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AN ABELIAN ANALOGUE OF SCHANUEL’S CONJECTURE AND
APPLICATIONS

PATRICE PHILIPPON, BISWAJYOTI SAHA AND EKATA SAHA

Abstract. In this article we study an abelian analogue of Schanuel’s conjecture. This

conjecture falls in the realm of the generalised period conjecture of Y. André. As shown

by C. Bertolin, the generalised period conjecture includes Schanuel’s conjecture as a special

case. Extending methods of Bertolin, it can be shown that the abelian analogue of Schanuel’s

conjecture we consider, also follows from André’s conjecture. C. Cheng et al. showed that

the classical Schanuel’s conjecture implies the algebraic independence of the values of the

iterated exponential function and the values of the iterated logarithmic function, answering

a question of M. Waldschmidt. We then investigate a similar question in the setup of abelian

varieties.

1. Introduction

S. Schanuel proposed the following conjecture while attending a course given by S. Lang

at Columbia University in the 1960’s. Most of the known results in the transcendental

number theory about the values of the exponential function are encompassed by Schanuel’s

conjecture, and they can be derived as its consequence.

Conjecture 1 (Schanuel). Let x1, . . . , xn ∈ C be such that they are linearly independent

over Q. Then the transcendence degree of the field

Q(x1, . . . , xn, e
x1 , . . . , exn)

over Q is at least n.

For example, C. Cheng et al. have shown in [5] how to derive from Conjecture 1, the linear

disjointness of the two fields constructed over Q by adjoining repeatedly the algebraic closure

of the field generated by the values of the exponential and logarithm functions respectively.

The only known cases of Conjecture 1 are n = 1 and x1, . . . , xn ∈ Q for general n. The

n = 1 case is a consequence of the Hermite-Lindemann theorem, whereas the latter case

is known as the Lindemann-Weierstrass theorem. But these two special cases were known

much before the inception of this conjecture.
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Schanuel’s conjecture has been generalised to various other contexts. The elliptic analogue

of Schanuel’s conjecture is well-studied. Let Λ be a lattice in C and ℘ denote the associated

Weierstrass ℘-function,

℘(z) = ℘(Λ; z) :=
1

z2
+

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)
for z ∈ C \ Λ. The Weierstrass ℘-function is an elliptic function with double poles at the

points of Λ and holomorphic in C \ Λ. Moreover, for all z ∈ C \ Λ, we have the relation

℘′(z)2 = 4℘(z)3 − 60G4(Λ)℘(z)− 140G6(Λ).

Here for k ≥ 2, G2k(Λ) :=
∑

ω∈Λ\{0} ω
−2k is the associated Eisenstein series of weight 2k.

Let g2 = 60G4(Λ) and g3 = 140G6(Λ). Then the modular invariant j(Λ) is defined by

j(Λ) := 1728
g3

2

g3
2 − 27g2

3

.

and the associated Weierstrass ζ-function is defined by

ζ(z) = ζ(Λ; z) :=
1

z
+

∑
ω∈Λ\{0}

(
1

z − ω
+

1

ω
+

z

ω2

)
,

where the series above converges absolutely and uniformly in any compact subset of C \ Λ.

Thus it is holomorphic in C \ Λ. If ω1, ω2 denote the fundamental periods of Λ, then the

quasi-periods η1, η2 are defined by ηi := ζ(z + ωi)− ζ(z) for i = 1, 2. With these notations,

the elliptic Schanuel conjecture reads as follows (see [3]) :

Conjecture 2 (elliptic Schanuel). Let Λ be a lattice and ℘, ζ denote the associated Weier-

strass functions. Let K be the field of endomorphisms of Λ and x1, . . . , xn ∈ C \Λ such that

they are linearly independent over K. Then

trdegQQ(g2, g3, ω1, ω2, η1, η2, x1, . . . , xn, ℘(x1), . . . , ℘(xn), ζ(x1), . . . , ζ(xn)) ≥ 2n+
4

[K : Q]
.

Often the weaker statement

(1) trdegQQ(g2, g3, x1, . . . , xn, ℘(x1), . . . , ℘(xn)) ≥ n

is also considered for application of the elliptic Schanuel conjecture. Here also the n = 1

case is known and it can be deduced as a consequence of a more general theorem of T.

Schneider and S. Lang about transcendental values of meromorphic functions. The analogue

of Lindemann-Weierstrass theorem when the Weierstrass ℘-function with algebraic invariants

g2, g3 has complex multiplication, was proved independently by the first author [8] and G.

Wüstholtz [10].

We also have A. Grothendieck’s period conjecture for an abelian variety A, defined over

Q. It states that the transcendence degree of the period matrix of A is the same as the
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dimension of the associated Mumford-Tate group. From the work of P. Deligne [6, Cor. 6.4,

p.76] one gets that this dimension is at least an upper bound for the transcendence degree

of the period matrix. Y. André [2, Chap. 23] suggested a more general conjecture which

is now known as the generalised period conjecture. This concerns periods of 1-motives,

which are defined over a subfield of C, not necessarily algebraic. In fact, Grothendieck’s

period conjecture can be seen as a special case of André’s conjecture, using Deligne’s work.

Further, C. Bertolin [3] has shown that this generalised period conjecture includes Schanuel’s

conjecture as a special case.

We now consider the following weaker version of André’s generalised period conjecture.

Let A(C) be an abelian variety of dimension g defined over Q and expA : Cg → A(C) denote

the exponential map, which is periodic with respect to a lattice ΛA. Let ω1, . . . , ωg be a

basis of the holomorphic differential 1-forms and η1, . . . , ηg be a basis of the meromorphic

differential 1-forms with residue 0 on A. Next let γ1, . . . , γ2g be a basis of the homology of A.

So the matrix of period Λ̃A is the 2g × 2g matrix with entries
∫
γj
ωi and

∫
γj
ηi, i = 1, . . . , g,

j = 1, . . . , 2g, while the matrix of the lattice ΛA is the g × 2g matrix with entries
∫
γj
ωi.

Let u ∈ Cg and y = expA(u). The relevant 1-motive here is M = [Z→ A], 1 7→ y, which

is defined over Q(expA(u)). Let MT (M) denote its Mumford-Tate group. The periods of

the 1-motive M include the periods of A and the components of u i.e. the numbers
∫ u

0
ωi,

and also the integrals
∫ u

0
ηi. Let ζA(u) denote the vector with components

∫ u
0
ηi, i = 1, . . . , g.

Conjecture 3 (weak abelian Schanuel). With the notations as above, let Q(Λ̃A) denote the

field generated by the periods and quasi-periods over Q. Let u ∈ Cg and H be the smallest

algebraic subgroup of A containing the point expA(u). Then

(2) trdegQ(Λ̃A)Q(Λ̃A, expA(u), u, ζA(u)) ≥ 2 dim(H).

In a discussion, Daniel Bertrand told us that it is possible to deduce Conjecture 3 from

André’s conjecture based on [1, Proposition 1] and extending the methods of [3]. With due

consent, we reproduce an indication of this argument here.

The generalised period conjecture of André for M implies

trdegQQ(Λ̃A, expA(u), u, ζA(u)) ≥ dimMT (M).

Since A is defined over Q, Grothendieck’s conjecture (which is a particular case of André’s

conjecture) gives trdegQQ(Λ̃A) = dim(MT (A)). Hence

(3) trdegQ(Λ̃A)Q(Λ̃A, expA(u), u, ζA(u)) ≥ dimMT (M)− dimMT (A).

If U(M) denotes the unipotent radical of MT (M), then MT (M)/U(M) is the (reductive)

group MT (A). Hence the right hand side of (3) equals dim(U(M)). Furthermore, by

[1, Proposition 1], U(M) is known to be equal to H1
Betti(H

◦), where H◦ is the connected
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component of H containing the trivial element. Thus dim(U(M)) = 2 dim(H) and we

therefore get (2), i.e.

trdegQ(Λ̃A)Q(Λ̃A, expA(u), u, ζA(u)) ≥ 2 dim(H).

Thus Conjecture 3 follows from the generalised period conjecture of André.

Remark 1. Note that

trdegQ(Λ̃A)Q(Λ̃A, expA(u), u, ζA(u)) ≤ trdegQ(Λ̃A)Q(Λ̃A, expA(u), u) + dim(H).

Hence from (2) we can deduce,

(4) trdegQ(Λ̃A)Q(Λ̃A, u, expA(u)) ≥ dim(H),

and therefore

(5) trdegQ(ΛA)Q(ΛA, u, expA(u)) ≥ dim(H).

So we get (4) and (5) as consequence of (2).

Remark 2. Conjecture 3 can further be considered for abelian varieties defined over a

subfield of C, not necessarily algebraic. G. Vallée [9] has formulated the relevant statement

from André’s generalised period conjecture, and his statement includes Conjecture 3 as a

special case.

We therefore have supporting evidence for considering Conjecture 3. With this conjecture

in place we want to extend the results in C. Cheng et al. [5] to this setting, that is prove the

linear disjointness of the two fields defined below. For the sake of completeness we recall the

definition of linear disjointness (see [7, Chap. VIII, §3]).

Definition 1. Let F be a field and F1, F2 two of its field extensions contained in a larger

field G. Then F1 is said to be linearly disjoint (resp. free) from F2 over F if any finite F -

linearly (resp. algebraically) independent subset of F1 is also F2-linearly (resp. algebraically)

independent (as a subset of G).

Though the above definition is asymmetric, it can be shown that the property of being

linearly disjoint (resp. free) is actually symmetric for F1 and F2. It is easy to see that if

F1 and F2 are linearly disjoint over F then F1 ∩ F2 = F . Also if F1 and F2 are linearly

disjoint over F then one can deduce that F1 and F2 are free over F (see [7, Chap. VIII,

Prop. 3.2]). The converse is true in special cases (see [7, Chap. VIII, Theorem 4.12] and

Lemma 1 below). The property of being free is also called as F1 and F2 being algebraically

independent over F .
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We now setup the relevant notations for our theorem. Recall, A is an abelian variety over

Q and Λ̃A denote the matrix of periods. We consider two recursively defined sets E ,L. Let

us define 1

E =
⋃
n≥0

En and L =
⋃
n≥0

Ln

where E0 = Q, L0 = Q(Λ̃A) and for n ≥ 1,

En = En−1({components of expA(u) : u ∈ Egn−1})

and

Ln = Ln−1({components of u, ζA(u) : expA(u) ∈ A(Ln−1)}).

Often, as in [9], for a point P of A(C), one uses logA P (resp. ˜logAP ) to denote the point

u = exp−1
A (P ) (resp. (u, ζA(u))). By convention we take expA( ˜logAP ) = expA(logA P ) = P .

Given a suitable set S, we denote expA(S) (resp. logA(S), ˜logA(S)) the set of elements

expA(u) for u ∈ S (resp. logA(P ), ˜logA(P ) for P ∈ S). Then, by induction, one can see that

for n ≥ 1,

En = Q(components of expA(Egn−1)) and Ln = Q(ΛA, components of ˜logA(A(Ln−1))).

Below we state our main theorem about E and L, where we take the field G in Definition 1

to be C.

Theorem 1. If Conjecture 3 is true, then E and L are linearly disjoint over Q. Since E ,L
are algebraically closed, it is equivalent to say that they are algebraically independent over

Q.

Proof of this theorem follows the structure of the proof of the main theorem of [5], but a

good part of it differs towards the end of our proof. It will be interesting to consider similar

problem for semi-abelian varieties to encompass the cases treated here and in [5].

Remark 3. In Theorem 1, one can consider abelian varieties defined over a subfield of C,

not necessarily algebraic, as considered by G. Vallée [9]. However, the statement is not true

as it stands. In §4.1, we exhibit an elliptic curve such that E1 ∩L1 ) E0 ∩L0 for the natural

candidate of E0 and L0. The difficulty in this case is coming from the fact that we no more

have the equality in Grothendieck’s period conjecture (also see [2, Chap. 23.4]).

Remark 4. We get an immediate application of Theorem 1 for elliptic curves over Q. See

§4 for more details.

1As previously for the field Q, we denote with a bar K the algebraic closure in C of a subfield K ⊂ C.
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2. Intermediate lemmas

In this section we deduce some intermediate results to prove Theorem 1.

Lemma 1. Let K1, K2 be two sub-fields of C, which are algebraically closed over K1 ∩K2.

Then they are algebraically independent over K1∩K2 if and only if they are linearly disjoint

over K1 ∩K2.

Proof. It follows immediately from Theorem 4.12 and Proposition 3.2 of [7, Chap. VIII]. �

Lemma 2. Let An be a finite subset of En. Then there exists a finite subset A of En−1 such

that A ∪ An is algebraic over Q(components of expA(Ag)).

Proof. Since An ⊂ En, for each x ∈ An, there exists a finite subset Cx of En−1 such that x is

algebraic over Q(components of expA(Cg
x)). Let An−1 := ∪x∈AnCx ⊂ En−1. Then An−1 is a

finite subset of En−1.

We repeat the process to get sets {Ai}0≤i≤n−2 such that for each i, Ai is a finite subset of Ei
and Ai+1 is algebraic over Q(components of expA(Agi )). We take A := ∪0≤i≤n−1Ai ⊂ En−1.

Then A ∪ An is algebraic over Q(components of expA(Ag)). �

Lemma 3. Let C be a finite subset of Ln. Then there exists a finite set C ⊂ L2g
n with

expA(C) ⊂ A(Ln−1) such that the set {components of expA(C)} ∪ C is algebraic over the

field Q(Λ̃A, components of C).

Proof. Since C ⊂ Ln, for each y ∈ C, there exists a finite subset Dy of A(Ln−1) such that

y is algebraic over Q(Λ̃A, components of ˜logA(Dy)). Define Bn−1 := ˜logA(∪y∈CDy), so that

C is algebraic over Q(Λ̃A, components of Bn−1). Then Bn−1 ⊂ ˜logA(A(Ln−1)) ⊂ L2g
n . Hence

expA(Bn−1) ⊂ A(Ln−1), i.e. the components of expA(Bn−1) is a finite subset of Ln−1.

We repeat this process for the components of expA(Bn−1) in place of C and so on, to get

sets {Bi}0≤i≤n−2 such that for each i, expA(Bi) ⊂ A(Li) and components of expA(Bi+1) is

algebraic over Q(Λ̃A, components of Bi). We set C := ∪0≤i≤n−1Bi to complete the proof. �

3. Proof of Theorem 1

In view of Lemma 1, we show that E and L are algebraically independent over Q. It is

enough to prove that Em and Ln are algebraically independent over Q for all m,n.

Now suppose that there exists a pair (m,n) ∈ N2 such that Em and Ln are not algebraically

independent over Q. We choose such a pair (m,n) with the property that if (a, b) < (m,n),

then Ea and Lb are algebraically independent over Q. Here the ordering ‘<’ is the ordering

on N2 where (a, b) < (m,n) if and only if either a ≤ m and b < n, or a < m and b ≤ n.

Clearly m,n ≥ 1.
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As Em and Ln are not algebraically independent over Q, there exists an element ` of Ln\Q
which is algebraic over Em i.e. there exists a finite subset {e1, . . . , ek} of non-zero elements

of Em such that ` is algebraic over Q(e1, . . . , ek).

Now from Lemma 2, we know that there exists a finite subset A of Em−1 such that

A ∪ {e1, . . . , ek} is algebraic over Q(components of expA(Ag)). Similarly by Lemma 3, we

have a finite set C ⊂ L2g
n with expA(C) ⊂ A(Ln−1) such that {components of expA(C)} ∪ {`}

is algebraic over Q(Λ̃A, components of C). Let |Ag| = n1 and |C| = n2.

Define u1 := (u : u ∈ Ag) ∈ TAn1 by concatenating elements ofAg one after another. Here

TAn1 denotes the tangent space of the abelian variety An1 . Let A1 be the smallest algebraic

subgroup of An1 containing the point expAn1 (u1). Similarly define u2 := (u : u ∈ C) ∈ TAn2

Let A2 be the smallest algebraic subgroup of An2 containing the point expAn2 (u2).

Let

K1 := Q(u1, expAn1 (u1), ζAn1 (u1)) and K2 := Q(Λ̃A,u2, expAn2 (u2), ζAn2 (u2))

Then Q(e1, . . . , ek) ⊂ K1 = Q(expAn1 (u1), ζAn1 (u1)) by Lemma 2 and Q(`) ⊂ K2 =

Q(Λ̃A,u2, ζAn2 (u2)) by Lemma 3. By Conjecture 3, we get

trdegQK1 ≥ 2 dim(A1) and trdegQ(Λ̃A)K2 ≥ 2 dim(A2)

for i = 1, 2. Since expAn1 (u1) ∈ A1 and u2 ∈ TA2, we get that

trdegQK1 ≤ 2 dim(A1)

and

trdegQ(Λ̃A)K2 ≤ 2 dim(TA2) = 2 dim(A2).

Hence

trdegQK1 = 2 dim(A1) and trdegQ(Λ̃A)K2 = 2 dim(A2).

We want to show that

(6) trdegQ(Λ̃A)K1K2 = 2 dim(A1 × A2) = trdegQK1 + trdegQ(Λ̃A)K2.

Adding trdegQQ(Λ̃A) to both sides of (6), we would get

trdegQK1K2 = trdegQK1 + trdegQK2.

This would prove that the fields K1 and K2 are algebraically independent over Q. We will

thus get a contradiction to our assumption.

Define u3 := (u1,u2). Let B be the smallest algebraic subgroup of An1+n2 containing the

point expAn1+n2 (u3). Then by Conjecture 3, we get

trdegQ(Λ̃A)K1K2 ≥ 2 dim(B).



8 PATRICE PHILIPPON, BISWAJYOTI SAHA AND EKATA SAHA

Thus we are reduced to prove that dim(B) = dim(A1) + dim(A2). If they are torsion

subgroups then we have nothing to prove. So we assume that at least one of A1 and A2 is

not a torsion subgroup.

We first assume A to be simple. For ui ∈ TAi ↪→ TAni , we choose a basis and write

ui = (ui1, . . . , uini
) with uij ∈ TA for i = 1, 2 and j = 1, . . . , ni. We consider any of the

defining relation for TB,

(7)
∑

1≤j≤n1

δ1jx1j −
∑

1≤j≤n2

δ2jx2j = 0,

where δij ∈ End(A) for i = 1, 2 and j = 1, . . . , ni. Let u :=
∑

1≤j≤n1
δ1ju1j =

∑
1≤j≤n2

δ2ju2j.

Then u ∈ Egm−1 ∩ Lgn as each u1j ∈ Ag and u2j ∈ C. Thus u ∈ Qg
, by the choice of m,n.

On the other hand expA(u) =
∑

1≤j≤n1
δ1j expA(u1j) =

∑
1≤j≤n2

δ2j expA(u2j). For similar

reason expA(u) ∈ A(Em) ∩ A(Ln−1). Again Em ∩ Ln−1 = Q, and hence expA(u) ∈ A(Q).

Thus,

trdegQQ(u, expA(u)) = 0

Now if H is the smallest algebraic subgroup of A containing expA(u), then dim(H) = 0, by

Conjecture 3, i.e. H is torsion subgroup. In particular, nu ∈ Qg
and expA(nu) = 0, for a

suitable integer n.

Thus, expA(nu) =
∑

1≤j≤n1
δ1j expA(nu1j) =

∑
1≤j≤n2

δ2j expA(nu2j) = 0. Now Ai is

the smallest algebraic subgroup of Ani containing the point expAni (ui) for i = 1, 2. Thus,∑
1≤j≤ni

δij expA(nxij) = 0 for any point expAni (xi) ∈ Ai for i = 1, 2. Since at least one of

A1 or A2 is not a torsion subgroup, there exists i ∈ {1, 2}, such that
∑

1≤j≤ni
δijnxij = 0

on TAi. Hence
∑

1≤j≤ni
δijxij = 0 on TAi, and therefore defining relations for TB separate

into disjoint relations defining TA1 and TA2. Thus we have dim(B) = dim(A1) + dim(A2).

Now we treat the case when A is not a simple abelian variety. In this case, we would

like to write down the generic form of a defining relation for TB and we show that it is a

collection of relations of the form (7). Then the proof will follow as above.

We suppose that An1+n2 is isogenous to V r1
1 × · · · × V

rl
l , where for 1 ≤ i 6= j ≤ l, Vi is an

abelian variety not isogenous to Vj. Thus, the tangent space TAn1+n2 has the form

TV1 ⊕ · · · ⊕ TV1︸ ︷︷ ︸
r1 times

⊕ · · · ⊕ TVl ⊕ · · · ⊕ TVl︸ ︷︷ ︸
rl times

.

Now B ⊂ A1 × A2 ⊂ An1+n2 . Hence, An1+n2/B can be written in the form V s1
1 × · · · × V

sl
l ,

where for each 1 ≤ i ≤ l, si ≤ ri. Now B is the kernel of the natural map from An1+n2 →
An1+n2/B. So for this we find the corresponding map V r1

1 × · · · × V
rl
l → V s1

1 × · · · × V
sl
l , for

which B is isogenous to the kernel.

Such a map is expressed as a block diagonal matrix of order (s1+· · ·+sl, r1+· · ·+rl). This

matrix has diagonal blocks of order (si, ri) with entries from End(Vi), for each 1 ≤ i ≤ l.
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Now such a matrix acts on an element (x11, . . . , x1r1 , . . . , xl1, . . . , xlrl) of TAn1+n2 , written as

a column. Under this action an element of TB is mapped to the zero vector i.e.

(8)


(δ1jk)s1×r1 (0)s1×r2 · · · (0)s1×rl
(0)s2×r1 (δ2jk)s2×r2 · · · (0)s2×rl

...
...

. . .
...

(0)sl×r1 (0)sl×r2 · · · (δljk)sl×rl




x1

x2

...

xl

 = 0,

where for 1 ≤ i ≤ l, xi =


xi1
...

xiri

. Since the matrix is block diagonal, we get that a

defining relation for TB is given as the relations of the form
ri∑
k=1

δijkxik = 0

for some δijk ∈ End(Vi) with 1 ≤ i ≤ l, 1 ≤ j ≤ si and 1 ≤ k ≤ ri. This completes the proof.

3.1. A special case. Let us consider the following two sub-fields of E and L :

E ′ =
⋃
n≥0

E ′n and L′ =
⋃
n≥0

L′n

where E ′0 = Q, L′0 = Q(ΛA) and for n ≥ 1,

E ′n = E ′n−1({components of expA(u) : u ∈ E ′g
n−1})

and

L′n = L′n−1({components of u : expA(u) ∈ A(L′n−1)}).

In fact, by induction, one can see that for n ≥ 1,

E ′n = Q(components of expA(E ′g
n−1)) and L′n = Q(ΛA, components of exp−1

A (A(L′n−1))).

Arguments as in our proof of Theorem 1 immediately yields the following :

Theorem 2. If (5) is true, then E ′ and L′ are linearly disjoint over Q.

4. An application

Now we consider the two recursively defined sets E ,L related to the Weierstrass ℘-function

associated to a lattice Λ with algebraic invariants g2, g3, defined as follows

E =
⋃
n≥0

En and L =
⋃
n≥0

Ln

where E0 = Q,L0 = Q(Λ) and for n ≥ 1,

En = En−1({℘(x) : x ∈ Pn−1 \ Λ}) and Ln = Ln−1({x : ℘(x) ∈ Ln−1 ∪ {∞}}).
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In fact, by induction, one can see that for n ≥ 1,

En = Q(℘(En−1 \ Λ)) and Ln = Q(℘−1(Ln−1 ∪ {∞})).

As a corollary to Theorem 1, we obtain the following result.

Corollary 1. If Conjecture 2 is true, then E and L are linearly disjoint over Q.

In fact, in view of Theorem 2, the conclusion of the above corollary also holds if (1) is

true. We know that when g2, g3 are algebraic, ω ∈ Λ \ {0} is transcendental. Hence as a

corollary to Corollary 1 we obtain that ω /∈ E . In particular, ω can not be a value of the ℘

function iterated at an algebraic point.

4.1. An example. We now exhibit an example in the elliptic case which shows that if the

curve is not defined over Q, then the conclusion of our Theorem 1 (or, Corollary 1) does not

follow from the same hypothesis.

For a fixed real algebraic irrational number α, our aim is to find out a lattice Z+Zτ such

that ℘(τ ;α) = ℘(Z + Zτ ;α) can be written as a polynomial in τ with algebraic coefficients.

We first claim that we can find τ0 such that d
dτ
℘(τ ;α)|τ=τ0 6=

℘(τ0;α)
τ0

. If not, then we have
d℘(τ ;α)
℘(τ ;α)

|τ=τ0 = dτ
τ
|τ=τ0 for all τ0 in the complex upper half plane. Thus d(log(℘(τ ;α)))|τ=τ0 =

d(log τ)|τ=τ0 i.e. ℘(τ0;α) = cατ0 for all τ0, where cα is a constant depending on α. But this

is not possible, as can be checked from the q-expansion of ℘.

So we choose τ0 such that d
dτ
℘(τ ;α)|τ=τ0 6=

℘(τ0;α)
τ0

and denote the ratio ℘(τ0;α)
τ0

by λ0. We

now choose λ close to λ0 such that λ ∈ Q and d
dτ
℘(τ ;α)|τ=τ0 6= λ. Consider the function

f(τ) = ℘(τ ;α) − λτ . Then we get that f ′(τ)|τ=τ0 6= 0. Hence f has a local inverse at τ0,

say g, which is defined in a neibourghood of f(τ0). Choose β ∈ Q sufficiently close to f(τ0)

and set τ1 = g(β). Then β = f(τ1) = ℘(τ1;α) − λτ1. Thus ℘(τ1;α) can be written as a

polynomial in τ1 with algebraic coefficients.

The elliptic Schanuel conjecture implies that τ1 is transcendental. Indeed, if τ1 is a

quadratic irrational, then the associated j invariant is algebraic. Hence g2, g3 are algebraically

related and η1, η2, satisfying Masser’s relation, are algebraically dependent over Q(g2, g3).

Now from Conjecture 2 we get a contradiction by taking n = 1 and x1 = α. If τ1 is algebraic

of degree larger than 2, then Conjecture 2 gives a contradiction again for n = 1 and x1 = α.

Now for this choice of τ1, we see that τ1 belongs to both E1 and L1, where the tower of fields

Ei’s and Li’s are constructed as in the beginning of this section, but with Q replaced by the

corresponding field of definition Q(g2, g3). However, we show below that τ1 is transcendental

over Q(g2, g3). This gives trdegE0E1 ∩ L1 ≥ 1, which implies E1 ∩ L1 6= E0 and therefore E1

and L1 are not linearly disjoint over E0.

To prove that τ1 is transcendental over Q(g2, g3), note that 1, τ1 and α are Q linearly inde-

pendent. Then the elliptic Schanuel conjecture yields trdegQQ(g2, g3, 1, τ1, α, ℘(τ1;α)) ≥ 3.



AN ABELIAN ANALOGUE OF SCHANUEL’S CONJECTURE AND APPLICATIONS 11

Now from our construction we see that trdegQQ(g2, g3, 1, τ1, α, ℘(τ1;α)) = trdegQQ(g2, g3, τ1).

Thus τ1 is transcendental over Q(g2, g3).
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