n ∈ N0; Zn ∈ B} .

Then the probability p given by (7) can be rewritten as

p = P
(
Φ(Xn0,x0

N ) > a
)

= P(τB < τA). (8)

We are then in position to build algorithms which fit in the Generalized Adaptive Multi-

level Splitting framework developed in11, which ensure that the obtained estimators of the

probability (8) are unbiased.

For that, a score function, or reaction coordinate, ξ, needs to be given. Following the

interpretation above, ξ may depend on z = (n∆t, x).

To run the algorithm and define simple unbiased estimators of p, only one requirement

is imposed on the function ξ: there exists ξmax such that

B ⊂ {z; ξ(z) > ξmax} ,

which in the context of this article is rephrased as

Φ(x) > a =⇒ ξ(T, x) > ξmax. (9)

The principle of splitting algorithm is then to write

P(τB < τA) = P(τζ1 < τA)P(τζ2 < τA|τζ1 < τA)P(τζ3 < τA|τζ2 < τA) . . .P(τB < τA|τξmax < τA)

for an increasing sequence of levels (ζq)q≥1, where τζ = inf{n ≥ n0; ξ(Zn) > ζ}. If the levels

are well chosen, then the successive conditional probabilities P(τζq+1 < τA|τζq < τA) are easy
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to compute. The principle of the adaptive multilevel splitting algorithm18 is to choose the

levels adaptively, so that the successive conditional probabilities P(τζq+1 < τA|τζq < τA) are

constant and fixed. The levels constructed in the algorithm are then random.

B. The Adaptive Multilevel Splitting algorithm

Before giving the detailed algorithm, let us roughly explain the main steps (we also refer

to11 for more details and intuition on the algorithm). In the initialization, one samples nrep

trajectories following (1)-(2) and compute the score of each trajectory, namely the maximum

of ξ attained along the path. Then the algorithm proceeds as follows: one discards the

trajectory which has the smallest score and in order to keep the number of trajectories

fixed, a new one is created by choosing one of the remaining trajectories at random, copying

it up to the score of the killed trajectory, and sampling the end of trajectory independently

from the past. This is called the partial resampling. One thus obtains a new ensemble of nrep

trajectories on which one can iterate by again discarding the the trajectory which has the

smallest score. As the iteration goes, one thus obtains trajectories with largest and largest

scores, and an estimate of the probability of interest is obtained as (1− 1/nrep)QiterP (τB <

τA|τξmax < τA) (notice that (1−1/nrep) is an estimate of the conditional probability to reach

level ζq+1 conditionally to the fact that level ζq has been reached), where Qiter is the number

of iterations required to reach the maximum level ξmax. In practice, P (τB < τA|τξmax < τA)

is estimated by the proportion of trajectories which reach B before A at the last iteration

of the algorithm, namely when all the trajectories satisfy τξmax < τA.

Actually, the algorithm has to be adapted in order to take into account situations when

more than one particle has the smallest score, which happens with non zero probability for

Markov chains. Let us now give the details of the AMS algorithm.

To simplify notation, in the sequel, the initial condition x0 and the time n0 are omitted

in the notation of the replicas.

a. Input

• nrep ∈ N, the number of replicas,

• a score function z = (n∆t, x) 7→ ξ(n∆t, x) ∈ R and a stopping level ξmax ∈ R such

that (9) is satisfied.
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b. Initialization

• Sample nrep independent realizations of the Markov process

Xj =
(
Xj
m

)
n0≤m≤N

, 1 ≤ j ≤ nrep

following the dynamics (1)–(2).

• Compute the score of each replica, M j = max
n0≤m≤N

ξ(m∆t,Xj
m).

• Compute the level Z = min
1≤j≤nrep

M j.

• Define K = {j ∈ {1, . . . , nrep} ; M j = Z}.

• Set q = 0, p̂ = 1, B = 1.

c. Stopping criterion If Z ≥ ξmax or card(K) = nrep, then set B = 0.

d. While B = 1

• Update

– q ← q + 1 and p̂← p̂ ·
(
1− card(K)

n

)
.

• Splitting

– Reindex the replicas, such thatM
j = Z if j ∈ {1, . . . , card(K)}

M j > Z if j ∈ {card(K) + 1, . . . , nrep} .

– For replicas with index j ∈ {1, . . . , card(K)}, sample labels `1, . . . , `card(K), inde-

pendently and uniformly in {card(K) + 1, . . . , nrep}.

• Partial resampling

– Remove the replicas with label j ∈ {1, . . . , card(K)}.

– For j ∈ {1, . . . , card(K)}, define mj = inf
{
m ∈ {n0, . . . , N} ; ξ(X

`j
m) > Z

}
.

– For m ∈ {n0, . . . ,mj}, set Xj
m = X

`j
m .

– Sample a new trajectory
(
Xj
m

)
mj≤m≤N

with the Markov dynamics (1) driven by

independent realizations of the Brownian motion.
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• Level computation

– Compute the scores M j = max
n0≤m≤N

ξ(m∆t,Xj
m).

– Compute the level Z = min
1≤j≤nrep

M j.

– Define the set K = {j ∈ {1, . . . , nrep} ; M j = Z}.

e. Stopping criterion If Z ≥ ξmax or card(K) = nrep, then set B = 0.

f. End while

g. Update: p̂← p̂ 1
nrep

∑nrep

j=1 1Φ(Xj
N )≥a.

h. Output: p̂ and Qiter = q.

Remark 2. We presented the algorithm in its simplest form. There are many variants,

see11. For example, the killing level Z can be defined as Z = M (k) where M (1) ≤ M (2) ≤

. . . ≤M (nrep) denotes an increasing relabelling of the scores (M j)1≤j≤nrep (order statistics).

C. Consistency result

Let p̂ and Qiter be the outputs of the realization of the algorithm above. We quote the

following result11, which states that the output p̂ of the algorithm described in Section III B

above is an unbiased estimator of the probability given by (7).

Theorem 1. Let ξ be a score function and ξmax ∈ R be such that (9) is satisfied. Let

nrep ∈ N be a given number of replicas. Assume that almost surely the algorithm stops after

a finite number of iterations: Qiter <∞ almost surely.

Then p̂ is an unbiased estimator of the probability p given by (8):

E[p̂] = P
(
Φ(Xn0,x0

N ) > a
)
.

Note that if ψ : Rd → R is a function with support included in {x; Φ(x) > a}, i.e.

ψ(x) = 0 if Φ(x) ≤ a, then an unbiased estimator of E[ψ(Xn0,x0
N )] is given by replacing the

final update in the algorithm above (see step g.), by

p̂← p̂
1

nrep

nrep∑
j=1

ψ(Xj
N).

The unbiasedness property is crucial in practice for the following two reasons. First, it is

very easy to parallelize the estimation of rare events using this property. Indeed, since the

9



estimator is unbiased whatever the value of nrep, to get a convergent estimation, one has

simply to fix nrep to a value which enables the computation of p̂ on a single CPU, and then

to sample M independent realizations of this p̂, run in parallel. In the large M limit, one

obtains a convergent estimator of the quantity of interest by simply considering the average

of the realizations of p̂. Second, the practical interest of Theorem 1 is that since E(p̂) is the

same whatever the choice of the numerical parameters (namely nrep and ξ), one can compare

the results obtained with different choices to get confidence in the result. For example, one

can consider the confidence intervals obtained with M independent realizations of p̂ for two

different choices of ξ, and check whether these confidence intervals overlap or not.

Remark 3. In the algorithm described in Section III B, the set K defined in the initialization

and in the level computation steps may have a cardinal strictly larger than 1, even if the level

Z is defined as the minimum of the scores over the replicas. This simply means than more

than one replica has a score which is the smallest among the replicas. In the discrete-time

setting (namely for Markov chains), this happens with non zero probability, and it requires

an appropriate modification of the original AMS algorithm, as described above, see11 for

more details.

Notice that in particular, there is a possibility that the algorithm stops if card(K) = nrep,

in which case there is an extinction of the system of replicas.

IV. CHOICES OF THE SCORE FUNCTION

Let us now describe the various score functions we will consider in order to estimate (7).

A. Vanilla score function and limitations

The simplest choice consists in choosing the score function as given by

ξstd(n∆t, x) = Φ(x), (10)

with ξmax = a. In this case, the score function does not depend on the time variable.

If the conditional probability

q = P
(
Φ(Xn0,x0

N ) > a
∣∣ max
n0≤n≤N

Φ(Xn0,x0
n ) > a

)
10



is small, the performance of this vanilla strategy may be poor. Indeed, only a small pro-

portion of the replicas have a non-zero contribution to the value of the estimator of the

probability (7). It may even happen that all the replicas satisfy max
n0≤n≤N

Φ(Xn0,x0
n ) > a but

that none of them satisfies Φ(Xn0,x0
N ) > a. In that situation, the algorithm returns p̂ = 0

to estimate p > 0. One of the goals of this work is to construct score functions which

circumvent that issue: with the score functions introduced below, almost surely p̂ 6= 0.

B. Time-dependent score functions

As discussed above, it is natural to design score functions ξ, which satisfy the following

condition:

{Φ(Xn0,x0
N ) > a} =

{
max

n0≤n≤T
ξ(n∆t,Xn0,x0

n ) > 1

}
. (11)

The choice of the value ξmax = 1 on the right-hand side above is arbitrary, but no generality

is lost. Indeed, if a score function ξ satisfying (11) is used in the AMS algorithm above, with

ξmax = 1, at the last update, the ratio 1
nrep

∑nrep

j=1 1Φ(Xj
N )≥a is identically equal to 1, since all

replicas satisfy max
n0≤n≤T

ξ(n∆t,Xn0,x0
n ) > 1. In particular, by construction p̂ 6= 0 (provided

Qiter <∞).

As will be seen below, in practice it is more natural to identify functions ξ̃ taking values

in (−∞, 1], which satisfy the condition

{Φ(Xn0,x0
N ) > a} =

{
max

n0≤n≤T
ξ̃(n∆t,Xn0,x0

n ) = 1

}
, (12)

instead of (11). To justify the use of the algorithm in this case, observe that ξ̄(t, x) =

ξ̃(t, x)+1ξ̃(t,x)=1 then satisfies (11). In addition, when running the algorithm, choosing either

ξ̄ or ξ̃ exactly yields the same result. We are thus in the setting where the unbiasedness result

Theorem 1 applies. The score functions presented below will satisfy (12) instead of (11).

One of the novelties of this article is the introduction of the following score function:

ξnew(n∆t, x) =
(
Φ(x)− a

)
1Φ(x)≤a +

n∆t

N∆t
1Φ(x)>a. (13)

Observe that ξnew takes values in (−∞, 1], and that ξnew(n∆t, x) = 1 if and only if n = N

and Φ(x) ≥ a. Thus the condition (12) is satisfied. We refer to Figure 1 for a schematic

representation of this score function.
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FIG. 1. Level lines of the score function (t, x) 7→ ξnew(t, x), with Φ(x) = x, a = 1, T = 1.

Note that the score function defined by (13) only depends on the function Φ, on the

threshold a, and on the final time T = N∆t. It may thus be applied in any situation,

but in some cases better score functions may be built upon using more information on the

dynamics. The practical implementation is very simple.

Let us explain how the AMS algorithm proceeds when used with the score function (13).

Observe that {
max

n0≤n≤N
ξnew(n∆t,Xn0,x0

n ) ≥ 0

}
=

{
max

n0≤n≤N
Φ(Xn0,x0

n ) > a

}
.

The first iterations of the algorithm, up to reaching level 0, are thus devoted to construct

nrep replicas which satisfy the weaker condition

{
max

n0≤n≤N
Φ(Xn0,x0

n ) > a

}
. In other words,

if the stopping level ξmax in the algorithm is set equal to 0 instead of 1, one thus recovers

the vanilla AMS algorithm described above, applied with the score function ξ(t, x) = Φ(x)

(independent of time t).

Compared with the vanilla score function, the AMS algorithm the new score function does

not stop when

{
max

n0≤n≤N
Φ(Xn0,x0

n ) > a

}
. In terms of splitting, observe that this consists in

writing

P
(
Φ(Xn0,x0

N ) > a
)

= P
(
Φ(Xn0,x0

N ) > a | max
n0≤n≤N

Φ(Xn0,x0
n ) > a

)
P
(

max
n0≤n≤N

Φ(Xn0,x0
n ) > a

)
,

and the remaining effort consists in estimating the conditional probability above.

More generally, observe that for every n1 ∈ {n0, . . . , N},{
max

n0≤n≤N
ξnew(n∆t,Xn0,x0

n ) ≥ n1

N

}
=

{
max

n1≤n≤N
Φ(Xn0,x0

n ) > a

}
.
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The construction of the score function (13) is associated to the following family of nested

events: {
max

n0≤n≤N
ξnew(n∆t,Xn0,x0

n ) ≥ 1

}
⊂ . . . ⊂

{
max

n0≤n≤N
ξnew(n∆t,Xn0,x0

n ) ≥ n1

N

}
⊂ . . . ⊂

{
max

n0≤n≤N
ξnew(n∆t,Xn0,x0

n ) ≥ 0

}
,

which equivalently may be rewritten as

{Φ(Xn0,x0
N ) > a} ⊂ . . . ⊂

{
max

n1≤n≤N
Φ(Xn0,x0

n ) > a

}
⊂ . . . ⊂

{
max

n0≤n≤N
Φ(Xn0,x0

n ) > a

}
.

In the selection procedure, the intervals [n1∆t, N∆t] are iteratively reduced (by increasing

the left end point of the interval), until they ultimately contain only the point N∆t (the

right end point of the interval which remains fixed).

To conclude, we mention that the construction given by (13) can be generalized as follows.

Let a : [0, T ]→ R be a non-decreasing function, such that a(T ) = a. Define

ξanew(n∆t, x) =
(
Φ(x)− a(n∆t)

)
1Φ(x)≤a(n∆t) +

n∆t

N∆t
1Φ(x)>a(n∆t). (14)

The score function ξnew defined by (13) is a particular case of (14), with a(t) = a. Optimizing

the choice of the function a may help improve the efficiency of the algorithm. Notice that

condition (12) is satisfied with ξ = ξanew. We refer to Figure 2 for a schematic representation

of this score function.

C. The optimal score function: the committor function

For the general setting presented in Section III A where ones want to estimate P(τB < τA),

the committor function is defined as z 7→ Pz(τB < τA), where the upperscript z refers to the

initial condition of the process Z. In17, it is shown that, in a continous-time setting, the

asymptotic variance (as the number of replicas nrep goes to infinity) of AMS algorithm is

minimized when using the committor function as the score function. It is thus interesting

to look at what the committor function looks like in our context.

In our context, the committor function is given by

ξcom(n∆t, x) = P
(
Φ(Xn,x

N ) > a
)
. (15)
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FIG. 2. Level lines of the score function (t, x) 7→ ξanew(t, x), with a(t) = atT−1, and Φ(x) = x,

a = 1, T = 1.

For the discussion, it is more convenient to consider the continuous-time version ξcom(t, x) =

P
(
Φ(X t,x

T ) > a
)
, for t ∈ [0, T ], that we still denote ξcom with a slight abuse of notation. Recall

that ua(t, x) = P
(
Φ(X t,x

T ) > a
)

= ξcom(t, x) satisfies the Kolmogorov backward equation (6),

as explained in Section II.

As mentioned above, the asymptotic variance (as the number of replicas nrep goes to

infinity) of AMS algorithm is minimized when using the committor function as the score

function17. The asymptotic variance is then −p2 log(p)
nrep

, where p is the probability which

is estimated. The analysis of the AMS algorithm in the ideal case, i.e. when using the

committor function as a the score function, has been performed in many works9,13,14,28.

Of course, in practice, the committor function is unknown and the asymptotic variance

depends on the chosen score function. It has been proved17 that the asymptotic variance is

always bounded from above by 2p(1−p)
nrep

, for any choice of the score function, where we recall

that the asymptotic variance of the vanilla Monte-Carlo method is p(1−p)
nrep

. This can be seen

as a sign of the robustness of the AMS approach to estimate rare event probability (contrary

to importance sampling method which may result in a dramatic increase of the asymptotic

variance compared with the vanilla Monte-Carlo method).

For simple Gaussian models, namely when X is a Brownian Motion, an Ornstein-

Uhlenkeck process, or a drifted Brownian Motion, it is possible to compute analytically

the committor function. This is useful to validate algorithms on test cases, as will be il-

lustrated in Section V. Figure 3 represents the level lines of the committor function for a

14
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FIG. 3. Level lines of the committor function (t, x) 7→ ξcom(t, x), in the Brownian Motion case

X(t) = B(t), with a = 1 and T = 1.

one-dimensional Brownian Motion (with T = 1 and a = 1). In that case,

ξcom(t, x) = 1− F
(
a− x√
T − t

)
,

where F is the cumulative distribution function of the standard Gaussian distribution

N (0, 1), to be compared to the level sets of ξnew and ξanew on Figures 1 and 2. This form

leads to define other families of appropriate score functions:

ξ(t, x) = 1− F
(
φ(t, x)

)
where φ(t, x) →

t→∞
(−∞)1Φ(x)>a+(+∞)1Φ(x)<a. But the efficiency depends a lot on the choice

of φ. In practice, we did not observe much gain in our numerical experiments, compared to

the score function ξnew introduced in the previous section.

Let us mention that various techniques have been proposed in order to approximate the

committor function, in particular in the context of importance sampling techniques for rare

events, since the committor function also gives the optimal change of measure. If diffusions

with vanishing noise are considered22,23,46, solutions of associated Hamilton-Jacobi equations

are good candidates to estimate the committor function. See also42 for approximations

based on coarse-grained models. Whether such constructions are possible when considering

temporal averages, instead of the terminal value of the process is unclear.
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V. NUMERICAL SIMULATIONS

Let p denote the rare event probability of interest. An estimator of p is calculated as

the empirical average over independent realizations of the AMS algorithm, given a choice

of score function ξ. The main objective of this section is to investigate the behavior of

the algorithm when choosing ξ = ξnew given by (13). A comparison with the vanilla score

function ξ = ξstd given by (10) is provided.

Let nrep ∈ N denote the number of replicas, and let M ∈ N, and
(
p̂m
)

1≤m≤M be the

output probabilities of M independent realizations of the AMS algorithm. We report the

values of the empirical average

p̂ =
1

M

M∑
m=1

p̂m,

and of the empirical variance σ̂2 = 1
M−1

∑M
m=1(p̂m− p̂)2. Confidence intervals are computed

as [
p̂− 1.96σ̂√

M
, p̂+

1.96σ̂√
M

]
,

assuming that the number of realizations M is sufficiently large to use the Gaussian, Central

Limit Theorem, regime.

Recall that E[p̂] = E[p̂1] = p, whatever the choice of the score function ξ and of the

number of replicas nrep, thanks to Theorem 1. The variance of the estimator and thus the

efficiency strongly depends on ξ. In the experiments below, the empirical variance σ̂2 is

compared with the optimal asymptotic variance −p
2 log(p)
nrep

for (adaptive) multilevel splitting

algorithms, which is obtained in the regime nrep → ∞, when choosing the (unknown in

general) committor function ξ = ξcom as the score function. The difference between the

empirical variance and the optimal one can be seen as a measure of how far the chosen score

function is from the committor.

In some of the numerical experiments below, the conditional probability

q = P
(

Φ(XN) > a
∣∣ max

0≤n≤N
Φ(Xn) > a

)
, (16)

is also estimated by

q̂ =
p̂

p̂max

,

where p̂max = 1
M

∑M
m=1 p̂max,m is the estimator of the probability

pmax = P
(

max
0≤n≤N

Φ(Xn) > a

)
, (17)
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which is estimated using the vanilla score function ξ = ξstd.

A. Validation using two Gaussian models

In this section, we validate the AMS alogorithm with various score functions on simple

models for which the probability of the rare event is known with arbitrary precision.

1. Brownian Motion

We follow here numerical experiments from46. Let d = 1, and consider the diffusion

process given by

dX(t) =
√

2β−1dW (t), X(0) = 0.1,

where
(
W (t)

)
t≥0

is a standard real-valued Wiener process.

The dynamics is discretized using the explicit Euler-Maruyama method, with time-step

size ∆t = 10−3 (notice that the numerical scheme gives here the exact solution):

Xn+1 = Xn +
√

2β−1∆tζn,

with X0 = X(0) = 0.1, where
(
ζn
)

0≤n≤N are independent standard Gaussian random vari-

ables.

The goal is to estimate the probability

p = P
(
|XN | > 1

)
.

This corresponds with the choice Φ(x) = |x|, a = 1, T = 1 so that N = T/∆t = 103.

Since X(t) = X(0) + W (t), the law of X(t) is a Gaussian distribution, and the value of

P(|X(1)| ≥ 1) can be computed exactly in terms of the cumulative distribution function of

the standard Gaussian distribution.

Two numerical experiments are reported below, using ξ = ξnew. First, in Table I, the

number of replicas is set equal to nrep = 102, and the empirical average is computed over

M = 104 independent realizations of the algorithm. Second, in Table II, the number of

replicas is set equal to nrep = 103, and the empirical average is computed over M = 103

independent realizations of the algorithm.
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β p̂ p (∆t = 0) confidence interval σ̂2 −p2 log(p)
nrep

2 3.199 10−1 3.197 10−1 [3.192 10−1, 3.205 10−1] 1.256 10−3 1.166 10−3

4 1.613 10−1 1.614 10−1 [1.608 10−1, 1.617 10−1] 5.275 10−4 4.751 10−4

8 4.978 10−2 4.983 10−2 [4.958 10−2, 4.998 10−2] 1.030 10−4 7.447 10−5

16 6.395 10−3 6.386 10−3 [6.353 10−3, 6.436 10−3] 4.449 10−6 2.061 10−6

32 1.631 10−4 1.645 10−4 [1.611 10−4, 1.651 10−4] 1.052 10−8 2.358 10−9

64 1.787 10−7 1.782 10−7 [1.721 10−7, 1.854 10−7] 1.139 10−13 4.935 10−15

128 2.501 10−13 3.011 10−13 [1.766 10−13, 3.235 10−13] 1.403 10−23 2.614 10−26

TABLE I. Brownian Motion, nrep = 102, M = 104.

β p̂ p (∆t = 0) confidence interval σ̂2 −p2 log(p)
nrep

2 3.196 10−1 3.197 10−1 [3.188 10−1, 3.203 10−1] 1.362 10−4 1.166 10−4

4 1.617 10−1 1.614 10−1 [1.612 10−1, 1.621 10−1] 5.456 10−5 4.751 10−5

8 4.983 10−2 4.983 10−2 [4.963 10−2, 5.002 10−2] 9.815 10−6 7.447 10−6

16 6.411 10−3 6.386 10−3 [6.371 10−3, 6.451 10−3] 4.242 10−7 2.061 10−7

32 1.634 10−4 1.645 10−4 [1.614 10−4, 1.655 10−4] 1.063 10−9 2.358 10−10

64 1.800 10−7 1.782 10−7 [1.740 10−7, 1.860 10−7] 9.360 10−15 4.935 10−16

128 3.045 10−13 3.011 10−13 [2.426 10−13, 3.664 10−13] 9.986 10−25 2.614 10−27

TABLE II. Brownian Motion, nrep = 103, M = 103.

These numerical experiments validate the algorithm using ξ = ξnew in the case of a one-

dimensional Brownian Motion. The empirical variance σ̂2 is much smaller than p(1−p)
nrep

which

would be obtained using a naive Monte-Carlo strategy (using nrep independent replicas). It

is observed that the ratio between the empirical and the optimal variances increase when

p decreases, but in practice this increase only has a limited impact and the new algorithm

remains effective.
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2. Ornstein-Uhlenbeck

We consider here an example taken from49. Let d = 1, and consider the diffusion process

given by

dX(t) = −X(t)dt+ dW (t), X(0) = 0.

The dynamics is discretized using the explicit Euler-Maruyama method, with time-step

size ∆t = 10−3:

Xn+1 = Xn −∆tXn +
√

∆tζn,

withX0 = X(0) = 0, where
(
ζn
)

0≤n≤N are independent standard Gaussian random variables.

The goal is to estimate the probability

p = P
(
XN > a

)
,

for different values of a. This corresponds with the choice Φ(x) = x. The value of T is set

to T = 2 so that N = T/∆t = 2000.

In this numerical experiment, the number of replicas is set equal to nrep = 102, and the

empirical average is computed over M = 104 independent realizations of the algorithm. The

estimator p̂new of p and the empirical variance σ̂2
new are obtained using the score function

ξ = ξnew. The estimator p̂std and the empirical variance σ̂2
std are obtained using the vanilla

splitting strategy, with reaction coordinate ξ = ξstd. The value of the probability p for the

continuous time process, and the optimal variance −p
2 log(p)
nrep

are also reported for comparison.

a p̂new p̂std p (∆t = 0) σ̂2
new σ̂2

std
−p2 log(p)

nrep

2.8 3.216 10−5 3.252 10−5 3.213 10−5 2.377 10−10 3.327 10−10 1.068 10−10

2.9 1.756 10−5 1.728 10−5 1.742 10−5 7.917 10−10 1.009 10−10 3.325 10−11

3.0 9.341 10−6 9.300 10−6 9.260 10−6 2.411 10−11 5.832 10−11 9.937 10−12

3.1 4.857 10−6 4.826 10−6 4.827 10−6 7.011 10−12 8.482 10−12 2.852 10−12

3.2 2.486 10−6 2.449 10−6 2.468 10−6 1.984 10−12 2.475 10−12 7.864 10−13

TABLE III. Ornstein-Uhlenbeck, T = 2. Comparison of the new and of the vanilla splitting

algorithms. nrep = 102, M = 104.
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The results of numerical experiments with T = 4 and T = 8 are reported below. The

quantity

r̂ =
1

M

M∑
m=1

1p̂m>0

is also reported, when the vanilla score function is used. This is the proportion of the

independent realizations of the algorithm which contribute in the empirical average. This

proportion depends on the conditional probability q (see (16)): it may happen that the

nrep replicas obtained at the final iteration all satisfy XN ≤ 1, even if by construction they

all satisfy max
0≤n≤N

Xn > 1. However, by construction (except if extinction of the system of

replicas happens, which has not been observed in this experiment), if the new score function

is used, r̂ is identically equal to 1. Observe that, when T goes to infinity, by ergodicity of

the process, pmax → 1 (see (17) for the definition of pmax), whereas q and p converge to a

non trivial probability. Thus, when T goes to infinity, it is expected that r̂ will be equal to 0

if M is too small, when using the vanilla strategy with ξ = ξstd. The conditional probability

q is also estimated: q̂ = 0.07 when T = 2, q̂ = 0.02 when T = 4, q̂ = 0.01 when T = 8.

a p̂new p̂std p (∆t = 0) σ̂2
new σ̂2

std
−p2 log(p)

nrep
r̂

2.8 3.743 10−5 3.789 10−5 3.740 10−5 7.106 10−10 1.089 10−9 1.426 10−10 0.85

2.9 2.052 10−5 2.069 10−5 2.049 10−5 2.438 10−10 3.484 10−10 4.532 10−11 0.83

3.0 1.104 10−5 1.124 10−5 1.101 10−5 7.540 10−11 1.147 10−10 1.384 10−11 0.81

3.1 5.822 10−6 5.856 10−6 5.805 10−6 2.412 10−11 3.584 10−11 4.062 10−12 0.78

3.2 3.022 10−6 3.016 10−6 3.002 10−6 7.452 10−12 9.964 10−12 1.146 10−12 0.75

TABLE IV. Ornstein-Uhlenbeck, T = 4. Comparison of the new and of the vanilla splitting

algorithms. nrep = 102, M = 104.

To conclude this section, note that on this example, the AMS algorithms applied with the

vanilla and the new score functions have a similar quantitative behavior in terms of asymp-

totic variance. However, their qualitative properties are different. When the conditional

probability q gets small, the advantage of the new score function is the fact that the output

p̂ is always positive, so that even with a few realizations, one gets a rough but informative

approximation of the target probability.
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a p̂new p̂std p (∆t = 0) σ̂2
new σ̂2

std
−p2 log(p)

nrep
r̂

2.8 3.792 10−5 3.714 10−5 3.751 10−5 1.696 10−9 2.435 10−9 1.434 10−10 0.54

2.9 2.036 10−5 2.071 10−5 2.055 10−5 5.439 10−10 8.289 10−10 4.557 10−11 0.51

3.0 1.103 10−5 1.128 10−5 1.104 10−5 1.843 10−10 2.745 10−10 1.392 10−11 0.49

3.1 5.915 10−6 5.968 10−6 5.824 10−6 5.599 10−11 8.457 10−11 4.089 10−12 0.47

3.2 2.978 10−6 3.022 10−6 3.013 10−6 1.639 10−11 2.368 10−11 1.154 10−12 0.43

TABLE V. Ornstein-Uhlenbeck, T = 8. Comparison of the new and of the vanilla splitting algo-

rithms. nrep = 102, M = 104.

B. Drifted Brownian Motion

We here considers numerical examples taken from 10,40. Let d = 1, and consider the

diffusion process given by

dXt = −αdt+
√

2β−1dW (t), X(0) = 0.

The dynamics is discretized using the explicit Euler-Maruyama method, with time-step size

∆t = 10−2 (which gives again the exact solution in this simple case):

Xn+1 = Xn − α∆t+
√

2β−1∆tζn,

withX0 = X(0) = 0, where
(
ζn
)

0≤n≤N are independent standard Gaussian random variables.

The goal is to estimate the probability

p = P
(
XN > 1

)
,

thus Φ(x) = x, a = 1. One considers the final time T = 1, so that N = T/∆t = 102. The

value of α is set equal to α = 4. As in the previous example, the value of p is easy to get

using the fact that XN is Gaussian.

In this numerical experiment, see Table VI, three choices of score functions are considered.

The number of replicas is nrep = 103. First, the estimator p̂new and the empirical variance

σ̂2
new are obtained using ξ = ξnew, with a sample size M = 4.104. Second, the estimator

p̂new,a and the empirical variance σ̂2
new,a are obtained using ξ = ξanew with a(t) = at

T
, with

a sample size M = 4.105. Finally, the estimator p̂std and the empirical variance σ̂2
std are
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obtained using ξ = ξstd, with a sample size M = 4.104. The sample sizes are chosen such

that the total computational cost is of the same order for the three methods.

β p̂new p̂new,a p̂std p σ̂2
new σ̂2

new,a σ̂2
std

−p2 log(p)
nrep

r̂

1 2.037 10−4 2.036 10−4 2.033 10−4 2.035 10−4 1.572 10−9 5.734 10−9 3.525 10−9 3.519 10−10 0.99

2 2.843 10−7 2.870 10−7 2.878 10−7 2.867 10−7 4.714 10−14 2.348 10−12 9.527 10−14 1.238 10−15 0.69

3 4.613 10−10 4.325 10−10 4.705 10−10 4.571 10−10 1.817 10−18 2.197 10−17 3.084 10−18 4.493 10−21 0.11

4 7.620 10−13 6.975 10−13 7.582 10−13 7.687 10−13 5.034 10−23 4.388 10−22 8.343 10−23 1.648 10−26 0.01

TABLE VI. Drifted Brownian Motion, β ∈ {1, 2, 3, 4}, Comparison of two versions of the new

splitting algorithm and of the vanilla splitting algorithm.

Since the sample size is not the same for the three examples of score functions in Table VI,

the values of the empirical variances σ̂2 should be taken with care when comparing the

methods. One would rather compare the values of σ̂2

M
. Then one concludes that the best

performance is obtained when using ξ = ξanew. The vanilla strategy, with ξ = ξstd, seems to

behave quantitatively the same as when ξ = ξnew. However, the values of the proportion r̂

of realizations such that p̂m 6= 0 is not zero is also reported, when ξ = ξstd (by construction,

r̂ = 1 for the first two cases). This means that if M was decreased (for instance, M of the

order 102 for β = 4), then the output of the experiment would be p̂std = 0.

As a consequence, the new algorithm clearly overcomes the limitation of the vanilla

strategy when ξ = ξstd. However, the score functions are far from being optimal, as revealed

by the comparison with the optimal variance.

C. Temporal averages for an Ornstein-Uhlenbeck process

In this section, we consider an example taken from24. Consider the one-dimensional

Ornstein-Uhlenbeck process X, which is the solution of the SDE

dX(t) = −X(t)dt+
√

2β−1dW (t), X(0) = 0,

and define the temporal average

Y (T ) =
1

T

∫ T

0

X(s)ds.
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More generally, set Y (t) = 1
t

∫ t
0
X(s)ds, for t ∈ (0, T ] and Y (0) = 0.

The discretization is performed using the explicit Euler-Maruyama method, with time-

step size ∆t = 5. 10−3: for n ∈ {0, . . . , N} with N∆t = T ,

Xn+1 = (1−∆t)Xn +
√

2β−1∆tζn, Yn =
1

n

n∑
m=1

Xm,

with X0 = Y0 = 0. Note that Y satisfies a recursion formula Yn+1 = (1− 1
n+1

)Yn + 1
n+1

Xn+1.

The number of replicas is set equal to nrep = 103 and the sample size to compute empirical

averages is M = 102.

In this section, the probability which is estimated is

p(T, a) = P(YN > a).

The associated estimator is denoted by p̂(T, a) and the empirical variance by σ̂2(T, a).

In the large time limit T → ∞, since the law of Y (T ) converges to a centered Gaussian

with variance 1, Y (T ) satisfies a large deviation principle, with rate function I defined by:

for all a > 0,

lim
T→∞

− 1

T
log
(
P
(
Y (T ) > a

))
= I(a) =

a2

4
.

In the numerical experiment, we illustrate the potential of the AMS algorithm to estimate

the large deviations rate function. Notice that in the large T limit, the probability is

extremely small and in practice cannot be estimated by the vanilla splitting strategy. The

estimate of the rate function Î(a) is obtained by a regression procedure, see Figure 4. In

addition to statistical error, two sources of numerical error are identified: values of T may

not be sufficiently large, and the discretization of the dynamics and of the computation of

temporal averages introduces a bias. The results, reported in Table VII, show the interest

of this approach to estimate large deviations rate functionals.

D. Lorenz model

We consider the following stochastic version of the 3-dimensional Lorenz system, see5,32

for similar numerical experiments:
dXβ

1 (t) = σ
(
X2(t)−X1(t)

)
dt+

√
2β−1dW (t),

dXβ
2 (t) =

(
rX1(t)−X2(t)−X1(t)X3(t)

)
dt,

dXβ
3 (t) = X1(t)X2(t)− bX3(t),
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a p̂(T = 25, a) p̂(T = 50, a) p̂(T = 100, a) p̂(T = 200, a) Î(a) a2

4

σ̂2(T = 25, a) σ̂2(T = 50, a) σ̂2(T = 100, a) σ̂2(T = 200, a)

0.4 7.28 10−2 2.12 10−2 2.22 10−3 2.75 10−5 0.045 0.040

− 2.02 10−5 3.25 10−6 1.27 10−7 3.85 10−11 − −

0.6 1.45 10−2 1.16 10−3 1.16 10−5 7.28 10−10 0.096 0.090

− 1.36 10−6 5.85 10−8 2.21 10−10 6.44 10−19 − −

0.8 1.76 10−3 2.57 10−5 6.12 10−9 2.73 10−16 0.169 0.160

− 8.01 10−8 3.32 10−10 1.44 10−16 1.98 10−31 − −

1.0 1.37 10−4 1.67 10−7 3.06 10−13 1.71 10−24 0.261 0.250

− 1.47 10−9 2.07 10−14 1.16 10−25 9.32 10−48 − −

1.2 6.21 10−6 4.83 10−10 2.71 10−18 2.88 10−34 0.373 0.360

− 1.40 10−11 6.69 10−19 3.49 10−35 5.21 10−67 − −

TABLE VII. Temporal averages for an Ornstein-Uhlenbeck process. nrep = 103 and M = 102

which depends on parameters σ, r, b and β. The parameters are given the following values

in this section: σ = 3, r = 26 and b = 1.

Consider first the deterministic case, i.e. β =∞. Then the system admits three unstable

equilibria, and one of them is

x? =
(√

b(r − 1),
√
b(r − 1), r − 1

)
= (5, 5, 25).

Let the initial condition be given by X∞(0) = x? + 1
2
(1, 1, 1). Then, one has the following

stability result5: for all t ≥ 0, Φ
(
X∞(t)

)
≤ 1, where

Φ(x) =
x2

1

(r + σ)2 b
σ

+
x2

2

(r + σ)2b
+

(
x3 − (r + σ)

)2

(r + σ)2
.

When noise is introduced in the system, i.e. β <∞, we are interested in the estimation

of the probability

P
(
Φ(Xβ(T )) > 1

)
,

with threshold a = 1.

In the numerical experiments,
√

2β−1 = 3, and the discretization is performed using

the explicit Euler-Maruyama method, with time-step size ∆t = 10−2. The sample size is

M = 104, and the number of replicas is nrep = 103.
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FIG. 4. Evolution of log
(
p̂(T, a)

)
as a function of T , for different values of a ∈ {0.4, 0.6, 0.8, 1.0, 1.2},

see Table VII.

T p̂ confidence interval σ̂2 −p̂2 log(p̂)
nrep

5 1.413 10−5 [1.388 10−5, 1.438 10−5] 1.648 10−10 2.230 10−12

10 2.607 10−5 [2.534 10−5, 2.681 10−5] 1.409 10−9 7.174 10−12

15 2.709 10−5 [2.609 10−5, 2.809 10−5] 2.592 10−9 7.718 10−12

20 2.594 10−5 [2.484 10−5, 2.704 10−5] 3.158 10−9 7.106 10−12

TABLE VIII. Lorenz model. nrep = 103 and M = 104

This numerical experiment thus illustrates the potential of the adaptive multilevel split-

ting algorithms introduced in this article, for applications to complex, nonlinear, stochastic

models.

E. Driven periodic diffusion

We finally consider an example taken from24. In this section, we consider the SDE on

the unit circle, i.e. on the torus T,

dX(t) =
(
−V ′(X(t)) + γ

)
dt+

√
2dW (t),
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where the potential energy function V (x) = cos(2πx) is periodic, and γ ∈ R. If γ 6= 0, this

is called a non-equilibrium process since the drift term −V ′(x) + γ is not the derivative of

a function defined on the torus T. In the remainder of this section, let γ = 1, and let the

initial condition in the simulation be X0 = 0. The discretization is performed using the

Euler-Maruyama method, with time-step size ∆t = 10−2.

We are interested in the behavior of XT

T
, when T →∞, more precisely we apply the AMS

algorithm to estimate

p(T, a) = P
(
X(T ) > aT

)
= P

(
X(T )

T
> a

)
.

Following the same approach as for the temporal averages of the Ornstein-Uhlenbeck process,

a large deviations rate function

I(a) = lim
T→∞

− 1

T
log
(
p(T, a)

)
,

is estimated, based on estimators of the probability p(T, a) for several values of T .

In this numerical experiment, we compare two ways of applying the AMS algorithm,

with the new score function ξnew but with different processes: considering either the process(
X(t)

)
0≤t≤T with the threshold aT , or the process

(
Y (t) = X(t)

t

)
0<t≤T , with the threshold

a. Numerical values for different choices of a, T and nrep, of the associated estimators

p̂X(T, a) and p̂Y (T, a), and of the empirical variances σ̂2,X(T, a) and σ̂2,Y (T, a) are reported

in Table IX below.

It is observed that σ̂2,Y (T, a) < σ̂2,X(T, a), but a fair comparison requires to take into

account the (average) computational cost. Thus the relative efficiency Eff(Y |X) of using

the process Y instead of X, is computed as the ratio

Eff(Y |X) =
σ̂2,Xcomp.time(X)

σ̂2,Y comp.time(Y )
,

where comp.time(X)
comp.time(Y )

is the ratio of the total computational times for the experiments using X

and Y respectively. The values of Eff(Y |X) in this numerical experiment are reported in

Table IX. We observe that Eff(Y |X) > 1 which means that the algorithm is more efficient

using the process Y than the process X. To have a comparison with the committor score

function, since the value of p(T, a) is not known, an approximation of the optimal variance

is computed using the estimator p̂Y (T, a).
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Estimators Î(a) of the large deviations rate function I(a) are estimated by a regression

procedure (with respect to T ) using the estimators p̂Y (T, a), for several values of a. The

numerical values are in excellent agreement with the numerical experiments in24. The AMS

algorithm introduced in this article can thus be an efficient tool to estimate large deviations

rate functions.

a T nrep p̂X(T, a) p̂Y (T, a) σ̂2,X(T, a) σ̂2,Y (T, a) −(p̂Y (T,a))2 log(p̂Y (T,a))
nrep

Eff(Y |X) Î(a)

0.8 100 102 8.483 10−2 8.489 10−2 7.136 10−4 2.487 10−4 1.777 10−4 1.0

− 200 − 2.647 10−2 2.776 10−2 1.832 10−4 3.519 10−5 2.762 10−5 1.7 0.0112

1 50 103 1.529 10−2 1.505 10−2 7.046 10−6 1.513 10−6 9.504 10−7 3.0

− 100 − 1.026 10−3 1.085 10−3 2.586 10−7 3.879 10−8 8.036 10−9 2.8 0.0526

1.25 50 103 1.374 10−4 1.311 10−4 1.227 10−8 1.355 10−9 1.537 10−10 4.9

− 100 − 8.941 10−7 1.017 10−7 1.048 10−13 1.585 10−15 1.665 10−16 35 0.189

TABLE IX. Estimates of P(XT > aT ) and of I(a) for the Periodic driven diffusion. The sample

size is M = 100.
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2D. Aristoff, T. Lelièvre, C. G. Mayne, and I. Teo. Adaptive multilevel splitting in molecular

dynamics simulations. In CEMRACS 2013—modelling and simulation of complex systems:

27



stochastic and deterministic approaches, volume 48 of ESAIM Proc. Surveys, pages 215–

225. EDP Sci., Les Ulis, 2015.

3S. Asmussen and P. Glynn. Stochastic simulation: algorithms and analysis, volume 57 of

Stochastic Modelling and Applied Probability. Springer, New York, 2007.

4S. K. Au and J. L. Beck. Estimation of small failure probabilities in high dimensions by

subset simulation. Journal of Probabilistic Engineering Mechanics, 16:263–277, 2001.

5J. L. Beck and K. M. Zuev. Rare-event simulation. Handbook of uncertainty quantification,

pages 1075–1100, 2017.

6Z. I. Botev and D. P. Kroese. Efficient Monte Carlo simulation via the generalized splitting

method. Stat. Comput., 22(1):1–16, 2012.

7Z. I. Botev, P. L’Ecuyer, G. Rubino, R. Simard, and B. Tuffin. Static network reliability

estimation via generalized splitting. INFORMS J. Comput., 25(1):56–71, 2013.

8F. Bouchet, J. Rolland, and E. Simonnet. A rare event algorithm links transitions in

turbulent flows with activated nucleations. ArXiv preprint arXiv:1810.11057, 2018.
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