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Abstract

The interpretation of biomarkens natura should be based on a referential of expected saluencontaminated conditions. Nevertheless, to
build a reference data set of biomarker responsestuarine areas, which receive chronic pollutgads due to their transition position
between continent and sea, is impossible. In trgext, the aim of the present work was to propibseuse of laboratory recovery period to
define a baseline for the measurement of sperm DatAage by Comet assay in the estuarine pRaleemon longirostris. For that, sperm
DNA integrity was observed after both a passive 0 days in a clean environment) and an actieeférced renewal of spermatophores)
recovery of wildP. longirogtris specimens from the Seine estuary, in laboratonglitions. Then, the levels of sperm DNA damage need
within the P. longirostris population of the Seine estuary, during six cagpsiof sampling from April 2015 to October 2017yddeen
interpreted according to the defined threshold esld’he results showed a persistence in the IéV@N#& damage after 20-day in clean
environment with the passive recovery. This stiategs inconclusive to reach a baseline level buevealed the lack of DNA repair
mechanisms. For the active recovery, a decreads4 @b of the level of DNA damage has been obsenfest the first renewal of
spermatophores and this level stabilized aftersémnd renewal. On the basis of this second syrateg defined a mean basal value of
sperm DNA damage of 54.9 A.U. and a maximum thresbb69.7 A.U. {.e. 95 %-ClI). The analysis of the results using #ference value
highlighted significant abnormal sperm DNA damagthiw the native population d?. longirostris from the Seine estuary on all stations

during the six-sampling campaigns.

Key words: Comet assay, Biomonitoring, Baseline, l@oratory recovery, Crustaceans.
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1. Introduction

Estuaries are among the most productive ecosysseipgorting a wide variety of species, many of which

present a potential commercial interest (Menezes. e2006). These systems have a predominantrateany

aspects of living organisms such as nursery, foodezand migratory route (Chapman and Wang, 2001).

Nevertheless, due to their transitional positiotwleen continent and sea, the majority of estuaiesubmitted
to continual inputs of a large diversity of contammts. Consequently, the assessment of transitieatarbodies
quality and health status is an important issueclwhiequires the development of operational bionowimig
methodologies.

Biomarkers are considered as relevant biomonitdigigs to establish causal relationships betweeregposure
to chemicals and the impacts on organisms, integydhe aspects of bioavailability and synergeffect of
chemical mixture (Hanson et al., 2010). They asatisig to be considered in the regulatory framewofk
environmental surveys in Europe, as for examplkaenUE Marine Strategy Framework Directive (2003#385).
For many years, the major part of fimesitu applications of biomarkers was based on the upsttgownstream
approach involving the comparison between a retereand an impacted site (Flammarion and Garric7199
Flammarion et al., 2002). This approach has bedhestblished and showed its relevance to ashesguality

of sites presenting similar physicochemical paransetHowever, estuarine ecosystems are subje@rtificant

changes in physicochemical conditions at differgpatial €.9. upstream-downstream salinity gradient) and

temporal scalese(g. tidal flow) (Lobry et al., 2006), making the upsam/downstream comparisons unsuitable.

More recently, the construction of a chronologieald/or spatial reference within un-impacted popofat
integrating the natural variability as incertitugigurce i.e. both intrinsic biotic and environmental factonsgs

proposed as a relevant strategy to establish basetind threshold values for biomarker responseri¢Rk et
al., 2016; Hagger et al., 2008; Hanson et al., 20LBeaux et al., 2012; Lacaze et al., 2011a; Xueteal.,
2009). This approach allows the deployment andrtezpretation of biomarkers on a large spatialesosithout

having to refer in parallel to reference statiolissuch levels of finalization have been achieved $ome
biomarkers in some marine and freshwater speeigsQoulaud et al., 2011; Erraud et al. 2018; Lacdza.e
2011a; ICES, 2011; Xuereb et al. 2009), they angiqodarly difficult to reach in estuarine speciebhis

statement is due in large extent to the difficgltie characterize a reference station in open sgsseibmitted to
the pollutant discharges in the up-stream pareif twatersheds. On the other hand, direct compsibetween
native populations of exclusively estuarine spefiies different estuaries must be done with cageitfluence

of different adaptive mechanisms (Rank et al., 2007
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It is however a great concern to deal with sucfiadilties in order to propose methodologies allogvio assess
the health of organisms inhabiting these importantsystems. An alternative strategy based on steregion
of a basal response after a recovery phase indtdrgrhealthy conditions has been demonstrateditebte to
determine references for some biomarkerg. EROD, DNA integrity of somatic cells) in the blaske bream,
Acanthopagrus butcheri (Webb and Gagnon, 2013). The relevance of thiscggh should be investigated for

other biomarker/species combinations.

The Seine estuary (France) is considered as otie gfiost polluted estuaries in Europe, subjechtorgortant
anthropogenic pressure due to its location at thkeibof the Seine watershed (Burgeot et al., 2@BEhot et al.,
2006; Carpentier et al., 2002; Meybeck et al., 300fe Seine basin represents a territory of 78ks60and
welcomes more than a quarter of the French populaDévier et al.,, 2013). In addition to the Paurisi
metropole, the Seine estuary receives anthropogmeissure from two major nearshore agglomerations a
major harboursi(e. Rouen and Le Havre); four major industrial areas Elbeuf, Rouen, Port Jérdbme and Le
Havre); and many agricultural areas bordering #ia&River. The perpetual chemical overflow of eoninants
of the Seine River, added to the remobilisatiocaitaminants linked with the hydro-sedimentary fiow; the
maritime and fluvial traffic which requires a daillyedging, the industrial past and the importatdakia of the
upstream watershed of this estuary together mageettuary largely affected by a wide range of aomihants
(Cailleaud et al., 2007a, b). This estuary is tloeee particularly prone to genotoxic pressure sittee Seine
River receives inputs of a large variety of micahptants such as polycyclic aromatic hydrocarb{PaH)
(Motelay-Massei et al. 2007), trace metals (Groslebial. 2006) and polychlorinated biphenyls (PQB&ybeck

et al. 2004).

Genotoxic biomarkers are considered as integraidds, able to provide complementary informations t
chemical and ecological analyses in field monitgrihacaze et al., 2011a). Indeed, the study of geamty
represents a major challenge for the environmesgeguwation due to the wide range of genotoxic sulcsts i(e.
more than a third of the anthropogenic compoundsased into the aquatic environment), and their
environmental impact and the possible ecologicasequences, particularly on the survival and thewal of
certain wild populations (Claxton et al., 1998; Gdieal., 2004). For these reasons, genotoxic assessn the
Seine estuary has started in the 2000s and hasthedocus of Research until now. In spite of theetsity of
genotoxic compounds, only PAHs have been extensimgestigated in the Seine estuary, and majofityarks
were based on bioassays assessesing the gengtgadténtial of sediments or suspended particulagtten

using bacterial strain, cell linesg SOS Chromotest and Ames test) or exotic speciagh&ux et al., 2012;
3
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Vicquelin et al., 2011; Vincent-Hubert et al., 20.1@p until now, only few studies measured genat@ffects
in somatic cells of indigenous organisms livingthe Seine estuary such as the flounBHatichtys flesus
(Marchand et al., 2004) and the mus$#isisseina polymorpha for the upstream paandMytilus edulis for the
mouth part of the estuary (Rocher et al. 2006, lo&f &t al. 2006). Moreover, no crustacean group tesn

investigated in the Seine River in spite of itslegwal and ecotoxicological interest.

Among crustacean®alaemon longirostris (Milne Edwards, 1937) is a typical estuarine spetiat completes
its whole life cycle in brackish water (Gonzalez€yon et al., 2006), which is present from the moft Africa
up to Western Germany and North-East England (#eBeguer et al., 2009Palaemon longirostrisis the most

common and abundant prawn in the Seine estuaig,@ber large estuaries of the Atlantic Frenchstoa

In this context, the global aim of our study cotssis the development of Comet assay on Palaenpmaiins
spermatozoa to assess the potentiality of the spddr integrity to be proposed as a relevant biorearkr the
surveys of European coastal and estuarine watéefodur investigation focuses on spermatozoa shegare

in most cases considered to be sensitive to contdion due to their inability to prevent oxidatisgess and to
repair DNA damage (Aitken et al., 2004). In additi@ssessment of genotoxicity on this cellular tigp®f
obvious interest regarding its key role in reprducsuccess (Lacaze et al., 2011a; Lewis and &ailfp2010;
Devaux et al. 2011, 2015; Santos et al., 2013&hbjing previous studies, the methodological procedof
Comet assay was adapted and optimizedPBlaemon sp spermatozoa and a reference data distributicn wa
defined for the coastal speciBsserratus (Erraud et al., 2018 a,b). The objective of thisgent work was to
propose an alternative strategy to define a basétinthe native population & longirostris living in the Seine
estuary, in order to assure a robust interpretadiothis marker in this complex ecosystem. In inwbrate
species, little information is available concernibdNA repair of spermatozoa and in a lesser extent i
Palaemonidae spermatozoa in spite of their paatiitids, which differ from those of the aquaticentebrates in
both form and function (Braga et al. 2013). Sahi first step, different passive and active recpagproaches
were performed on wild specimense( naturally exposed to Seine contamination) transferto healthy
conditions in laboratory to try to define the bakalel of sperm DNA damage. In the second stepsterm
DNA integrity of the Seine estua®. longirostris population was assessed during 6 sampling camgaign

2015, 2016 and 2017.

2. Materials and methods

4
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2.1. Field collection and maintenance in laboratory conditions

Adult specimens oPalaemon longirodtris (i.e. 32,4+ 3,6 mm of total body size) were collected along th
salinity gradient in the mesohaline zone of then8eéstuary, between the Normandy and the Tanaarvill
Bridges, in April 2015, January 2016, May 2016, dbetr 2016, April 2017 and October 2017 (Normandy,
France; Fig 1). Eight stations were monitored iohesampling campaign in order to find males, cossid) the
movement of the salinity gradient at the differs@asons (Fig. 1): three stations in the vicinitghgf Normandy
bridge(i.e. NB1 = Normandy bridge; NB2 = Grestain abbey; NB&restain); two stations at the mouth of the
Risle River {.e. Ri1 = Berville-sur-mer ; Ri2 = Blanc banc); oriat®n in the Risle Riveri g. RiR); two stations

at the proximity of the Tancarville bridgeg, TB1 = Pointe de la Roque; TB2 = Tancarville bejlg

The samplings were carried out by a fisherman pev{Prélev’'Mar®) using a prawn net dredged wittmesh
size of 11 mm and dredging at a depth of 7 — 9 mateWtemperature, salinity and dissolved oxygenewer
systematically recorded at each station duringsathplings. Immediately after dredging, prawns waue in
30 L-plastic containers supplied with the natunadiish water of the sampling station, under oxgdiem until
the return to the laboratoryi.€ approximatively 3 hours). The presence of the agpemasculina (i.e.
secondary sexual character) by an observation biftbcular magnifier (8x) was used to select seyualature
male prawns and to separate them from females2(Figlales were kept in plastic containers undergexyation

until analysis of sperm DNA damage, the next magnas described in section 2.4.

M % : Tancarville Bridge A

Normandy Bridge TS e ¢ y

ver
geine RV
- R .
NB3 —_— Q
NB1 NB2 e i/
— m———

Risle River ”
a L \ . v O ri—. |
0——1000m [ 4

Figure 1. Localization of the sampling stations along then8egstuary between the Normandy bridge and the
Tancarville bridge (Normandie; France). NB1 = Nonai@ bridge; NB2 = Grestain abbey; NB3 = Grest&iii;
= Berville sur mer; RiR = Risle River; Ri2 = Blamanc; TB1 = Pointe de la Roque and TB2 = Tancarvill

bridge.
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Figure 2. Binocular observation (8x) of the secondary sexatters, the appendigasculing, in
Palaemon longirostris at the second pleopode pair. The continuous ameavks the appendixterna and the

hatched arrow marks the appentiasculina.

2.2. Procedure of the sperm DNA damage analysis

Spermatophores were extracted from the terminaldlebefore being transferred into 1.5 mL-micratdiied
with 300 pL of artificial brackish wateri.¢. salinity of 15) adjusted to the hemolymphatic ofafity of
P. longirostris (i.e. 610 — 650 mOsmol.Ky. Spermatophores were ripped by pipetting up ansnduntil their
entire laceration. The mortality of spermatozogesuasion was assessed with the trypan blueites®(4 % wi/v)
on KOVA® slides, using a photonic microscope (40@inly the samples displaying a sperm viabikit35 %
were used for the Comet assay. The procedure dfdineet assay was performed according to the mekbgylo

developed by Singh et al. (1988) and previoushpsathto Palaemonid prawns in Erraud et al. (2018a).

2.3. Experiment of passive recovery in clean artificial sea water

Sixty adult male prawns from the sampling of Japua16 were used for this experiment. To responthéo
experimental design, the specimens from sampliatiosis Ril and Ri2 were used because high densifies
prawns, displaying similar level of spermatozoa DN&mage (see section 3.1), were found on theserstat
during this period. At the beginning, 20 prawns aeveacrificed to assess the initial sperm DNA irtgdi0).

The other forty prawns were distributed in groupssoprawns per 2 L-beaker containing 1 L of artiflc
brackish-water (ABW) at salinity of 10, pH 7.7 20and 12.0 + 0.3 °G.é. approximating conditions found at
the sampling stations at this period) and kepthiesé conditions during 20 days. ABW was obtained by

dissolution of TETRA®Sea salt.¢. salt used for marine aquarium maintenance) anaerdration of 12.3 git.

6
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(i.e. salinity of 10). Mortality was followed every daf this experiment. Every beaker was provided with
additional aeration to maintain optimum conditioaad the water was monitored daily for nitrite (J;YGand
nitrate (NQ) concentrations which were always included in healues {.e. between 0.01 to 0.02 mg'‘Lfor
nitrite and 5 to 9 mg.L of nitrate). The brackish water was renewed e¥@yours. Prawns were fed dailgt
libitum with pellet B-Penaeus Grower RCE 1 (Le Gouessaat®prding to manufacturer’'s recommendations
during the experiment period. Batches of 4 beaken® stopped after 10 and 20 days of recovieey {10 and
T20). Sperm samples from each surviving prawn wétained and individually analysed as describeskition
2.4. The DNA integrity was measured only for thersp samples displaying a cell viability85 % (.e. n = 17,

12 and 14 for TO, T10 and T20, respectively).

2.4. Experiment of active recovery by three successive forced spermatophore extraction / reformation

To ensure that the spermatophore turnover occutls gperm showing a lower history of exposure, this
experiment was conducted during the sexual lateBeyenty adult male prawmg the October 2016 sampling
pooled from stations Ril and Ri2 were used forsidume reasons than for the passive recovery (sters2).
Spermatophores for each male prawn were immediatghacted and the 20 sperm suspensions were rdydom
selected to obtain the TO. Just after the sperrhatepextraction, prawns were distributed by 5 psayper 2 L-
beaker supplied with 1 L of ABW at salinity of 51(¥.9 and 13°Ci(e. approximating conditions found at the
sampling stations at this period) and maintained3fbdays. ABW was obtained by dissolution of TET&3ea
salt at a concentration of 6.1 g.Ii.e. salinity of 5). Fifteen days between each sperptaice extraction were
necessary at this season to allow the formatioa iéw spermatophore in the terminal ampullae. Todatity

of prawns was monitored every day. The maintenasfcprawns was performed similar to that detailed in
section 2.2. After 15 days and 30 daiys. (T15 and T30), new extractions of spermatophoreg werformed on

all prawns. Twenty sperm suspensions were randseiscted for DNA integrity analysis. The sperm sksip
of each prawn were obtained and individually aredyss described in section 2.4. The DNA integrigsw
measured only for the sperm samples displayindlaaerival rate> 85 % (.e. n = 17, 17 and 12 for TO, T15

and T30, respectively).

2.5. Satistical analysis

Statistical analyses were performed with the R istugbftware v0.99.903 (RStudio Inc.). All resultsea
7
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expressed as meah standard deviation of all sperm suspensions fah ezondition. As normality and
homoscedasticity was not respected for our conmgtyadata, only non-parametric tests were used DR
damage values of passive and active recoverystitati comparisons of recovery times were assessied the
non-parametric Kruskal-Wallis rank ANOVA test, fmlted when significant by Wilcoxon rank sum test to
identify groups that differed significantly fromettcontrol. The statistical significance level was at 0.05. A
maximum reference threshold (unilateral"98ercentile) of DNA damage was defined by the basislata

measured after active recoverg(T15 and T30; n = 29; see section 3.2).

For each sampling campaign and each station, aipaicomparison using a non-parametric Nemenyi smk
test was used to assess the deviation of sperm iDtegrity from the defined baseline. A second nanametric

test, the Scheirer-Ray-Hare pairwise test, was tsadsess the effects between stations and seasons

3. Results
3.1. Kinetics of DNA damage in spermatozoa of prawns from the Seine River during passive recovery

During this experiment, the prawn survival weread@ 95 % in the batches of prawns stopped aftemti020
days, respectively. The death was the result ofibatism after moulting during the previous nightslight but
significant decrease of the sperm viability was esbed after the first 10 days of this passive recpv
(Wilkoxon rank sum testp = 0.0004307), but was not extended during the I@stldys (Wilkoxon rank sum
test p= 0.2605) with a viability at TO, T10 and T20 of 9% 3.9, 90.3 + 3.8 and 93.3 + 6.4 %, respectively.
Fig. 3 shows the level of DNA damage measured @mraptozoa of the prawns sampled in the Seine gstuar
January 2016if. TO;n= 17 prawns) and after 10 and 20 days of passivavegg in clean ABW1if = 12 and 14
prawns, respectively). No significant decreaséhanrnean level of DNA damage was observed betweei T®
and T20 with levels reaching 11Qt511.3, 112.3: 10.7 and 106.% 22.7 A.U. (.e. Arbitrary Unit), respectively
(Kruskal-Wallis rank testp = 0.397). However, it can be noted that an incredske inter-individual variability
at T20 daysi(e. Variation Coefficient VC = 21.3 %) was observernpared to the TO and T10 day®.(10.3

and 9.6 %, respectively).
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Figure 3. SpermDNA damage measured using Comet assaRaimemon longirostris specimens sampled in
Seine estuary, just beforeg TO; n = 17) and after 10 and 20 days in laboratory regpyperiod in healthy
environment (T10 and T2®;= 12 and 14). Results are shown in boxpil@ the median, the first and the third

quartiles, the non-outliers range and the outljevih the mean (red point).

3.2. Definition of reference values of DNA damage in spermatozoa of prawns in laboratory experiment

During this experiment, 21 prawns died which repr¢s30 % of the total number of prawns. Extractain
spermatophores was the major source of mortalitiiijmexperiment with 7 and 8 dead prawns afteffitseand
second extractions, respectively. The 6 other geadns occurred after the moult as a result of itatism. A
slight but significant decrease of the cells vidpivas observed between T10 and T30 with viabaityl0, T15
and T30 reaching 97.0 + 2.0, 94.8 + 5.3 and 926261%, respectively (Wilcoxon rank sum tgst: 0.002366).
Fig. 4 presents the level of DNA damage measurespémmatozoa of prawns beforee(TO) and after the first
and second forced spermatophore extractions /mafitwns during a recovery phase in clean ABW {15 and
T30). At TO, the mean level of DNA damage in spdomaa of prawns has attained 9£5.4 A.U. After the
first reformation, at T15, a significant decrea$es4.8 % in the mean level of DNA damage was olesgrv
reaching 53.4+ 8.9 A.U. (Wilcoxon rank sum tesp < 0.001). In contrast, after the third extraction, a
stabilization of the mean level of DNA damage whsayved between the first and the second reformétia
57.0+ 9.1 AU) (Wilcoxon rank sum testy = 0.3033). Hence, on the basis of the data T15T&td{.e. n = 17
and 12, respectively), a baseline level was estiadadi, with a mean value of 54.9 + 9.1 A.U. and aemban

95 % unilateral confidence threshold of 69.7 A.BisTmaximum damage threshold is based on the \@riaf



241  the 29 prawns’ level of DNA damage at T15 and Ta@sd{.e. n = 17 andn = 12, respectively), which notably

242  presented a quite small inter-individual variapiliyariation Coefficient - VC = 16.4 %).
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244  Figure 4. Sperm DNA damage measured using Comet ass&alaemon longirostris specimens sampled in
245  Seine estuary after 3 successive extractions afrsgtephores performed just befoiee(T0; n = 17) and after
246 15 and 30 days of recovery under laboratory comuiitiin healtny medium (T15 and T30; n = 17 and 12).
247 Results are shown in boxplatg the median, the first and the third quartiles, tlom-outliers range and the
248  outliers), with the mean (red point). Continuounelrepresents the mean of DNA damage values retatdEl5

249  and T30 and the dashed line represents the umil&&1% confidence interval.

250
251  3.3. Srerm DNA damage within the prawn population of the Seine estuary

252  The seasonal variations of water temperatiee ffom 5.7 to 14.8 °C), salinityi.e. salinity from 3 to 16) and
253 dissolved oxygenif. 5.1 —8.6 ppm) observed at the sampling areangutie different campaigns are
254  represented in Table 1. Fig. 5 presents the leveherm DNA damage measured in native populatioprafvns

255  sampled at a maximum of seven stations locateddsetthe Normandy and the Tancarville bridges.
256
257
258
259
260
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261 Table 1. Detailed informations concerning the different caigps of sampling on the 8 stations from 2015 to

262 2017. ND = not determined.

Sampling dates Sites TC Salinity Dissolved oxygen (ppm) | Dissolved oxygen (%)

NB1 12.7 14 ND ND

NB2 12.5 16 ND ND

NB3 12.6 12 ND ND

16/04/2015 Ril 12.7 10 ND ND
RiR ND ND ND ND

Ri2 12.9 8 ND ND

TB1 13.1 6 ND ND

TB2 13.3 3 ND ND

NB1 5.7 17 ND ND

NB2 5.7 15 ND ND

NB3 5.7 12 ND ND

21/01/2016 R!l 5.8 9 ND ND
RiR 5.9 10 ND ND

Ri2 5.7 8 ND ND

TB1 5.8 8 ND ND

TB2 5.8 7 ND ND

NB1 14.3 11 5.88 82.3

NB2 14.8 9 6.46 80.4

NB3 14.7 7 5.27 79.6

13/05/2016 Ril 14.1 6 5.17 76.5
RiR 14.5 5 5.93 81.4

Ri2 14.3 5 5.15 78.3

TB1 14.1 4 6.2 79.0

TB2 14.7 3 5.61 80.0

NB1 13.7 25 7.21 81.4

NB2 13.1 19 7.52 83.6

NB3 12.8 16 7.34 82.5

25/10/2016 R?l 12.9 14 7.63 86.8
RiR 12.7 5 8.02 90.2

Ri2 12.9 6 7.83 87.4

TB1 13.0 5 7.65 85.9

TB2 12.9 4 7.47 81.7

NB1 12.5 14 8.60 92.0

NB2 12.5 13 8.70 95.8

NB3 12.4 12 8.20 90.6

17/04/2017 Ril 12.5 10 8.17 90.1
RiR 13.2 4 8.58 92.0

Ri2 12.9 6 7.83 88.0

TB1 13.1 3 8.02 90.0

TB2 13.1 3 7.99 88.0

NB1 14 19 6.95 85.3

NB2 13.9 17 7.58 83.1

NB3 13.7 16 7.21 83.2

25/10/2017 R?l 13.6 15 7.64 84.4
RiR 14.3 6 8.01 89.5

Ri2 14 7 7.73 87.2

TB1 14.2 10 7.54 82.2

263 TB2 14.3 6 7.61 83.9

264
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265

266  Figure 5. SpermDNA damage measured using Comet assajalaemon longirostris specimens sampled in a
267  maximum of 7 stations along the mesohaline pathefSeine estuary during 6 campaigns in 2015, 2015
268 2017. Results are shown in boxploe(the median, the first and the third quartiles, toa-outliers range and

269 the outliers), with the mean (red point)= 10 specimens per station.

270

271 Prawns sampled in all stations and campaigns piesenean DNA damage levels above the maximum damage
272  threshold of 69.7 A.U. defined in the previous latiory experiment (see section 3.2). Considerimgrtiean
273 level of all stations for each sampling campaitye, lbwest levels of sperm DNA damage were obseirvégbril
274 2015, October 2016 and October 2017 with valueshiag 96.8 + 16.8, 99.0 + 7.7 and 88.7 + 21.7 Alilk
275 38.9, 42.1 and 27.3 % above the maximum threshaddpectively. Contrarily, the highest levels oféisp DNA
276 damage were observed in January 2016, May 2016Aariti2017 displaying levels of 135.2 + 11.1, 134
277 28.2.and 129.3 +21.7 A.Ui.€ 94.0, 97.1 and 85.5 % above the threshold vatespectively. Considering now
278 the inter-site variability of each sampling campaiguring the springi€. April 2015, May 2016 and April
279 2017), it can be underlined that the prawns shoaredhter-site variability with a higher mean lewsI DNA
280 damage at each sampling station extremity consigettie location of prawns (Nemenyi rank sum tpst
281 0.05). Indeed, the lowest levels of DNA damage waoserved in the middle of the studied area, StatRi2,
282 NB3 and Ril displaying a minimum of 79.6 + 3.2, 111@ 27.2 and 103.2 + 24.2 A.U. in April 2015, M2§16,
283  April 2017, respectively. Conversely, during thengéing of January 2016 and October 2016 no sigaific
284  difference was observed between stations (Nemamk sum testp > 0.05). Moreover, during May 2016, April
285 2017 and October 2017, a significant inter-indiatlvariability at all stations has been obsenies Yariation
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Coefficient % from 10.9 to 24.7 %, from 6.7 to 298and from 7.6 to 27.2 %, respectively) which ¢ the
case in April 2015, January 2016 and October 20&6\(C % from 3.2 to 7.5 %, from 3.5 to 8.4 % and from
6.4 to 8.1 %, respectively)n fine, a significant variability on the level of spernNB damage between-month

was observed (Scheirer-Ray-Hare pairwise test2.220446e-16).

4. Discussion

4.1. Relevance of the different recovery procedures as an alternative to the availability of a reference population

In this present study, the ability &falaemon longirostris spermatozoa to recover sperm DNA damage was
assessed from indigenous specimens of the Seinarggte. naturally exposed to environmental contamination)
after transfer in the laboratory conditions, duram@0 days-period. In the case of the majoritypermatozoa,
they are known to be devoid of DNA repair mechasis(hitken et al., 2004). However, crustaceans
spermatozoa, and more precisely Palaemonidae prgwasent a number of morphological and structural
particularities €.g. afflagelate, no systematic presence of an acres@nd mainly a totally decondensed
chromatin; Braga et al., 2013), compared with ttieoent-aqua sperm, which seems closer of soroalis.
Prawns sampled in the Seine estuarg (T0) displayed high sperm DNA damage levels congbdcethe
baseline recently described in the coastal spdtakgemon serratus from a reference station of the Seine Bay
(i.e. Yport; 52.6+ 5.6 A.U. with the upper 95% unilateral confidertleeeshold at 61.7 A.U; Erraud et al., 2018).
After 10 and 20 days of passive recoveryirongirostris, the level of DNA damage was persistent over time
(i.e. 112.3+ 10.7 and 106.% 22.7 A.U, respectively). This strategy to reaoh iaseline level of DNA damage
for its use in biomonitoring program seems not ¢odperational. This result suggested a lack of Dipair
mechanisms irPalaemon sp spermatozoa and is coherent with previous teporanother crustacean group.
Indeed, Lacaze et al. (2011b) observed no DNA rapahe sperm of the freshwat@ammarus fossarum after

an initial exposure to the model genotoxicant meethgthane sulfonate for 5 days, and 4 days of regoin
clean water. The lack of recovery of the sperm Déiédnage inP. longirostris reinforces its relevance in the
environmental survey. Indeed, to be useful in flekl, a biomarker has to be representative frorasst over
time (Wu et al. 2005). In this way, the capabiliya fast recovering biomarker represents a resdliantage
for monitoring applications by reflecting only acemt pollution episode and not providing the timtgration

of contamination effects (Sanchez et al., 2008; bvatd Gagnon, 2013). Without repair mechanismsDiKA

integrity will depend on the cells sensitivity, géoxic pressure and time of exposure. Althoughrepéogenesis
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in the majority of crustaceans is performed wittia testis, many later stages of this processampleted upon
entering the testicular lumen and the proximal pathe vas deferens to assume complete morphalogjerm
characteristics (Subramoniam, 2016). Starting ftbisi statement, an exposure of the spermatic kfie within
the testicular lumen or the vas deferens coultidiiplay DNA repair mechanisms and consequentbmstess
significant DNA damage than spermatozoa exposdti@rspermatophore. Lacaeeal. (2011a) demonstrated
that the sensitivity of Gammarid sperm DNA integribuld depend on the spermatogenesis stage. Therau
observed the highest level of DNA damage in spevmtat collected in sexual mature males in comparieon
spermatozoa from males in the early stage of sgegaaesis. To ensure the renewal of the maturergiezoa
stock which would be unexposed, we forced the ftionaof new spermatophores by a manual extractiomd
the sexual rest period.€. with the vas deferens empty). In the present werk defined that 15 days was
necessary foP. longirostris to renew a spermatophore after a forced extraclibis methodology was already
used in three Peneidae species in aquaculturesessghe time necessary for the renewal of spepiates
after a manual extraction and after a natural rgatiession (Leung-trujillo and Lawrence, 1991). hese
tropical species, a range from two days to severs adeas necessary depended on the species. Theotime
renewal inP. longirostris was longer than for Peneidae prawns; this doesseetn surprising since the
metabolism is slowed down in temperate speciesrAlfte first renewal of spermatophorées. (T15), the level
of DNA damage decreases sharply to attain a relgtiow level. Ultimately, a settling down of thpesm level

of DNA damage was observed after the second retiwmé.e. T30). A mean value of 54.9 £ 9.1 A.U. and a
maximum threshold corresponding to the unilateBa®®confidence intervals of 69.7 A.U was generatedhe
basis of the compilation of the levels of DNA damagcorded at T15 and T30 days< 17 and 12 prawns,
respectively). This level of DNA damage seems cehiewith the reference distribution defined in ayous
study (based on a monthly chronological data setwof years at a reference station) in the coagtaties
Palaemon serratus (i.e. a mean = SD of 52.6 + 5.6 A.U. and a IC 95% afféA.U.; Erraud et al. 2018Despite

its apparent limitation in terms of replicationawinditions between the laboratory and field coodsi {.e. water
chemistry, circadian cycles and food), the resofitthis experiment seem to be coherent with thdseaioed in
realistic conditions in the coastal species forohhno effect of confounding factorsg( season, temperature,
age and moult-stage) was observed. This observatipnoves the relevance of the procedure for aivect
recovery to reach a baseline level of sperm DNZAdrty in Palaemonidae prawns. Consequently, a DNA
damage level above the threshold could be intexgrets a modulation, resulting from an exposure to

contaminants.
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4.2. Focus on sperm DNA integrity of the Palaemon longirostris population within the Seine estuary

The levels of sperm DNA damage were measured iwrmgaoming from a maximum of 7 different stations
along the salinity gradient of the Seine estuauyirdy April 2015, January 2016, May 2016, Octob@t@ April
2017 and October 2017. All investigated stationsnduthe 6 sampling campaigns exhibited high leals
sperm DNA damage with percentages of induction abiiwe maximum threshold (previously described in
section 3.2 & 4.1) ranging from 27.3 % in autumri2@.e. October) to 97.1 % in spring 201ize( April),
highlighting the abnormally elevated response @f Hiomarker in this part of the Seine estuarywéf compare
these results with the ones obtained on the cosgtaliesP. serratus in different stations of the Seine Bay in
autumn 2015 and 2016.€ October), in most cases the percentage of indudsidiigher in the Seine estuary
than in the three most impacted stations of thaeSBay located at the north of the mouth of therriie. 16.3

to 29.5 %) (Erraud et al. 2018). This observatisnin accordance with the geographical gradient of

contamination which is diluted from the estuaryhe coastline water bodies.

It may be expected in the estuary biotope, whicpldlys considerable physico-chemical fluctuatichst
environmental conditions could impact the basaleleof a biological response, confusing biomarker
interpretation. The influence of environmental fast is generally studied in reference statidare. (
uncontaminated) or in controlled laboratory comditij.e. in a lesser environmentally realism) to avoid all
agonistic or antagonistic effects of pollution dgrithe interpretatione(g. Xuereb et al., 2009; Lacaze et al.,
2011a; Coulaud 2011). In this work, the correlaidietween temperature, dissolved oxygen or saliaityl
DNA damage were tested, and no significant effeat wbserved (data not shown). However, regardiedpidih
level of DNA damage observed during this study #mel degraded chemical quality of the Seine estuary,
seemed no relevant to use this data to validatattkence of physical factor influence. Nevertheldss return

on previous experiment in the coastal spe@akemon serratus added to the observations reported in the
literature lead us to exclude incidence of thesgfamding factors in the range of variations obsdrin the
present study. Indeed, precedent works have shéwanthe range of temperature measured in the living
environment of prawns seems to have no influenctherbaseline of sperm DNA damage for crustacesns
the common prawi®. serratus (Erraud et al., 2018b) or the freshwater gamm@ridossarum (Lacaze et al.,
2011b). In regard to the salinity or dissolved oxydevel, to our knowledge, no information exista@erning

the influence of these two abiotic factors on tlesdiine of sperm DNA damage. However, Sing andtHarl
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374  (2012), facilitated by assessing the impact of ocanfling factors in estuarine ecosystems, demoadtriak
375 laboratory experiments that salinity from 8 to 3@wot a confounding factor for DNA integrity irl giells and
376  haemocytes iM. edulis. Moreover,P. longirostris is considered as an hyper euryhaline species valiotv to
377 conserve a great homeostasis condition facingisadirvariations (Campbell & Jones, 1989). Sositlifficult to
378  believe that salinity can have an effect on speiARiamage levels in the range of salinity obsemtedng the
379 present study. Concerning the level of dissolvegger, an example of induced DNA strand breaks haady
380 been shown in gill cells of the rainbow troDhcorhyncus mykiss (Liepelt et al. 1995) and the common carp
381  Cyprinus carpio (Mustafa et al. 2011), but only at the hypoxiagstd.e. < 3 mg.L"). During our different
382 sampling campaigns, the lowest concentration afal@d oxygen was observed during the spring 2026 (
383  May 2016) with values ranging from 5.2 to 6.5 mywhich are not considered to be low values. Thesefpal
384  measurements are corroborated by dissolved oxygenabllected by the SYNAPSE netwoile(continuous
385  monitoring of physiochemical parameters in the &eRiver) which underlined the lack of anoxic epised

386  throughout the years of studiyg( values upper than 5 mg*).(Romero et al., 2016).

387 Different patterns of sperm DNA damage were obskraecording to the season. In the current state of
388  knowledge relative to the ecophysiologfyP. longirostris and to the hydro-sedimentology and contamination o
389 the Seine estuary.¢. data generated at larger spatial and temporaliénacies), the fine interpretation of these
390 patterns remains somewhat speculative. For exantiptehighest levels of DNA integrity d?. longirostris
391 spermatozoa were observed during January 2016, 204% and April 2017. These observations could be
392 explained by the high-water level peridce(from December to April) and consequently by thetamination
393 loading from the river effluents and leaching afditl soils. In contrast, in October 2016 and Oct&®d7, the
394  level of the DNA integrity was lower, which coulé In relation with the low-water level in accordangith the
395 upwelling of coastal water in the investigated adeaother way, in January and October 2016, tivelseof
396 damage recorded in the different stations wereegldsplaying a low inter-individual variation cfiefent (i.e.
397 from 7 to 8 %). Conversely, notable inter-statiariabilities were observed during the spring campsi.e.
398  April 2015, May 2016 and April 2017); the highesvéls of DNA damage were measured at both extresnit
399 the sampling area. It can be hypothesized thaetfiestuations could be the result of local chemprassure or
400 an effect of the breeding period of the white prawrwas shown in Palaemonidae speciésdobrachium
401 nobili and Macrobrachium rosenbergi), that during this period a single male could enghee fertilization of
402  several femaleén a row (Balasundaram & Pandian, 1982; Ling, 196, it could be hypothesized that the

403 sexual activity of male specimens accentuates uh®ver of sperm stock, acting as an active regovene

16



404
405
406

407
408
409
410
411

412

413

414
415
416
417
418
419
420
421
422
423
424
425
426

427

428

429
430
431

lowest level of DNA observed in the middle partloé area could be explained by a more intense baxtigity
(Aurousseau, 1984). In the same way, the more praced inter-individual variability could be the wétsof the

temporality of reproduction events that could diffetween specimens.

Further research must be performed to gain a batigerstanding of these spatial and temporal vangaton the
toxicological response and lead to a survey prdtaduch is as relevant as possible. Anyway, in therent
situation, the global work conducted on the gePalsemon sp., allowed to quantify a genotoxic pressure iwith
a transition waterbody regarding a robust referevaleie, which constitute an important challenge toe

application and the interpretation of biomarkerfluictuating systems as estuaries.

Conclusion

The use of passive recovery in controlled laboyatamditions showed the lack of DNA repair mecharsisn
Palaemon sperm, underlining the ability of the sperm DNAvdage measurement for integrating the history of
exposure to toxicological stress. Conversely, tbevea recovery (in the same conditions) appearedédoa
relevant alternative strategy to define a baselonethis biomarker in an estuarine palaemonid prawis
baseline ofPalaemon longirostris was perfectly in accordance with the referencéritigion defined in the
coastal specieBalaemon serratus suggesting the possibility of using an inter-spedieference distribution to
invest the continuum estuary/littoral of the SelBsgy. Although this study was a preliminary steg tise of this
baseline demonstrated the abnormal level of spehw @amage within the autochthono®&s longirostris
population of the Seine estuary during six campaigmm 2015 to 2017. However, further studies cdaddione
to give more precision to the environmental diagmoBor example, deployment of an active biomonitpr
approach based on the transplantation of prawsciaging systems coupled to physico-chemical daggdrs
and chemical integrative samplers could lead toetieb control of thein situ exposure conditions and

consequently to a more accurate understandingedfitimarker fluctuations.
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SAMPLING DATES SITES T°C SALINITY DISSOLVED OXYGEN (PPM)  DISSOLVED OXYGEN (%)
16/04/2015 NB1 12.7 14 ND ND
NB2 12.5 16 ND ND
NB3 12.6 12 ND ND
Ril 12.7 10 ND ND
RiR ND ND ND ND
Ri2 12.9 8 ND ND
TB1 13.1 6 ND ND
TB2 13.3 3 ND ND
21/01/2016 NB1 5.7 17 ND ND
NB2 5.7 15 ND ND
NB3 5.7 12 ND ND
Ril 5.8 9 ND ND
RiR 5.9 10 ND ND
Ri2 5.7 8 ND ND
TB1 5.8 8 ND ND
TB2 5.8 7 ND ND
13/05/2016 NB1 14.3 11 5.88 82.3
NB2 14.8 9 6.46 80.4
NB3 14.7 7 5.27 79.6
Ril 14.1 6 5.17 76.5
RiR 14.5 5 5.93 81.4
Ri2 14.3 5 5.15 78.3
TB1 14.1 4 6.2 79.0
TB2 14.7 3 5.61 80.0
25/10/2016 NB1 13.7 25 7.21 81.4
NB2 13.1 19 7.52 83.6
NB3 12.8 16 7.34 82.5
Ril 12.9 14 7.63 86.8
RiR 12.7 5 8.02 90.2
Ri2 12.9 6 7.83 87.4
TB1 13.0 5 7.65 85.9
TB2 12.9 4 7.47 81.7
17/04/2017 NB1 12.5 14 8.60 92.0
NB2 12.5 13 8.70 95.8
NB3 12.4 12 8.20 90.6
Ril 12.5 10 8.17 90.1
RiR 13.2 4 8.58 92.0
Ri2 12.9 6 7.83 88.0
TB1 13.1 3 8.02 90.0
TB2 13.1 3 7.99 88.0
25/10/2017 NB1 14 19 6.95 85.3
NB2 13.9 17 7.58 83.1
NB3 13.7 16 7.21 83.2
Ril 13.6 15 7.64 84.4
RiR 14.3 6 8.01 89.5
Ri2 14 7 7.73 87.2
TB1 14.2 10 7.54 82.2
TB2 14.3 6 7.61 83.9




Highlights

- Alternative strategy to propose a baseline of sperm DNA integrity in P. longirostris
- Persstence of sperm DNA damages during 20 days after the toxic stress cancelation
- Relevance of asignificant threshold to discriminate abnormal genotoxic pressure



