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Abstract

A simple signed graph (G,Y) is a simple graph G having two different types of edges,
positive edges and negative edges, where ¥ denotes the set of negative edges of G. A closed
walk of a signed graph is positive (resp., negative) if it has even (resp., odd) number of
negative edges, taking repeated edges into account. A homomorphism (resp., colored homo-
morphism) of a simple signed graph to another simple signed graph is a vertex-mapping that
preserves adjacencies and signs of closed walks (resp., signs of edges). A simple signed graph
(G, Y) is a signed absolute clique (resp., (0, 2)-absolute clique) if any homomorphism (resp.,
colored homomorphism) of it is an injective function, in which case G is called an underlying
signed absolute clique (resp., underlying (0, 2)-absolute clique). Moreover, G is edge-critical
if G — e is not an underlying signed absolute clique (resp., underlying (0, 2)-absolute clique)
for any edge e of G. In this article, we characterize all edge-critical outerplanar underlying
(0,2)-absolute cliques and all edge-critical planar underlying signed absolute cliques. We
also discuss the motivations and implications of obtaining these exhaustive lists.

Keywords: signed graphs, graph homomorphisms, absolute cliques, planar graphs.

1 Introduction

The work of Naserasr, Rollovd and Sopena [19], based on the work of Zaslavsky [30], has gener-
ated attention to the topic of homomorphisms of signed graphs in recent times [23 86, 2], 20, 18].
In particular, the seminal work of Naserasr, Rollovd and Sopena and the series of works that
followed showed how one can extend a number of classical results and conjectures, including the
Four-Color Theorem and Hadwiger’s Conjecture, to the signed graph context. In this article,
we deal only with simple signed graphs; thus, the definition of homomorphism to be given is the
one appropriate for simple signed graphs. In particular, we voluntarily omit more complicated
definitions, such as the one from [21].

*This work is partially supported by the IFCAM project “Applications of graph homomorphisms”
(MA/IFCAM/18/39). The first author was partially supporter by ANR project HOSIGRA (ANR-17-CE40-0022).



Homomorphisms of signed graphs

A signed graph (G,Y) is a graph with set of vertices V(G) and set of edges E(G) where each
edge is assigned one of two possible signs, + and —. Edges with sign + are called positive, while
edges with sign — are called negative. For any two adjacent vertices u,v of (G, %), we call u
a positive neighbor of v if wv is a positive edge. Analogously, u is a negative neighbor of v if
uv is a negative edge. We denote by N(u), N*(u) and N~ (u) the sets of neighbors, positive
neighbors and negative neighbors of u in (G, X). The signature X of G is its set of negative
edges. A closed walk (in particular, a cycle) C in (G, X) is positive (respectively, negative) if it
has an even (respectively, odd) number of negative edges, taking repeated edges into account.

A homomorphism f of a signed graph (G,X) to a signed graph (H,II) is a vertex-mapping
f:V(G) — V(H) that preserves adjacencies and the signs of closed walks. We use the notation
(G,X) — (H,II) to denote that there exists a homomorphism of (G, %) to (H,X).

To apprehend homomorphisms of signed graphs, some graph parameters and objects such
as the notions of chromatic number, relative and absolute clique, relative and absolute clique
number and underlying absolute clique, need to be defined. The chromatic number of a signed
graph (G, %) is given by

Xs(G,X) =min{|V(H)|: (G,X) — (H,II)}.

Observe that this definition generalizes the usual notion of chromatic number for simple graphs,
as xs(G,0) = x(G) where x(G) denote the chromatic number of the simple graph G.

Likewise the notion of clique number was also generalized to the context of signed graphs.
However, in this case the generalization ramified into two different parameters, namely the signed
relative clique number and the signed absolute clique number [19], the latter being of interest
for our investigations in this work. For the sake of completeness and for the sake of providing a
big picture, we will also recall the definition of the former.

e On the one hand, a signed relative clique of a signed graph (G,3) is a vertex subset
R C V(@) such that, for any homomorphism f of (G,X), we have |f(R)| = |R|. The
signed relative clique number wys(G,Y) of (G, ¥) is the maximum |R| where R is a signed
relative clique of (G, X).

e On the other hand, a signed graph (C, A) is an signed absolute clique if xs(C,A) = |V (C)|.
The signed absolute clique number wqs(G,Y) of a signed graph (G, X) is the maximum |C/|
such that C' induces a signed absolute clique in (G, X).

Observe that w,s(G,0) = wes(G,0) = w(G), and also that (G, 0) is a signed absolute clique
if and only if G is a complete graph (or, equivalently, a clique). Furthermore, notice that, from
the definitions, as noted e.g. in [I9] one can directly derive the following inequalities for any
signed graph (G, X):

was (G, Y) < wps(G,Y) < xs(G, X) (1)

A simple graph G is an underlying signed absolute clique if there exists a signature X of G
such that (G, X) is a signed absolute clique. Moreover, an underlying signed absolute clique G is
edge-critical if for any edge e € E(G) the signed graph (G —e, X\ {e}) is not a signed absolute
clique. To the best of our knowledge, an analogous notion for signed relative cliques does not
exist yet.

Let p € {xs,Wrs,was } be one of the parameters defined earlier. Each of these three parameters
defined for signed graphs can be extended to a family F of graphs by setting:

p(F) = max {p(G,Y) : G € F for all signature 3 of G}.



Motivations

Before moving into the specific problems that we address in this article, let us discuss our
motivations. In the literature, different types of graphs and their homomorphisms have been
studied. Some of them are relevant to present our motivations.

An (m,n)-colored mized graph is a graph with m different types of arcs and n different types

of edges [22]. A colored homomorphism of an (m, n)-colored mixed graph G to an (m, n)-colored
(m.n)

mixed graph H is a vertex-mapping f : V(G) —— V(H) such that an arc (resp., edge) uv of G
implies that f(u)f(v) is an arc (resp., edge) of H of the same type as wv. It is worth mentioning
that (m,n)-colored mixed graphs encapsulate simple graph&ﬂ [13], oriented graphsﬂ [28], 2-edge-
colored graphsﬁ [16] and k-edge-colored graphsﬁ [1]. For each of these particular cases, the
corresponding homomorphisms have been well studied independently.

Notice that a signed graph can be thought of as a (0,2)-colored mixed graph. However,
homomorphisms of (0,2)-colored mixed graphs preserve adjacencies and edge signs only. For
signed graphs, their homomorphisms preserve adjacencies and signs of their closed walks instead,
which is a little more flexible in the sense that colored homomorphisms of signed graphs (treated
as (0,2)-colored mixed graphs) are homomorphisms, but homomorphisms of signed graphs are
not colored homomorphisms. Still, we make the connection between the two notions more
explicit in what follows.

To switch a vertex v of a signed graph (G, X) is to reverse the signs of the edges incident to
v. If it is possible to obtain a signed graph (G, Y') by switching a set of vertices of (G, X), then
we say that the two signed graphs are in a switch relation and denote it by (G,%') ~ (G,X).
Note that the switch relation is an equivalence relation.

An alternative, but equivalent, definition of homomorphisms of signed graphs is the follow-
ing [21I]: a homomorphism f of a signed graph (G,X) to a signed graph (H,II) is a vertex-
mapping f : V(G) — V(H) such that there exists a (G,Y’) with (G,%’) ~ (G,¥) for which

f:(GY) 02), (H,1II). This definition is the key for connecting the two notions. This relation
was explored in [19] 23].

Another interesting related notion is that of pushable homomorphisms || of oriented graphs.
To push a vertex v of an oriented graph is to reverse the direction of all the arcs incident to
v. A pushable homomorphism of an oriented graph 8 to another oriented graph ﬁ is a vertex-
mapping f : V(G) — V(H) such that it is possible to push a set of vertices of G to obtain a

8’ for which f : 8’ B0, F . Note the similarity between that definition and the alternative
definition of homomorphisms of signed graphs above. In practice it was noticed that, due to
this similarity, several results that hold for either of the two topics, namely homomorphisms of
signed graphs and pushable homomorphisms of oriented graphs, can be similarly proved for the
other. However, no systematic relation between the two notions has been established yet.

For each of these types of graphs and homomorphisms, several parameters and objects such
as the notions of chromatic number, relative and absolute clique, relative and absolute clique
number and underlying absolute clique, can be defined similarly as in the case of homomorphisms
of signed graphs. Therefore, any question/problem raised regarding the parameters or objects
associated to any of the graph types becomes a natural topic of study for the other types of
graphs as well.

'These are (0,1)-colored mixed graphs.
2These are (1,0)-colored mixed graphs.
3These are (0, 2)-colored mixed graphs.
“These are (0, k)-colored mixed graphs.



’ H (m,n)-colored mixed ‘ oriented ‘ 2-edge-colored ‘ pushable ‘ signed ‘

€ [p®+ ep® +p+ 1, 5p] € [18,80] € [20,80] €[9,40] | € [10,40]
X 112, 2] 15} [25] 23, ] 27 23]
. €Bp+p+1,42p2 +8] | €[15,50] € [15,50] =3 =38
" [10) B 9] (1] [11]
€ [3p +p+1,9% +2p + 2] =15 =15 =8 =38
“abs B3] 7] 7] 19] [19]

Table 1: Known lower and upper bounds on different parameters for the family of planar graphs.
Here x, wrer and wqps denote the chromatic number, relative clique number and absolute clique
number for the corresponding graph types and homomorphisms.

For example, in any of the contexts above, the question of finding the chromatic number for
the family of planar graphs is a crucial, which is open for all the cases except for that of (0,1)-
colored mixed graphs. Recall indeed that (0, 1)-colored mixed graphs are nothing but simple
graphs, and that the Four-Color Theorem solves that very question for them.

Question 1.1. In any of the contexts above, what is the chromatic number for the family of
planar graphs?

In fact, answering Question in any other context seems to be difficult. This explains why
many efforts have been put into tackling the following seemingly simpler questions.

Question 1.2. In any of the contexts above, what is the relative cligue number for the family
of planar graphs?

Question 1.3. In any of the contexts above, what is the absolute clique number for the family
of planar graphs?

The answer to Question is trivial for the case of (0, 1)-colored mixed graphs, while an
answer for the case of signed graphs was given in [I1]. A similar proof yields the similar bound
for pushable homomorphisms as well. The answer to Question [1.3|is trivial for the case of (0, 1)-
colored mixed graphs, while an answer was given in the cases of (1, 0)-colored mixed graphs [17],
(0,2)-colored mixed graphs [26], pushable graphs [4] and signed graphs [19]. The questions
remain open for the remaining cases [28), 9, 3]. Table (1| summarizes what is currently known to
date regarding Questions and

A way to get some sort of progress towards the questions above is to consider subclasses
of planar graphs. In particular, outerplanar graphs have been attracting some attention. For
the family of outerplanar graphs, exact values are known for every parameter and every type
of graphs and homomorphisms listed in Table [1} except, in general, for the chromatic number
of (m,n)-colored mixed graphs [28, [3]. Some of the values are actually easy to prove. Table
summarizes what is currently known to date regarding Questions 1.1, 1.2 and 1.3 for outerplanar
graphs.

In the line of the previous three questions, a natural fourth one to ask, connected tightly
to Question is whether planar absolute cliques admit some nice characterization. This is
where the notion of edge-critical underlying absolute cliques comes into play.

Question 1.4. In any of the contexts above, what are the planar underlying absolute cliques?

SHere, p = 2m +n and € = 1 if n = 0 or n is odd, while € = 2 otherwise.



’ H (m,n)-colored mixed‘ oriented ‘ 2-edge-colored ‘ pushable ‘ signed ‘

€ p®+ep? +p+1,5p4 =7 =9 =4 =5

X [, 22] 28] I 4] 9]

=Bp*+p+1) =7 =7 =4 =4

o B 28] 26] 26] 26
=@Bp*+p+1) =7 =7 =4 =4

Wabs 3] 7] 7] 126] 126]

Table 2: Known lower and upper bounds on different parameters for the family of outerplanar
graphs. Here x, w;; and wqps denote the chromatic number, relative clique number and absolute
clique number for the corresponding graph types and homomorphisms.

In the article [I7] where Nandy, Sen and Sopena provided the answer to Question for
(1,0)-colored mixed graphs by showing that the absolute clique number of a planar (1,0)-graph
can be at most 15, they also provided a list of all edge-critical underlying absolute outerplanar
cliques and addressed the problem of finding a similar one for planar graphs. They also showed
that there is a unique edge-critical underlying absolute planar clique [I7] on 15 vertices for
(1,0)-colored mixed graphs.

Of course the answer to Question is trivial for (0, 1)-colored mixed graphs. Among the
other cases, until now such lists for planar graphs have been found only for pushable graphs [4]
and an “almost exhaustive” computer-generated list for (1,0)-colored mixed graphs is reported
in the Ph.D. thesis of Prabhu [24]. Here “almost exhaustive” means that the exhaustiveness of
the list was computer checked and/or theoretically proved for all except the graphs having 14
vertices. Thus, in the list provided, it is possible that we may have to add a few more graphs
having 14 vertices. Even such a list for outerplanar graphs is yet to be found for any case other
than for (1,0)-colored mixed graphs. It is worth mentioning that for signed graphs the problem
of deciding whether a given graph is an underlying absolute clique is known to be NP-hard [3].

Our contribution

In this article, we first exhibit, in Section [2] the exhaustive list of all edge-critical underlying
absolute outerplanar cliques for (0, 2)-colored mixed graphs. In other words, we answer Ques-
tion restricted to the family of outerplanar graphs for (0,2)-colored mixed graphs. After
that, using this list, we exhibit, in Section [3| the exhaustive list of all edge-critical underlying
absolute planar cliques for signed graphs. That is, we answer Question for signed graphs.
Finally, we discuss, in Section [4], the status of Question for signed graphs.

2 Underlying absolute outerplanar cliques for (0, 2)-colored mixed
graphs

A signed graph is a (0, 2)-absolute clique if any two non-adjacent vertices of (G, X) are connected
by a 2-path (path of length 2) whose edges have different signs [3]. A simple graph G is an
underlying (0, 2)-absolute clique if there exists a signature ¥ such that (G, ¥) is a (0, 2)-absolute
clique. Moreover, an underlying (0, 2)-absolute clique G is edge-critical if for any edge e € E(Q)
the graph G — e is not an underlying (0, 2)-absolute clique.

SHere, p=2m+mn and e =1 if n = 0 or n is odd, while € = 2 otherwise.



(Os, ) (O7,9Q7) (Os, )
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(Og, Q) (010, o) (O11,1)

Figure 1: Exhaustive list of all edge-critical underlying (0, 2)-absolute outerplanar cliques along
with a corresponding signature. Solid edges are positive edges, while dashed edges are negative
edges.

To contract an edge uv of a graph G is to replace the vertices u,v with a new vertex w
which is adjacent to all the vertices of N(u) U N(v). A graph H is a minor of a graph G if it
is possible to obtain H from G through a sequence of vertex deletions, edge deletions, and edge
contractions. Finally, a graph is outerplanar if and only if it does not contain K4 or K>3 as a
minor [7].

Our main result in this section reads as follows:

Theorem 2.1. There are exactly 11 edge-critical underlying (0, 2)-absolute outerplanar cliques.
These 11 graphs are depicted in Figure [1]

The proof of this theorem is contained in the upcoming lemmas. Before starting, let us
present a few definitions and notations. Given a signed graph (G, ), two vertices u and v see
each other if they are adjacent or are endpoints of a 2-path with edges having different signs.
Also if u and v are endpoints of a 2-path with edges having different signs and the third vertex
of the 2-path is w, then we say that v and v see each other through w.

Lemma 2.2. If O is an underlying (0,2)-absolute outerplanar cliqgue having |V (O)| = 7, then
O contains the graph O11 of Figure|l| as a spanning subgraph.

Proof. Suppose that (O,Q) is a (0,2)-absolute outerplanar clique with [V(O)| = 7. As O is a
connected outerplanar graph, O has a vertex u having degree 1 or 2.

Assume that there exists a degree-1 vertex w in O adjacent to its only neighbor v. Fur-
thermore, let v be an a-neighbor of u for some {a,a} = {+,—}. Therefore we must have



N%(w) = V(0) \ {u,v} in order for a vertex z € V(O) \ {u,v} to see u. Observe that two ver-
tices from V(O) \ {u,v} see each other without using w or v. Thus the graph induced by N%(v)
is an underlying (0, 2)-absolute clique. Moreover it is a path as O is an outerplanar graph. We
know from [3] that an underlying (0, 2)-absolute clique that is a forest can have at most three
vertices, a contradiction.

Thus there exists a degree 2 vertex u in O adjacent to its only neighbors v and w. Fur-
thermore, let v be an a-neighbor and w be a B-neighbor of u for some {a,a} = {8,8} =
{+,—}. Therefore we must have N%(v) U N%(w) = V(0O) \ {u,v,w} in order for a vertex
x € V(0)\ {u,v,w} to see u. Note that [N%(v) N NP (w)| < 1, as otherwise it would contain
K3 3 as a minor contradicting the fact that O is an outerplanar graph.

If [IN®(v) N NP (w)| = 0, then two vertices from V(O)\ {u, v, w} see each other without using
u,v or w. Thus, the vertices of V(O) \ {u,v,w} induce an underlying (0, 2)-absolute clique on
four vertices that is also a path. We know from [3] that an underlying (0, 2)-absolute clique that
is a forest can have at most three vertices, a contradiction. )

Hence we must have [N%(v) N N(w)| = 1. Moreover, let N%(v) N N®(w) = z. Assume that
A= N%@w)\{z} and B = N®(w)\ {z}. Note that any edge between A and B would force Kj 3
to be a minor, contradicting the fact that O is an outerplanar graph.

Without loss of generality, assume that |A| > |B|. If |B| > 0, then the only way for the
vertices of A to see the vertices of B is through z. Then K33 is a minor because |A U B| = 3,
contradicting the outerplanarity of O. Hence |B| = 0.

If |B] = 0, then |A| = 3. The only two options for a vertex x € A to see w are through v
or z. If all three vertices of A see w through z, then there is K33 as a minor, a contradiction.
Thus at least one vertex from A sees w through v forcing the edge vw in O.

Observe that the vertices of A induce a forest. Furthermore, the vertices of A cannot see
each other only through w,v,w. Also, it is not possible that all three vertices of A, see each
other through z. Therefore, at least two vertices of A see each other through the third vertex
of A forcing a 2-path in the graph induced by A.

However, this forces the graph Oq; to be a subgraph of O. O

Next we handle the case where |V (O)| < 6.

Lemma 2.3. If O is an underlying (0,2)-absolute outerplanar clique having |V (O)| < 6, then
O contains one of O1,...,019 as a spanning subgraph.

Proof. Suppose that (O, ) is a (0, 2)-absolute outerplanar clique with |V (O)| < 6.

As O is connected, if |[V(O)| = 1,2 or 3, then O contains O1, Oz or O3 as a spanning subgraph,
respectively.

Next suppose that |V(O)| € {4,5,6}. It is known that an outerplanar graph either have a
cut-vertex or is Hamiltonian [7]. Thus we can consider that O is either Hamiltonian or has a
cut-vertex v.

Let us first suppose that O has a cut-vertex v. Assume that O —v has components C, ..., C}.
Then the vertices of C; must see the vertices of Cj, for all i # j, through v in (O, ). Therefore,
k =2 and V(C;) C N%(u) and V(C3) C N%(u) for some {o,a} = {+,—}. Thus the graph
induced by V(C;) from (O, ) is a (0, 2)-absolute clique for each ¢ € {1,2}. Moreover, as O is
outerplanar, all C;’s are paths. As we know from [3] that an underlying (0, 2)-absolute clique
that is a forest can have at most three vertices, |V (C1)|, |V (C2)| < 3. Thus if O has a cut-vertex,
then O must contain Os, 07, Og or O1g as a spanning subgraph.

Let us now assume that O is Hamiltonian.

e If [V(O)| =4, then O must contain O4 as a spanning subgraph.



e If |V(O)| = 5, then O contains a 5-cycle. However, any signature on a 5-cycle forces
two incident edges of the same sign. The endpoints of the 2-path induced by those edges
cannot see each other. Thus O must have at least one chord in this case, forcing Og as a
spanning subgraph.

e If |V(O)| = 6, then O contains a 6-cycle. However, a 6-cycle does not have diameter 2.
If we add some chords to a 6-cycle in order to construct an outerplanar graph having
diameter 2, then we are forced to have Og as a spanning subgraph. ]

Finally we are ready to prove Theorem

Proof of Theorem [2.1] First observe that the signed graphs (O;, ;) for all i € {1,...,11} are
(0,2)-absolute outerplanar cliques. Moreover, Bensmail, Duffy and Sen [3] have shown that if O
is an underlying (0, 2)-absolute outerplanar clique, then |V (O)| < 7. From this, the proof now
follows directly from Lemmas [2.2] and O

3 Underlying absolute planar cliques for signed graphs

A positive (resp., negative) cycle of a signed graph is popularly refered to as a balanced (resp.,
unbalanced) cycle. It is known from [19] that a signed graph is a signed absolute clique if and only
if any two non-adjacent vertices of the graph are part of an unbalanced 4-cycle. Furthermore,
if a signed graph (G,X) is a signed absolute clique, then any (G,¥') ~ (G, X) is also a signed
absolute clique [19].

Theorem 3.1. There are exactly 15 edge-critical underlying signed absolute planar cliques.
These 15 graphs are depicted in Figure [2

The proof of this theorem is contained in a series of observations and lemmas below. Before
starting with those, let us present a few definitions and notations.

Let u,v be a pair of vertices of a simple graph G. We say that u reaches v if either u and v
are adjacent or u and v have at least two common neighbors. Furthermore, when writing that u
reaches v through w, we mean that w is a common neighbor of u and v. Also if any two distinct
vertices of GG reach each other, then we say that G is reach-complete. This motivates our first
observation.

Observation 3.2. An underlying signed absolute clique is reach-complete.
Recall that, for a simple graph G, the parameter 0(G) denotes its minimum degree.

Observation 3.3. A reach-complete graph G cannot have a cut-vertex. In particular, if |V (G)| >
3, then 6(G) > 2.

Proof. 1f a reach-complete graph G has a cut-vertex v, then the vertices from different com-
ponents of G — v are neither adjacent nor have at least two common neighbors in G. Now, if
|[V(G)| > 3 and §(G) = 1, then the neighbor of a vertex having degree 1 is a cut-vertex. O

Note that a reach-complete graph is either a complete graph or contains a 4-cycle. Thus the
following is immediate.

Lemma 3.4. If (H,II) is a signed absolute planar clique having |V (H)| < 4, then H contains
one of Ay, As, A3, Ay as a spanning subgraph.



(A3, 1I3) (A4, ILy)

(A12,11;2) (A13,11;3) (A1g,1114) (A1s,1115)

Figure 2: Exhaustive list of all edge-critical underlying signed absolute planar cliques along with
a corresponding signature. Solid edges are positive edges, while dashed edges are negative edges.



Now let us consider the case of graphs having five vertices.

Lemma 3.5. If (H,II) is a signed absolute planar clique having |V (H)| = 5, then H contains
As as a spanning subgraph.

Proof. As H does not have a cut-vertex, it contains either a 5-cycle or K>3 as a subgraph.

e We know that a 5-cycle is not an underlying (0, 2)-absolute clique, and thus obviously not
an underlying signed absolute clique. Therefore, we need to add at least one chord to
make the graph an underlying signed absolute clique. Without loss of generality assume
that we have added the chord be. Note that the vertex a is non-adjacent to both ¢ and d.
Moreover, both a,c and a,d have at exactly one common neighbor. Thus we need to add
some more chords. If we add either ac or ad, then the subgraph As is created. The other
way is to add both ce and bd, in which case also the subgraph Ajs is created.

e K> 3 is not an underlying signed absolute clique as there exist two vertices from the partite
set of cardinality 3 that are neither adjacent nor part of an unbalanced 4-cycle. Thus we
need to add at least one edge in the concerned partite set. This creates the subgraph
As. O

We already know that if (H,II) is a signed absolute planar clique having |V (H)| > 6, then
d(H) > 2. First we analyse the case when §(H) = 2.

Lemma 3.6. If (H,II) is a signed absolute planar clique having |V (H)| > 6 and 6(H) = 2, then
H contains A7 as a spanning subgraph.

Proof. Let u be a degree-2 vertex of H having exactly two neighbors v and w. Then each
non-neighbor z of u must be adjacent to both v and w, resulting in a Kj|y(g)—2. Assume
that V(H) \ {u,v,w} = {z1,...,x;}. For being a signed absolute clique, uvz;wu must be an
unbalanced 4-cycle for each i € {1,...,t}. Furthermore, 2} and z;, for some i # j, have exactly
two common neighbors v and w. As both wvzpwu and wvz;wu are unbalanced 4-cycles, the
4-cycle vxpwzv is balanced. Thus any two non-neighbors of v are not part of any common
unbalanced 4-cycle in (H,II).

Note that ¢ > 3 since |V (H)| > 6. Furthermore, if ¢ > 4, then z; and z4 cannot have any
common neighbor other than v and w. But, as observed earlier, the 4-cycle induced by vziwx4v
is balanced. Thus t = 3.

Now note that the only common neighbor of 1 and xz3, other than v, w, is z3. As we know
that the 4-cycle vrjwzsv is balanced, the only way for (H,II) to be a signed absolute planar
clique is to have the 2-path x1xox3 with exactly one negative edge. Thus H contains A7 as a
subgraph. O

Recall that Theorem provided the list of all edge-critical underlying (0, 2)-absolute out-
erplanar cliques (in Figure [I). If an signed absolute planar clique (H,II) has a dominating
vertex v, then we can switch the negative neighbors of v to obtain a new signature IT* of H.
Observe that signed absolute cliques are invariant under switching. Thus (H, II*) is also a signed
absolute planar clique. Observe that the signed graph obtained by deleting v from (H,II*) is
a (0, 2)-absolute outerplanar clique. We denote by (H*,IIT) be the signed graph obtained by
adding a new vertex v to (H, II) such that v is adjacent to every other vertex through a positive
edge.

We are now ready to present our next observation.

10



Observation 3.7. A signed graph (H,II) is a (0,2)-absolute outerplanar clique if and only if
(H*,1IT) is a signed absolute planar clique.

Recall that (Oy, ) denotes the k" graph in Figure|ll Then:

Observation 3.8. If C denotes spanning subgraph inclusion, then As T Of, A3 C O;, Ay C
OF,AsCOf, AsCOF, As T Of, AsC OF, A7 C OF, Ag T OF , Ao C Ofy, A13 C OF;.

A dominating set S of a graph G is a vertex subset such that any vertex from V(G)\ S has
a neighbor in S. The domination number of G is the minimum |S| where S is a dominating
set. Due to the previous observations, we need to only focus on edge-critical underlying signed
absolute planar cliques having at least six vertices, minimum degree 3, and domination number
at least 2.

Now let us introduce a few graphs. Let P» and P4 denote the paths on two and four vertices,
respectively. Let A be the graph obtained by taking two vertices co and —oo along with the
disjoint union of P, and Py, and making each of oo, —oo adjacent to each vertex of P, and Pj.
Also let B be the graph obtained from A by adding an edge between the vertices oo and —oo.
Furthermore, let C denote the 5-wheel graph obtained by taking a 5-cycle and a vertex oo and
adding edges between oo and each of the vertices of the 5-cycle.

Lemma 3.9. The graphs A, B and C are not underlying signed absolute cliques.

Proof. Observe that A is a subgraph of B. Thus if we prove that B is not an underlying signed
absolute clique, then it will imply that A is also not an underlying signed absolute clique.

Assume that B is an underlying signed absolute clique and X is a signature of B such that
(B,Y) is a signed absolute clique. Now switch the negative neighbors of co in (B, X)) to obtain
the signed graph (B, >*). If both edges between —oco and the vertices of P, are negative, then
switch —oo as well. Note that the edges incident to oo are all positive and one edge between
—oo and a vertex x of Py is also positive. We know that (B, X*) is also a signed absolute clique.
Therefore, in order for x to reach the vertices of Py, the edges between —oo and the vertices of
P4 must be negative. In this case, the endpoints of Py cannot be part of a common unbalanced
4-cycle.

Observe that C' is a planar graph. If C' is an underlying signed absolute planar clique,
then by Observation a b-cycle is an underlying (0, 2)-absolute outerplanar clique. This is a
contradiction due to Theorem 2.1] O

As A, B and C are not underlying signed absolute planar cliques, one may wonder what
happens if we add some edges to them. If we add any edge to A to obtain a planar graph A*,
then A* contains Ai3 as a spanning subgraph. Similarly, if we add any edge to C' to obtain a
graph C*, then C* contains Ag as a spanning subgraph. As A is a subgraph of B, we have the
following lemma.

Lemma 3.10. If an underlying signed absolute planar cligue H contains A, B or C' as a spanning
subgraph, then H must contain either Ag or A1z as a spanning subgraph.

Proof. Suppose that (H,II) an underlying signed absolute planar clique and H contains C' as a
spanning subgraph. Note that H contains a dominating vertex oco. Let (H',II') be the signed
graph obtained by deleting co from (H,II). Notice that H’ is an outerplanar graph. Due to
Observation we know that (H',II') must be an underlying (0, 2)-absolute outerplanar clique.
Therefore H' must contain Og (from Figure (1)) as a spanning subgraph due to Theorem
Hence H contains C' as a planar subgraph.
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Suppose that (H,II) an underlying signed absolute planar clique and H contains A as a
spanning subgraph. Note that, as A is a subgraph of B, it is enough to show that H contains
A13.

Let us first understand the graph A;3. In fact, let us understand the difference between A3
and A.

Take the bipartite graph K3 g with smaller partite set {u, v} and bigger partite set {x1, z2, ..., 26}
Now if we add the edges x1x2, Tox3, T4T5, T52g, then we obtain A;3. Instead, if we add the edges
T1T9, ToX3, T34, T5Te, then we obtain A.

We already know that A is not an underlying signed absolute clique. Thus H has some edges
which are not in A. If we add the edge uv, then we obtain the graph B. We know that B is
also not an underlying signed absolute clique. Therefore, H must be having some additional
edge of the form z;z;. However, as H is planar, the only additional edge of the form z;z; must
have, assuming i < j without loss of generality, i € {1,4} and j € {5,6}. Hence, without loss of
generality, assume that the additional edge is x4x5. This graph already contains Ai3. In fact, if
we delete the edges x3x4 and uv (if present) from this graph, what we obtain is exactly A;3. O

Finally, we present the final lemma needed for the proof of Theorem which was implicitly
proved by Bensmail, Nandi and Sen [4] (mind the erratum [5] as well).

Lemma 3.11. If H is a planar edge-critical reach-complete graph having six, seven or eight
vertices, minimum degree at least 3 and domination number at least 2, then H contains one of
Ag, Ag, Ag, A10, A11, A12, A3, A14, A15, A, B, C as a spanning subgraph.

Proof. This proof is implicitly present in Section 5 of [4]. Let H be as in the statement.

e If |[V(H)| = 6, then Lemma 5.6 of [4] proves that H contains one of Ag, A7, Ag, C' (which
are the graphs Hy, Hg, Hy, Hg in [4], respectively).

o If |V(H)| =7, then Lemma 5.9 of [4] proves that H contains one of Ag, Ajg, A11 (which
are the graphs Hio, H11, Hi2 in [4], respectively).

o If [V(H)| = 8, then Lemma 5.9 of [4] proves that H contains one of Aj9, A13, A14, A15, A
(which are the graphs His, Hi4, Hi5, Hi6, A in [4], respectively). O

Finally we are ready to prove Theorem

Proof of Theorem [3.1] First observe that the signed graphs (4;,IL;) for all i € {1,...,15} are
signed absolute planar cliques. Moreover, Naserasr, Rollovd and Sopena [19] have shown that if
(H,1I) is a signed absolute planar clique, then |V (H)| < 8. Thus the proof follows directly from
the observations and lemmas proved in this section. ]

4 Concluding discussion and remarks

Using our results, we managed to exhibit a computer-generated list of all underlying absolute
planar cliques for signed graphs. We report that there are, in total, 47 non-isomorphic underlying
signed absolute planar cliques (1 on 1 vertex, 1 on 2 vertices, 1 on 3 vertices, 3 on 4 vertices,
4 on 5 vertices, 10 on 6 vertices, 14 on 7 vertices and 13 on 8 vertices). See the lists in the
webpage http://jbensmai.fr/code/signed/ for details.

An interesting aspect of Figure [2] is that its first four graphs are outerplanar as well. As
there is no other outerplanar graph in the list, this implies the following corollary.
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Figure 3: The positive edges of the complete signed graph (Py ,I'") are depicted here. The
vertex oo is adjacent to all the other vertices with a positive edge. The thick edges from it refers
to that. All the non-edges in the picture should be replaced by negative edges in order to obtain
the signed graph (P, I'").

Corollary 4.1. There are exactly 4 edge-critical underlying signed absolute outerplanar cliques.
These 4 graphs are the first 4 graphs depicted in Figure [3.

Furthermore, it is worth mentioning that the list of all edge-critical underlying signed abso-
lute planar cliques for pushable graphs have exactly one more graph than the ones depicted in
Figure|2| namely the 5-wheel graph. This shows yet another difference between the two contexts.

Now let us discuss the status of the analogue of the Four-Color Theorem for signed graphs,
that is, what is xs(P) for the family P of planar graphs. It is known that 10 < x4(P) < 40
to date [23]. Furthermore, it is also known [23] that xs(P) = 10 if and only if every signed
planar graph admits a homomorphism to a particular signed graph called signed Paley plus
graph (Pg“L ,I'") on 10 vertices, which is depicted in Figure

Let us mention which planar graphs are known to admit a homomorphism to (P, I'"). It is
known that all planar signed graphs having no cycle of length at most 4 admit a homomorphism
to (P, I'") [23].

Let (H,II') be a signed graph obtained by switching a set of vertices of (H,II). We know that
(G,X) — (H,1I) if and only if (G, %) — (H,II') [19]. It is known that (K4, 0) is a subgraph of
(Pyf,TT) and it is possible to switch a set of vertices of (Py7,T'") so that the so-obtained signed
graph contains (K4, E(K,)) as a subgraph [23]. Therefore, the Four-Color Theorem implies
that for any planar graph P, the signed graphs (P, () and (P, E(P)) admit a homomorphism to
(P, T).

A bijective homomorphism of a signed graph to itself whose inverse is also a homomorphism
is an automorphism. Given any two balanced (respectively, unbalanced) 3-cycles C; and Cy of
(G, ) if any bijection from V(C1) to V(Cs) can be extended to an automorphism of (G, ), then
(G,X) is triangle-transitive. It is known that the signed graph (Py",I'") is triangle-transitive.

Moreover Ochem, Pinlou and Sen [23] have observed (through computer) that all planar
signed graphs having at most 15 vertices admit a homomorphism to (P9+ ,I'"). In particular, all
signed absolute planar cliques also admit a homomorphism to it. Moreover, due to the triangle-
transitive property of (Py",I'"), any planar graph obtained by (repeated) k-clique-sums (gluing
k-cliques of two graphs to obtain a new graph) of planar graphs having 15 or less vertices also
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U7 V4
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Figure 4: The Wagner graph Wg.

admits a homomorphism (Py ,I'") for k < 3.
These accumulated observations make us confident enough to make the following conjecture:

Conjecture 4.2. FEvery planar signed graph admits a homomorphism to (PJ,F*‘).

In particular, the conjecture, if true, would imply x4(P) = 10.

Recall that long before the Four-Color Theorem was proved, Wagner showed in [29] that if
all planar graphs admit a 4-coloring, then so do all K5-minor-free graphs. He used the following
characterization to prove this: G is a Ks-minor-free graph if and only if G is a subgraph of
a graph obtained by (repeated) k-clique-sums of graphs belonging to P U {Wg} for k < 3,
where Wy is the Wagner graph depicted in Figure [l Due to the triangle-transitive property of
(Pyf,TT) we are able to show something similar. In fact, the only non-trivial part is to show
that (Ws, ) — (P, I'") for any signature X of W.

Lemma 4.3. For any signature X of Ws, we have (Wg, X) — (Py,T'T).

Proof. Let (X,A) be the signed graph obtained by adding the following edges to (Ws,>):
v1V3, V104, V106 and v4vy. Moreover, the new edges are assigned signs in such a way that the
cycle vivsv7vgvy is an unbalanced 4-cycle in (X, A).

Let (X', A’) be the signed graph obtained from (X, A) by deleting the vertex vs. Note that it
is a planar graph having 8 vertices. Thus there exists a homomorphism f: (X, A) — (P9+ ,T71).
As vivzvrvgvy is an unbalanced 4-cycle, the images f(v1), f(v4) and f(v7) are distinct vertices
of (P9+ ,I'"t). Thus the homomorphism f can be extended to a homomorphism of (X,A) to
(Pyf,TT) due the following property (see Lemma 2.10(2) of [23]): given any three distinct
vertices u, v, w of (Py,T'F) either N®(u) N N?(v) N N7 (w) # 0 or N%(u) N NP (v) N N7 (w) # 0
where {a,a} = {8, 8} = {v,7} = {+. -}

As (Ws, %) is a subgraph of (X, A), we are done. O

Therefore, we indeed have the analogue of Wagner’s result.

Proposition 4.4. Every Ks-minor-free signed graph admits a homomorphism to (PQJF,FJF) if
and only if xs(P) = 10.

We hope that the above Wagner-like proposition may help formulating a Hadwiger-like con-
jecture for signed graphs in the future.
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