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Abstract—In simulation-based optimization the objective func-
tion is often computationally expensive for many optimization
problems. Surrogate-assisted optimization is therefore a major
approach to efficiently solve them. One of the major issues
of this approach is how to integrate the approximate models
(surrogates or metamodels) in the optimization process. The
challenge is to find the best trade-off between the quality (in
terms of precision) of the provided solutions and the efficiency
(in terms of execution time) of the resolution. In this paper,
we investigate the evolution control that alternates between the
simulator and the surrogate within the optimization process. We
propose an adaptive evolution control mechanism based on the
distance-based concept of confident regions. The approach has
been integrated into an ANN-assisted NSGA-2 and experimented
using the ZDT4 multi-modal benchmark function. The reported
results show that the proposed approach outperforms two other
existing ones.

Index Terms—Surrogate-modeling, multi-objective optimization,
evolution control, direct fitness replacement, machine learning.

I. INTRODUCTION

In simulation-based optimization, the evaluation of
the fitness function relies on complex simulations often
characterized by a high computational cost [1]. For many
engineering problems, the dimensionality is high, the cost
function is non-convex and no gradient information is
available. For these problems, Evolutionary Algorithms (EAs)
have proven to be efficient optimization techniques [2].
The idea behind these algorithms is to simulate the natural
evolution of species. An initial population of solutions,
generated by sampling the search space, is iteratively
evolved by selecting parent individuals, mating them and
replacing them by the generated offsprings if they improve
the considered objectives. The process usually leads to a high
number of fitness assessments. Improving the design of a
manufactured product, for instance, could require to evaluate
a great number of different models implying a great number
of simulator calls and making the procedure unrealizable
given certain computational time budgets. It is worth noticing
that the computational time budget can be expressed in
terms of number of simulator calls since other operations
are negligible in a lot of engineering cases such as studies

involving Computational Fluid Dynamic (CFD) [3].

A way to circumvent such computational constraints is
to resort to Meta-Models (MMs). Meta-models, also called
surrogate-models, aim at emulating and simplifying an actual
model making its evaluation cheaper but at the cost of a
coarser accuracy. The trade-off between the accuracy of the
MM and the computational costs entailed to build it has to
be controlled to respond to the final purpose. The term model
management is usually used to refer to this task.

Indeed, when addressing meta-modeling, several
possibilities can be examined [4] as the number of MMs,
the way they collaborate with each other, their fidelity, their
type, the region of the decision space they act upon and
the objective they emulate but also and more importantly
the way they cooperate with the real fitness function and
the EA. In this sense, a taxonomy has been proposed by
A.Diaz-Manriquez et al. [5] to categorize the studies of
this field, with an emphasis on fitness replacement. Since
the surrogate-model is constructed based on the real fitness
function and aims at substituting this last, a strategy has
to be devised to determine whether calling the real fitness
function or the MM at a given step of the evolution, and when
building or updating the surrogate. Two fitness replacement
modes can be envisioned: Direct Fitness Replacement (DFR)
and Indirect Fitness Replacement (IFR). In the former, it is
assumed that a surrogate-evaluated solution carries the same
degree of accuracy that a real-evaluated one and the EA is
allowed to embed it into the population at the replacement
stage of the evolution. In the latter, the EA appeals to the
approximated model so as to give a lift to exploitation, letting
it only proposing new offsprings then re-evaluated with the
original fitness function if they are selected. The drawback
of the first approach is to converge toward a false optimum
while the second approach might converge prematurely.

In DFR, the MM is used alternately with the simulator
according to an alternation criterion, or evolution control.
For low dimensional problems, the EA may exclusively call
the surrogate-model previously built thanks to simulations



performed in the past. This concept is called No Evolution
Control (NEC) since it is decided a priori that only the
MM serves the evolution. A particular attention has to
be paid to the accuracy of the approximated model. For
problems of higher dimension, it could be better to alternate
between the fitness functions during the evolution. A control
parameter sets the percentage of original and surrogate
evaluations performed at a generational or individual level.
This strategy is referred to as Fixed Evolution Control (FEC).
The advantage is the opportunity of updating the surrogate
through the search and thus refining its precision on new
regions of interest. Nevertheless, the disadvantage is the
adding of a user-defined parameter for the control. To avoid
this drawback, the Adaptive Evolution Control (AEC) suggests
to test the accuracy of the MM as an alternation criterion.
The issue that arises is how to evaluate the surrogate precision.

In this paper, an heuristic is proposed to define an alternation
criterion for AEC between the MM and the original fitness
function based on the known sub-regions of the decision
space. In Section 2, a review of some studies illustrating the
different model management approaches is presented. Section
3 is dedicated to introduce the Non-dominated Sorting Genetic
Algorithm (NSGA-II) for Multi-objective Optimization (MO)
and Artificial Neural Network (ANN) for surrogate modeling.
In Section 4, the confidence regions AEC is proposed along
with a detailed presentation of two evolution controls from past
studies. Preliminary experiments and results are reported in
Section 5, and conclusions and some directions about further
works are made in Section 6.

II. RELATED WORKS

A cooperation strategy between elitist NSGA-II and an
ANN is proposed in [6] and validated in a cantilever plate
optimal shape problem according to two objectives. The
percentage of real fitness evaluations and surrogate fitness
evaluations is fixed a priori. For a predefined number of ()
generations, the n first are produced based on the real fitness
function and the remaining ones based on the surrogate fitness
function. The model management considered is DFR with a
FEC.

The drawbacks of the previous work is that MM precision
is not taken into account to determine the values of the
parameters () and n. From this observation, A.Gaspar-
Cunha and A.Vieira offer to take advantage of the ANN
approximation error to switch from one fitness function to the
other [7]. The evolution control thus becomes adaptive. The
real optimization problem considered in this study consists
in maximizing the mass and the mixing degree of a screw
produced by a single-screw polymer extruder.

In [8], a combination of different surrogate-models is pre-
sented, in an IFR flavor, to evaluate candidate solutions chosen
randomly in the decision space. The best candidate solution is
then re-evaluated with the real fitness function and compared

to the best solution found so far. This single-objective non-
evolutionary optimization technique is validated solving a 12-
dimensional ground water bioremediation problem where the
objective is to decontaminate ground water at minimum cost.
The fitness function evaluation requires a system of nonlinear
partial differential equations reflecting both water flow and
chemical reactions to be treated and takes up to 4 minutes.

In [1], a MO strategy based on an iteratively enhanced
Kriging meta-model coupled to a fully parallel 3D CFD solver
is proposed to improve the design of gas turbine engines. Krig-
ing, also named Gaussian Processes, is a regression method
appreciated for the uncertainty measure it provides on the
predictions. Predictions and uncertainties are combined into
a new function on which local search is performed to propose
new candidate solutions. The model management applied here
is IFR since candidate solutions are all evaluated with the
solver. The total number of CFD evaluations is one of the
stopping criteria of the whole search.

C.Poloni et al. propose an approach based on the collab-
oration between a two-objective Genetic Algorithm (GA), a
Conjugate Gradient (CG) algorithm, an ANN as surrogate-
model and a 3D Navier-Stokes CFD solver to enhance the
hydro-dynamism of a sailing yacht [9]. The GA is first run
to provide both an approximation of the Pareto front and an
initial database to construct the ANN. The second step of
the search is carried by CG, initialized thanks to the Pareto
approximation, in cooperation with the ANN which is updated
after each step. The model management applied here is IFR
since, at each CG step, the solver is called to evaluate the
proposed solution.

Scheduling problems are also tackled by MM-assisted
optimization as shown in [10] where ANN approximations
and uncertainties are used to optimize a factory production
planning maximizing devices utilization and minimizing
tardiness. In a parallel EA, offsprings are evaluated and
ranked thanks to the meta-model, the ones marked with the
better rank are re-evaluated with the original cost function
before to be inserted into the population. Given that the
population is solely constituted of solutions evaluated with
the real fitness function, the model management is qualified
as IFR.

To improve the aerodynamism of an airfoil, an ANN
surrogate-model assists a GA based on a 3D flow simulator
in [3]. The first generations are obtained with the simulator
and evaluations are kept to built the ANN. Then, GA relies
on the ANN and only the best solutions obtained at the end
of a generation are re-evaluated with the simulator. The model
management is then a mix between DFR and IFR.

M.Mlakar et al. combine Gaussian Processes with a
multi-objective differential evolutionary algorithm [11]. The
alternation between the surrogate and the real fitness function
happens at the replacement step of the EA and depends on
the uncertainty upon the prediction of the offspring objective
values. If the original version of the MM is good enough, the
model management is a DFR, otherwise it can be defined as



IFR or as a mix of both fitness replacements. Optimization
of the quality of cast steel, is chosen to validate the strategy.
Given a model of the steel casting process, the goal is to
determine the best input values of the simulator to obtain
the desired outputs. It is indicated than one simulation lasts
approximately 4 minutes on a single computing core.

Inspired by [6] and [7], an heuristic-based adaptive evo-
lution control is presented in this paper and compared to
the previous studies. NSGA-II and ANN are chosen as MO
algorithm and surrogate model respectively.

ITI. BACKGROUND ON NSGA-II AND ANN
A. Comparison in multi-objective optimization

In multi-objective optimization the comparison between
two solutions is performed according several criteria. A set
of dedicated comparison operators are available [12] in order
to assist the decision maker in his/her final choice.

Given a, b two decision vectors, from the decision space, and
X a set of decision vectors containing a, it is stated that:

e a dominates b iff a is at least better than b regarding
one criterion and as good as b regarding the remaining
criteria.

e a and b are incomparable iff no solution dominates the
other and there exists at least one criterion whose value
differs from a to b.

e a is a non-dominated solution of X iff there is no solution
in X that dominates a.

These definitions still stand for objective vectors picked up
within the objective space.

Given a population of solutions, the subset composed
of non-dominated individuals, such that one non-dominated
individual is incomparable with all other non-dominated
individuals, is called the Non-Dominated Front (NDF). To
confront NDFs with each other, the accuracy of the solutions
just as their spread and distribution over the objective space
can be analyzed [13]. The best NDF for a given problem is
called the Pareto front of this problem.

B. Non-dominated Sorting Genetic Algorithm (NSGA-II)

The idea behind population-based evolutionary algorithms
for optimization is to simulate the natural evolution of species.
Algorithm 1 gives the general skeleton of EAs emphasizing the
main operations performed over the population: initialization,
selection, reproduction (mating) and replacement. The actual
choice of operators and their parameters depends on the
desire trade-off between diversification, understood as the
exploration of the entire search space, and intensification,
the exploitation of solution characteristics encountered in a
promising region of the search space.

The particularity of NSGA-II is the use of the crowded-
comparison operator both at the selection and replacement
step [14]. When comparing two solutions, both the accuracy,

Algorithm 1 Basic sketch of population-based evolutionary
algorithms.
Initialize a population P
while the stopping criterion is not met do
Select a set of parents from P
Mate the parents to father a set of offsprings
Evaluate the offsprings
if the replacement criterion is met then
Replace the parents by the offsprings to form the new
population
end if
end while
return Non-dominated front from the last population

represented by the rank of the NDF the solutions belong to,
and the distribution, shown by the crowded distance are taken
into account. To the NDF of the whole population is assigned
rank 1 (the best), then after removing solutions of rank 1,
the NDF of the remaining population is ranked 2. Repeating
the procedure allows the individuals to be classified by group
depending on their accuracy. To distinguish solutions of
the same rank, the crowded distance indicating the average
distance from one solutions to its closest neighbors along each
objective is computed. A higher value of the crowded distance
exhibits a solution with a wider empty neighborhood, which
is attractive to enhance the distribution of the population.

In NSGA-II, crossover and mutation are the reproduction
operators employed to generate offsprings from parents.
Crossover combines good features extracted from each
parent to produce a child thus increasing intensification
while mutation disrupts the child by modifying the features
inherited from its parents thus reinforcing diversity. A lot of
versions of these operators have been proposed in order to
reach different shade of exploitation and exploration under
the constraint of producing valid candidate solutions [2].

C. Artificial Neural Networks (ANN)

Artificial Neural Networks are often selected as surrogate
models thanks to their approximation universality [15] and
ease of update. An ANN architecture is composed of units
organized in 1-D fully connected layers: input layer, hidden
layers and output layer. One unit of a given layer is linked
with all units from the previous and next layers by a weighted
connection. Each unit is also equipped with an activation
function f supposed to be the same for all hidden units in
this application. Training a network requires a set of sample
data called training set and composed of several inputs with
corresponding outputs. Inputs flow through the layers such that
x| the input of layer I;, is given by:

2 = WD f (x4 1) )

with W01 and p(—1 respectively the matrix of weights
and the vector of biases from the [;_; — [; connection.
The output layer gives finally an estimation of the expected



output. A gradient descent (GD) algorithm is used iteratively
to improve the estimation accuracy by updating weights and
biases thanks to backpropagation [16].

The way data is fed into the network during the training
phase is of important relevance for the training quality. Two
training procedures have been proposed. The first, called
batch training, consists in gathering training data in batches
and update the ANN’s weights once for the whole batch.
The second, called iterative learning, considers one sample
at a time. On the one hand, all the batch samples contribute
together to modify the ANN weights and biases whereas on
the other hand, only one sample leads to the update.

Hyperparameters (such as the number of neurones, number
of layers and learning rate) and methods (such as GD algo-
rithm, sample normalization and early stopping) specializing
the ANN are difficult to be tuned because of the number of
possible configurations and the problem dependence.

IV. A NEW CONFIDENCE-REGIONS ADAPTIVE EVOLUTION
CONTROL

The general purpose of the adaptive evolution control
proposed hereafter is to reduce the number of real fitness
assessments while keeping a good convergence toward the
Pareto front as well as preserving a good spread of solutions.
Strategies proposed in [6] and [7] are reproduced with
NSGA-II as EA and ANN as MM for comparison purposes.

In the DFR-FEC strategy, called B_()_n in [6] and
reproduced in [7], cycles (shown in Figure 1), each producing
(p + q) generations, are run until the real evaluations budget
is exhausted. The first p populations are fathered using the
real fitness function only, then the surrogate is constructed
or updated and the last g generations are created relying on
the surrogate only. The determination of the parameters p
and ¢ such as the training mode are let to the user. Except
for the first p generations of the first cycle, the population
can be composed of individuals evaluated with the surrogate
function, consequently a low value of p with regard to ¢
provokes a low accuracy on the surrogate predictions and
may drive the search in a wrong direction. Conversely, a high
value of p, particularly at the beginning of the EA, leads
to restricting the search to a narrow location and low diversity.

The model management suggested in [7], named ey — EC
in this paper, offers to automatically adapt the number ¢ of
MM-based generations depending on the approximation error
commited by the ANN. For a given cycle ¢, p generations
are first built with the real fitness function, the surrogate is
then built or updated and the very next generation is obtained
with the surrogate. During this latter a few number M of
solutions are assessed with both fitness functions to compute
the approximation error ey . If exny > e, with ey a given
threshold, the surrogate is not trusted any more and the
cycle ends with ¢; = 1, otherwise the same procedure is

REAL
EVALUATIONS

REAL eNN>e0
0 EVALUATIONS or

Update < Update

SURROGATE
EVALUATIONS ~ eNN<e0
M real evalutions

for eNN computation

SURROGATE
EVALUATIONS

Fig. 1. Cycle of generations. B_Q_n — EC on the left and ey — EC on
the right.

repeated. In order to ensure the end of a cycle, a limit ¢4,
is imposed on the number of surrogate-based generations.
This trust criterion alleviates the probable damages sustained
by an inaccurate surrogate with the drawback of defining
the parameters p, ¢mqz, €0 and M. Moreover, the selection
of individuals to be assessed with the real fitness function
to compute eypy is carried out randomly so that these
evaluations might not benefit the next surrogate update.

In covariance-based MM such as Kriging [11], the expected
error on predictions is low at points used to construct the
surrogate and increases when moving away from these known
points. Even if ANN is not an interpolation method, a similar
behavior could be expected assuming an acceptable training
error. Based on this observation and on the two methods de-
picted previously, it is proposed to alternate between the fitness
functions at an individual level depending on the distance
between the candidate individual and the known solutions. In
other terms, given S* the set of solutions evaluated with the
original cost function that have been used to construct the
surrogate and s a candidate solution to be evaluated. If there
exists sx € S* such that d(s, s*) < e then the candidate solu-
tion resides within the confidence region where the surrogate
is trusted and s is thus assessed with the surrogate, otherwise,
the simulator is called. The union of the hyperspheres H with
center s* and radius € in the decision space is defined as the
confidence region C'R:

CR:{(DifS*:(Z)

Uses+H(s*, €) otherwise

The fact that the alternation criterion is tested at an individual-
level and not at a population-level reduces greatly the probable
damages sustained by an inaccurate surrogate that is to con-
verge to a false Pareto front. Another advantage of this method
is the saving in real evaluations provided by removing the need
to compute the approximation error ey .

In [7], training is realized in batch mode with a train-
ing set composed of 50% of all available real evaluations.
The underlying hypothesis is to build a strong surrogate on
promising regions as the search moves forward. Besides, in
order to grant the same importance to each training sample,
training targets (outputs) are preprocessed by log (x + 1) and
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p*popsize

Update d(s, s*)<e

surrogate evaluation

d(s, s*)>¢
real evaluation

Fig. 2. Cycle of evaluations in CR — EC. The first cycle, on the left, is
realized with real fitness function only. Once the surrogate is built, cycles
are realized with both real fitness and surrogate function depending on the
confidence region criterion.

normalized linearly in the range [0, 1] thanks to minimum and
maximum values taken from the same training set. Training
features (inputs) are normalized linearly in the range [0, 1].
These assumptions are respected in this study to maintain
comparison fairness. The number of real evaluations between
two surrogate updates has to be analyzed too. In NSGA-II,
completing a generation implies pops; .. real evaluations, with
DPOpsize being the size of the population. So in B_Q_n— EC,
D*POps;.. real evaluations are performed between two updates.
To that amount has to be added the small number of real
evalutions needed to compute eyy in eyy — EC. In the
confidence region AEC (CR — EC), it is decided to trigger
the update step after p * pops;.. real evaluations.

V. PRELIMINARY EXPERIMENTS

A preliminary experiment is set up so as to reproduce
design engineering problem conditions. It is assumed that the
real evaluation budget is small in comparison to the number
of real evaluations needed, theoretically, to converge to the
Pareto front. Benchmark problem ZDT4 [17] is chosen for its
multi-modality aspect, a feature recognized to cause difficulty
in MO. ZDT4 real fitness function, presented in Equation
(2), is a continuous bi-objective function with 10 decision
variables and admitting 21 local Pareto-optimal fronts. It has
been shown that 30000 real evaluations are needed to converge
to the Pareto front with NSGA-II [6], so the budget is fixed
to 5000 here to respect the previous assumption.

Fl(I) =T

Faa) = gte) (1= /25

10 @)
glz) =91+ (af — 10cos (47z;))
1=2

x1 € [0,1] and z; € [-5,5]Vi € {2,...,10}

The Hypervolume indicator H is the performance index
used to compare NDFs in this study. Given a reference point
O’, H is the area generated by the set of solutions composing
the NDF and O’. The higher the value of H, the better is
the NDF as suggested in Figure 3 where H is displayed for
a set of 3 solutions {sq, s2, s3}. In this application, O’ is set
to (1,406) by roughly computing an upper bound for both

objective functions. The interest of this index is to reflect the
accuracy, the distribution and the spread of the solutions at
once.

F. A 0'
Sl_l H
S2 I
S3
g3

Fig. 3. Hypervolume indicator.

Optimization with EAs is a stochastic process because
of the choice of the initial population and the frequency
of applying reproduction operators. To get the trend of
efficiency of the different evolution controls, several searches
are launched, each with a fixed initial population for all the
strategies. For each search, the initial population is constituted
randomly over the decision space and, at the end, a point is
given to the strategy that produces the best H value. The
EA without MM and the three evolution control strategies
(B_Q_n—EC,enny—EC and CR— EC) are finally ranked.

The Pagmo [18] implementation of NSGA-II is parameter-
ized as follows:

« Population size: 100

o Crossover probability: 0.9

« Distribution index for crossover: 10
e Mutation probability: 0.1

« Distribution index for mutation: 50

For B_Q_n — EC, p is set to 3 and ¢ to 7 in accordance
with the guidelines of [6]. To ensure comparison fairness in
terms of number of samples in the training sets and to follow
guidelines of [7], p = 3 and ¢y, = 10,9 = 0.03and M =5
ineyy—FEC.In CR—EC, ¢ is fixed to 1% of the maximum
distance between two decision vectors. Specifications of the
Scikit-Learn [19] implementation of ANN are as follows:

o Number of hidden layer: 1

e Number of hidden neurones: 10

o Optimizer: Stochastic Gradient Descent with Nesterov’s
momentum

o Activation function: sigmoid

o Batch size: training set size

o Learning rate: 0.2 (constant)

e Momentum factor: 0.2

o Weights and biases initialization: Glorot & al. method
(20]

o Loss function: mean squared loss

Quality of training is conveyed by the coefficient of determi-



TABLE I
RESULTS OF THE FIRST TOURNAMENT WITH NSGA-II ALONE (ON THE
LEFT) AND WITHOUT NSGA-II ALONE (ON THE RIGHT).

Strategy Grade Strategy Grade
NSGA-II 46/50
NSGA-II/B_Q_n-EC 1/50
NSGA-II/B_Q_n-EC 0/50
NSGA-II/eNN-EC 22/50
NSGA-II/eNN-EC 1/50 NSGA-TI/CR-EC 7750
NSGA-II/CR-EC 3/50
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Fig. 4. Average training quality for the first tournament.

nation R? [21] computed over the training set:

(Y = Yprea)®
>y —E(y))?

The first tournament between the different methods is com-
posed of 50 searches. ANN training is stopped when the coeffi-
cient of determination doesn’t improve by at least 10~* during
4 iterations. Results, shown on the left of Table I, indicate the
superiority of NSGA-II without MM in this tournament. The
explanation resides in the poor training quality of the ANN as
shown in Figure 4. This same figure suggests that training is
more complex in the case of CR — EC than in other cases.
Even if CR — EC admits the worst training quality, it is the
best method out of the three evolution controls as shown on
the right of Table I. From Figure 5, it is worth noticing that
envny — EC limits the use of the inaccurate surrogate, with
q; = 1 on average, as expected.

To ensure fairness regarding the training quality and to keep
a low training time, it is suggested to stop training as soon
as R? reaches 0.1 for the second tournament. The results,
presented in Table II, demonstrate the superiority of ey —EC
for this tournament. Since the training quality is maintained to
a low level, the limitation of the inaccurate surrogate implied
by eyny — EC gets the drop on the heuristic proposed in
CR — EC as it can be remarkably seen from cycle 14 in
Figure 6.

Since the computational costs to attain a high R? score are
prohibitive with ANN trained sequentially (more than an hour
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Fig. 5. Mean percentage of real evaluations along the cycles for the first
tournament.

TABLE I
RESULTS OF THE SECOND TOURNAMENT WITH NSGA-II ALONE (ON THE
LEFT) AND WITHOUT NSGA-II ALONE (ON THE RIGHT).

Strategy Grade Strategy Grade
NSGA-II 13/50
NSGA-II/B_Q_n-EC 11/50
NSGA-II/B_Q_n-EC 7/50
NSGA-II/eNN-EC 21/50
NSGA-II/eNN-EC 19/50 NSGAT/CR.EC 13750
NSGA-II/CR-EC 11/50

for C R— EC with 2500 training samples), Random Forests are
considered as MM [22]. A forest of 10 regression trees each
based on a sub-sampling created with replacement is used,
given a training time of approximately 0.1 second. The quality
of the MM is high on the training set in all the cases as shown
in Figure 7. e NN — EC trusts more the surrogate in this
tournament as shown in Figure 8. Table III gives CR — EC
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Fig. 6. Percentage of real evaluations along the cycles for the second
tournament.



TABLE III
RESULTS OF THE THIRD TOURNAMENT WITH NSGA-II ALONE (ON THE
LEFT) AND WITHOUT NSGA-II ALONE (ON THE RIGHT).

SSoo | Sy [ Gt
NSGA-TI/B_Q_n-EC || 19/50
NSGA-TI/B_Q_n-EC || 14/50
NSGA-TI/eNN-EC 7750
NSGA- TGN EC 61°0 NSGA-II/CR-EC 24/50
NSGA-TI/CR-EC 16/50

0.95}
@
n
o
[=4
< 0.94}
e
£
[
S
bl
o
2
£ o093}
S
£
(9]
o
S
o~
& 092}

— B_Q_n-EC
- - eNN-EC
CR-EC
0.01 ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500

Training set size

Fig. 7. Average training quality for the third tournament.

as the best method for the third tournament.

The curves of mean percentage of real evaluations over the
cycles are the same in all three tournaments for CR—EC. This
observation indicates a convergence toward regions containing
the best known solutions.
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Fig. 8. Mean percentage of real evaluations along the cycles for the third
tournament.

VI. CONCLUSION

The new confidence regions adaptive evolution control
(CR — EC) proposed in this paper relies on a distance-based
heuristic evolution control at an individual level during the
evolution. If a candidate solution resides nearby a solution
already evaluated and that has been valued to develop the
surrogate then this latter is called, otherwise a complete
simulation has to be launch. The preliminary experiments led
in this study are set up in a way that imitates the processing of
a complex engineering problem with a small real evaluations
budget.

CR— EC appears to be a promising surrogate-assisted MO
method according to the preliminary results. However, further
experiments have to be carried out, in particular, to analyze
the dependence between the training quality and the value of
the hyperspheres radius. It is also planed to use GPU-based
parallel computing to improve training quality with ANN in
a reasonable time. An engineering problem as well as other
benchmark problems have to be considered and other EAs and
MMs will be investigated to comparison.
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