3D models related to the publication: The hidden teeth of sloths: evolutionary vestiges and the development of a simplified dentition.

Lionel Hautier, Helder Gomes Rodrigues, Guillaume Billet, Robert Asher

To cite this version:
Lionel Hautier, Helder Gomes Rodrigues, Guillaume Billet, Robert Asher. 3D models related to the publication: The hidden teeth of sloths: evolutionary vestiges and the development of a simplified dentition.. MorphoMuseum, Association Palæovertebrata, 2016, 2 (2), pp.e1. 10.18563/m3.2.2.e1 . hal-01923070

HAL Id: hal-01923070
https://hal.archives-ouvertes.fr/hal-01923070

Submitted on 9 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract
This contribution contains the 3D models described and figured in the following publication: Hautier L., Gomes Rodrigues H., Billet G., Asher R.J., 2016. The hidden teeth of sloths: evolutionary vestiges and the development of a simplified dentition. Scientific Reports. doi: 10.1038/srep27763

Keywords: homology, ontogeny, sloths, vestigial teeth

Submitted:2016-04-28, published online:2016-06-14. doi: 10.18563/m3.2.2.e1

Table 1. List of associated models. All models stand as labelled three-dimensional reconstructions of the teeth, mandibles, maxillary and premaxillary bones.

<table>
<thead>
<tr>
<th>Model IDs</th>
<th>Taxon</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3#109_ZMB 41122</td>
<td>Bradypus variegatus</td>
</tr>
<tr>
<td>M3#110_ZMB 33812</td>
<td>Bradypus variegatus</td>
</tr>
<tr>
<td>M3#111_MNHN-ZM-MO-1995-326A</td>
<td>Bradypus variegatus</td>
</tr>
<tr>
<td>M3#112_MNHN-ZM-MO-1995-326B</td>
<td>Bradypus variegatus</td>
</tr>
<tr>
<td>M3#113_MNHN-ZM-MO-1902-325</td>
<td>Bradypus sp.</td>
</tr>
<tr>
<td>M3#114_MNHN-ZM-MO-1995-327</td>
<td>Bradypus sp.</td>
</tr>
<tr>
<td>M3#115_MNHN-ZM-MO-1882-625</td>
<td>Choloepus didactylus</td>
</tr>
</tbody>
</table>

INTRODUCTION
This contribution contains a selection of the 3D models (see Table 1) described and figured in the following publication: Hautier, L., Gomes Rodrigues, H., Billet, G., Asher, R.J. 2016. The hidden teeth of sloths: evolutionary vestiges and the development of a simplified dentition. In this study, we present new data on xenarthran prenatal dental ontogeny and identify some developmental criteria with which to recognize homologies with other mammalian teeth. Our developmental data for extant sloths directly supports the claim that their lower caniniform teeth are not homologous to canines of other mammals and that upper caniniforms are not homologous between the two-toed and the three-toed sloths (Hautier et al., 2016).

METHODS
AVIZO 7.1 (Visualization Sciences Group) software was used for visualization, segmentation and 3D rendering. The teeth, dentary, maxillary, and premaxillary bones were extracted within a “labelfield” module of AVIZO, using the segmentation threshold selection tool. The 3D models are provided in .ply format, and as such can be opened with a wide range of freeware. Additional flag and position files specific to ISE-MeshTools (Lebrun, 2014) are provided in order to visualize the 3D labelled models in standard orientation.

ACKNOWLEDGEMENTS
We are grateful to M. Herbin, C. Bens, G. Véron, A. Verguin, F. Renoult, C. Denys and J. Cuisin (Museum National d’Histoire Naturelle, Paris), Peter Giere and Frieder Mayer (Museum für Naturkunde, Berlin), and their colleagues for access to comparative material. N. Karjilov (Helmholtz Zentrum Berlin), M. García-Sáñez (AST-RX platform, Muséum national d’Histoire naturelle, Paris, France), F. Landru, C. Morlier, G. Guillemaud and all the staff from Viscom SARL (St Ouen l’Aumône, France) provided generous help and advice with CT acquisition. This work has benefited from an “Investissements d’Avenir” grant managed by Agence Nationale de la Recherche, France (CEBA, ref. ANR-10-LABX-25-01).

Lebrun, R., 2014. ISE-MeshTools, a 3D interactive fossil reconstruction freeware. 12th Annual Meeting of EAVP, Torino, Italy