3D model related to the publication: Billet G., Germain D., Ruf I., Muizon C. de, Hautier L. 2013. The inner ear of Megatherium and the evolution of the vestibular system in sloths.
Guillaume Billet, Damien Germain, Irina Ruf, Christian de Muizon, Lionel Hautier

To cite this version:
Guillaume Billet, Damien Germain, Irina Ruf, Christian de Muizon, Lionel Hautier. 3D model related to the publication: Billet G., Germain D., Ruf I., Muizon C. de, Hautier L. 2013. The inner ear of Megatherium and the evolution of the vestibular system in sloths.. MorphoMuseum, Association Palæovertebrata, 2015, 1 (2), pp.e3. 10.18563/m3.1.2.e3. hal-01923072

HAL Id: hal-01923072
https://hal.archives-ouvertes.fr/hal-01923072
Submitted on 9 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
3D model related to the publication: Billet G., Germain D., Ruf I., Muizon C. de, Hautier L. 2013. The inner ear of *Megatherium* and the evolution of the vestibular system in sloths.

BILLET G., **GERMAIN D.**, **RUF I.**, **MUIZON C. de** and **HAUTIER L.**

* CR2P - UMR 7207 CNRS, MNHN, Univ Paris 06, Paris, France
* Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
* Department of Zoology, University of Cambridge, Cambridge, UK
* Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, IRD, Cc 064; place Eugène Bataillon, 34095 Montpellier Cedex 5, France

* corresponding author: billet@mnhn.fr

Abstract: This contribution contains the 3D model described and figured in the following publication: Billet G., Germain D., Ruf I., Muizon C. de, Hautier L. 2013. The inner ear of *Megatherium* and the evolution of the vestibular system in sloths. Journal of Anatomy 123:557-567

Key words: bony labyrinth, *Megatherium*, sloth

Submitted 23.02.2015, Accepted 23.02.2015. doi: 10.18563/m3.1.2.e3

TECHNICAL AND SPECIMEN-RELATED PARAMETERS

<table>
<thead>
<tr>
<th>Specimen inventory number</th>
<th>MNHN.F.PAM 276</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>Megatherium americanum</td>
</tr>
<tr>
<td>Repository institution</td>
<td>Muséum National d’Histoire Naturelle, Paris</td>
</tr>
<tr>
<td>3D data acquisition institution</td>
<td>AST-RX platform, MNHN, Paris</td>
</tr>
<tr>
<td>3D data acquisition method</td>
<td>X-ray µCT</td>
</tr>
<tr>
<td>3D data acquisition facility model</td>
<td>v</td>
</tr>
<tr>
<td>3D data acquisition operator</td>
<td>AST-RX platform, MNHN, Paris</td>
</tr>
<tr>
<td>Voxel size of original dataset</td>
<td>0.0934 mm</td>
</tr>
<tr>
<td>Author of derived 3D surface model</td>
<td>Guillaume Billet</td>
</tr>
<tr>
<td>Model ID</td>
<td>M3#14_MNHN.F.PAM.276</td>
</tr>
</tbody>
</table>

Model short description: The specimen corresponds to a virtually reconstructed bony labyrinth of the right inner ear of the skull MNHN-F-PAM 276, attributed to the extinct giant ground sloth *Megatherium americanum*. The fossil comes from Pleistocene deposits at Rio Salado (Prov. Buenos Aires, Argentina). The bony labyrinth of *Megatherium* shows semicircular canals that are proportionally much larger than in the modern two-toed and three-toed sloths. The cochlea in *Megatherium* shows 2.5 turns, which is a rather high value within Xenarthra. Overall, the shape of the bony labyrinth of *Megatherium* resembles more that of extant armadillos than that of its extant sloth relatives.

METHODS

The inner ear was extracted within MIMICS (Materialize NV), using the segmentation threshold selection tool. The 3D model is provided in .ply format, and as such can be opened with a wide range of freeware.

ACKNOWLEDGEMENTS

Data presented in this work were produced through the technical facilities of the AST-RX platform, MNHN, Paris, and the 3D platform of the CR2P lab (UMR 7207) at the MNHN.

BIBLIOGRAPHY