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Université Orléans, INSA CVL - LIFO EA, Orléans, France
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Abstract. This paper focus on query semantics on a graph database
with constraints defined over a global schema and confidence scores as-
signed to the local data sources (which compose a distributed graph
instance). Our query environment is customizable and user-friendly: it
is settled on the basis of data source confidence and user’s quality re-
strictions. These constraints are on queries not on sources. Inconsistent
data is filtered, allowing the production of valid results even when data
quality cannot be entirely ensured by sources. We elaborate on the pro-
cess of validating answers to the queries against positive, negative and
key constraints. Our validator can interact with divers lower-level query
evaluation methods.

Keywords: semantic data graph, constraint, personalization, provenance

1 Introduction

Query answering is more challenging when dealing with multiple data sources
having di↵erent confidence degrees, incomplete or inconsistent data. One may
also expect query answering to be ontology-mediated over data sets coupled with
inference reasoning. Nowadays, data collections are expected to have these char-
acteristics ([8]), which are important aspects also for the big data research. In
this modern scenario, constraint verification are generally neglected due to their
cost; the lack of data quality (Veracity) and the rapidity of data changes (Ve-
locity) – two of the V s ascribed to big data challenges – being di�cult obstacles
to overcome. Moreover, the need of powerful languages to bolster the increase
demand of analysis over graphs and networks (as in [10,22]) led researchers to
focus on user-friendly platforms capable of dealing with large-scale applications
without neglecting quality.

Constraints are the expression of the desired answer quality and of a fixed (or
personalised) context. This paper considers them as first-class citizens again by
introducing a method to constrain query answers instead of data sources. They
settle the validity requirements a user is looking for. Constraint verification is
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triggered by the query components (the query body). Inconsistency on sources
is allowed but query answers are filtered to ensure consistency w.r.t. constraints
(an original proposal towards big data applications).

The goal of this paper is to propose a declarative (datalog-type) query lan-
guage over a semantic graph database together with a mechanism for filtering
answers according to a customised context that settles global constraints and
confidence degrees. Our short-term objective is to deal with ontologies or data
sets seen as a property graph instance. Our long-term goal is a user-friendly en-
vironment to query big amount of distributed data for further (mining) analysis.
The extension of our query language to deal with group by and some aggregate
functions is another step towards this direction. Even if the paper mentions our
basic assumptions concerning data sources, its focus is on the definition of the
semantics of query answers on the proposed global environment. Details con-
cerning query evaluation are out of its scope.

Fig. 1. Query system overview

General System Architecture. We deal with a graph database system whose main
parts are illustrated in Figure 1. A global system o↵ers a graph schema composed
by global predicates and constraints. Constraints are special datalog rules over
global predicates. A local system (composed by di↵erent source databases) stores
a distributed instance of the graph. In a general perspective, we consider that each
local source has explicitly stored data and may have inference rules allowing the
derivation of new data from stored one. Inference rules are linear tuple gener-
ated dependencies (linear TGD), expressed in Datalog± [6]. We consider datalog
queries, posed on the global system, and evaluated over the distributed database.
This evaluation is performed by a (lower-level) query evaluator for which di↵er-
ent mechanisms can be considered. In this paper we o↵er some discussion on
these possibilities, but we focus on the higher-level of our system and consider
the evaluator as a module that receives the query and renders answers whose
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quality is to be checked. Indeed, the query body may trigger constraints estab-
lished at the global level and, in this case, query answers are filtered according to
them. We assume, as part of the valuator, the existence of an ontological media-
tor which ensures the communication between the global and the local systems.
This mediator dispatches sub-queries to local sources and computes responses
to a global query from sub-query answers. Constraint verification may generate
auxiliary simpler queries. Furthermore, sources are not trusted equally. Each
data source has a confidence degree, settled by a user or proposed by the system.
The query answering process takes them into account to compose responses.

Paper Organization. This paper o↵ers: a motivation example (Section 2); main
definitions (Sections 3 and 4); the semantics of constrained queries over sources
with di↵erent confidence degrees (Section 5); implementation aspects (Section 6);
a language extension, related work and conclusions (Sections 7, 8 and 9).

2 Motivating example

In a global schema concerning research production we consider as global pred-
icates: Journal(X@) and Conf(X@) classify the publications into journals or
conference proceedings; Ranking(X@, Xr

) indicates their ranking; Prod(X
t

, X
a

,
X

y

, X@, Xl

) lists the production of a research laboratory (X
l

) with the pa-
per title (X

t

), author (X
a

), year (X
y

) and where it is published (X@); Aff
(X

a

, X
l

, X
y

) refers to authors a�liation and CNRS(X
l

) and Univ(X
l

) indicate
possible financial support of French laboratories. Constraints over these global
predicates are shown in Table 1.

CP positive constraints

cP1 : Prod(Xt, Xa, Xy, X@, Xl) ! Aff(Xa, Xl, Xy)
cP2 : Aff(Xa, Xl, Xy) ! CNRS(Xl)
cP3 : Prod(Xt, Xa, Xy, X@, Xl) ! Journal(X@)
CN negative constraints

cN1 Conf(X@), Ranking(X@,C) ! ?
cN2 Ranking(X@,C) ! ?
CK key constraints

cK1 Aff(Xa, Xl, Xy), Aff(Xa, Yl, Xy) ! Xl = Yl

cK2 Ranking(X@, Xr), Ranking(X@, Yr) ! Xr = Yr

Table 1. Set of constraints on G

A first user wants to work in a context that contains only constraints c
P1 (an

author’s production in the laboratory production list implies that the author is
a�liated to this lab), c

N1 (no conference ranked C is taken into account), c
K1

(authors cannot be a�liated to di↵erent laboratories at the same time) and c
K2

(publications cannot have di↵erent rankings).
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Queries are built over this global (personalised) schema, and their results are
computed from data coming from a distributed database, composed by our so
called local data sets. Figures 2-3 illustrate local sources which are not trusted
equally by the global system. A confidence degree (⌧) indicates the accuracy
associated to each one. With these source confidence degrees the entire querying
context is settled. Source 1 is considered to be accurate (95% reliable) while the
reliance on Source 4 is smaller (accuracy: 65%). Sources can have inference rules.
For instance, Sources 1 and 3 infer the existence of lab a�liations for a person
being a researcher (Res) or a professor (Prof) at a university, respectively.

Source 1, ⌧S1 = 0.95 Source 2, ⌧S2 = 0.75
ProdS1(T1, Bob, 2014, TODS,L1) RankingS2(TODS,A)
ProdS1(T2, Bob, 2015, ODBASE,L2) RankingS2(ICEIS,C)
ProdS1(T2, T om, 2015, ODBASE,L2) JournalS2(TODS)
AffS1(Bob, L2, 2015) ConfS2(ICEIS)
CNRSS1(L2) ConfS2(ODBASE)
UnivS1(L3) JournalS2(TLDKS)
UnivS1(L1) RankingS2(TLDKS,A)
ProdS1(T5, T om, 2015, TLDKS,L2)
ProdS1(T6, Sue, 2016, TLDKS,L2)
Res(Sue, 2016, Orleans, 1)
Res(Alice, 2016, Paris, 1)
⌃1 : Res(Xa, Xy, Xuniv, XCl) ! 9XlAff(Xa, Xl, Xy)

Fig. 2. Example of local sources

In this scenario let us consider query
q1(Xl

, X@, Xr

) Prod(X
t

, X
a

, X
y

, X@, Xl

), Conf(X@), Ranking(X@, Xr

)
to find the conferences appearing in a laboratory production list and their rank-
ings. The required confidence degree is ⌧

in

= 0.6, indicating that sources having a
smaller confidence degree should not be taken into account. The answer is the set
{(L2, ODBASE,B) : 0.65} as we have ProdS1(T2, T om, 2015, ODBASE,L2)
(which triggers c

P1 giving AffS3(Tom, L2, 2015)), ConfS2(ODBASE) and
RankingS4(ODBASE,B). Tuple (L3, ICEIS,C) is not an answer since dif-
ferent constraints are violated. Even if two productions exist in ICEIS, author
Mary is a�liated to two labs in year 2016 (violation of c

K1) while Joe has no
a�liation (violation of c

P1). Moreover, ICEIS has ranking C (violation of c
K2).

A second stricter user wants to change the context to a new one where all
the constraints in Table 1 are used. Now, only journal publication (c

P3), not
ranked C (c

N2), concerning a CNRS lab (c
P2) are considered. In this context let

us consider the query
q2(Xl

, X@, Xr

, X
t

) Prod(X
t

, X
a

, X
y

, X@, Xl

), Ranking(X@, Xr

)
with required confidence degree ⌧

in

= 0.75. The answer is {(L1, TODS,A, T1) :
0.75, (L2, TLDKS,A, T5) : 0.75}. Source 4 is not considered since ⌧

S4 < ⌧
in

,
avoiding the violation of constraints c

K2 and c
N2 .
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Source 3, ⌧S3 = 0.85 Source 4, ⌧S4 = 0.65
ProdS3(T1, Bob, 2014, TODS,L1) RankingS4(TODS,B)
ProdS3(T3,Mary, 2016, ICEIS, L3) RankingS4(ODBASE,B)
ProdS3(T4, Joe, 2016, ICEIS, L3) RankingS4(ICEIS,C)
AffS3(Bob, L1, 2014) RankingS4(TLDKS,C)
AffS3(Tom,L2, 2015)
AffS3(Mary, L3, 2016)
AffS3(Mary, L1, 2016)
CNRSS3(L1)
Prof(Mary, 2014, Orleans)
Prof(Ann, 2015, T ours)
⌃3 : Prof(Xa, Xy, Xuniv) ! 9XlAff(Xa, Xl, Xy)

Fig. 3. Example of local sources (cont.)

3 A graph database

A graph schema G (or simply schema), is a finite set of predicate symbols or
relation names G1 . . . Gm

associated to a set of constraints C defined over G.
Queries are built over the global schema but evaluated over local sources. Each
answer is verified w.r.t. C. Data remain in sources and are obtained when local
systems are queried. Local sources store data explicitly or implicitly via inference
rules which are capable of deriving new data from stored one. Let S1, . . . , Sn be
the local schemas of n source databases (S

i

,⌃
i

, ⌧
i

), where S
i

is a data source
instance, ⌃

i

the associated set of inference rules defined over S
i

(1  i  n) and
⌧
i

is the source confidence degree, represented by a number in the interval [0, 1].

Alphabet and atomic formulas. Let A be an alphabet consisting of constants,
variables, predicates, the equality symbol (=), quantifiers (8 and 9) and the sym-
bols > (true) and ? (false). We consider four mutually disjoint sets, namely: (1)
�

C

, a countably infinite set of constants, called the underlying database domain;
(2) �

N

, a countably infinite set of fresh labelled nulls which are placeholders for
unknown values; (3) var an infinite set of variables used to range over elements
of �

C

[ �
N

and (4) pred, a finite set of predicates or relation names (each
predicate is associated with a positive integer called its arity). The only possible
terms are constants, nulls or variables. An atomic formula (or atom) has one
of the forms: (i) P (t1, ..., tn), where P is an n-ary predicate, and t1, ..., tn are
terms; (ii) expressions > (true) and ? (false) or (iii) t1 = t2 (where t1 and t2 are
terms). A conjunction of atoms is often identified with the set of all its atoms.
We denote by X sequences of terms X1 . . . Xk

where k � 0 (in the context one
can understand when only variables are used).

Substitution. A substitution from one set of symbols E1 to another set of symbols
E2 is a function h : E1 ) E2. A homomorphism from a set of atoms A1 to a set
of atoms A2, both over the same schema R, is a substitution h from the set of
terms of A1 to the set of terms of A2 such that: (i) if t 2 �

C

, then h(t) = t, and
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(ii) if r(t1, ..., tn) is in A1, then h(r(t1, ..., tn)) = r(h(t1), ..., h(tn)) is in A2. The
notion of homomorphism naturally extends to conjunctions of atoms.

3.1 Source databases.

A database schema S is composed by a finite set of predicate symbols and a (op-
tional) set of inference rules ⌃. The models of S w.r.t. ⌃, denoted asmods(S,⌃),
is the set of all instances I such that I |= S [⌃, which means that I ◆ S and I
satisfies ⌃.

An instantiated atom over a predicate S 2 S is an expression of the form S(u)
where u 2 (�

C

[�
N

)n. A fact (or a ground atom) over S 2 S is an instantiated
atom with no null values (i.e., atoms of form S(u) where u 2 (�

C

)n). Under the
logic-programming perspective, an instance over S is a finite set of instantiated
atoms over S while an instance over schema S is a finite set S which is the union
of instances over S, for all S 2 S.

Inference rules are tuple-generating dependency, TGD (denoted as basic
Datalog± rules). A TGD � over a database schema S is a first-order formula
8X,Y �(X,Y)! 9 Z  (X,Z) where �(X,Y) and  (X,Z) are conjunctions of
atoms over S, called the body and the head of � and denoted body(�) and
head(�), respectively. Usually, we omit the universal quantifiers. The chase (a
fundamental algorithmic tool introduced for checking implication of dependen-
cies) works on an instance through the so-called TGD chase rule ([12]): Given
schema S, let S be an instance and � : 8X,Y �(X,Y)! 9 Z  (X,Z) a TGD
over S. If � is applicable to S, i.e., there is a homomorphism h such that
h(�(X,Y)) ✓ S then (i) define h0 ◆ h such that h0(Z

i

) = z
i

, for each Z
i

2 Z,
where z

i

2 �
N

is a fresh labelled null not introduced before, and (ii) add to S
the set of atoms in h0( (X,Z) ), if not already in S.

Given a source database (S,⌃), the chase algorithm ([6]) completes the
database by an exhaustive application of the TGD chase rule which leads to a
possible infinite result denoted by chase(S,⌃). The chase for (S,⌃) is a universal
model of S w.r.t. ⌃, i.e., for each I 2 mods(S,⌃), there exists a homomorphism
from chase(S,⌃) to I.

For each local source, the set ⌃ contains only linear TGD. A guarded TGD
([6,12]) has an atom in its body which contains all the universally quantified
variables. A guarded TGD is linear i↵ it contains only one atom in its body.
Query answering under linear TGD is highly tractable ([6]).

Example 1. In Figure 3, Source 3 has the inference rule Prof(X
a

, X
y

, X
univ

)!
9X

l

Aff(X
a

, X
l

, X
y

) with which it is possible to infer Aff(Mary, z1, 2014) and
Aff(Ann, z2, 2015) where z1 and z2 are fresh nulls. ⇤

3.2 Global schema.

A global schema G serves as the unique entry point on which global queries are
posed by users ([3]). The global schema (that may be visualised by a property
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graph) is composed by a set of global relation names G1 . . . Gn

and a set of
constraints C defined over G. An instance for G is distributed on divers sources
(information in each data source corresponds to node or edge instances).

Constraints are restrictions imposed on queries; only data respecting them are
allowed as query answers. The originality of our approach is due to the following
aspects: (i) A constraint violation implies discarding only invalid answers (not
the whole database). (ii) The distributed database (local system) may contain
non valid data (perhaps derived by a tgd) which are filtered when involved in
a global query. (iii) Constraints are active rules imposing a dialogue between
the global and the local levels: on the global level, they are triggered by facts
in the query body (facts resulting from query instantiation, during evaluation).
Triggered constraints usually impose extra verifications on the local level (e.g.
testing if another fact is true in the distributed database).

A set C of constraints over G (with global relation names A and B) is com-
posed by three subsets, as follows:

(1) Positive constraints (C
P

): Each positive constraint has the form
8X, 8Y A(X)! B(Y) with Y ✓ X.

Positive constraints cover inclusion constraints, but also more powerful ones such
as A(X) ! B(X,X). They are similar to the update rules in [13]; they act as
active rules that generate the facts that must be true in the distributed database.

(2) Negative constraints (C
N

): Each negative constraint has the form
8X �(X) ! ?

where �(X) is an atom A(X) or a conjunction of two atoms A(X1), B(X2), hav-
ing a non-empty intersection between the terms in X1 and in X2.

(3) Functional dependency constraints (C
K

) also called key constraints: Each
functional dependency is an equality-generating dependency (or EGD), without
nulls, having the form:

A(Y, X1,Z1), A(Y, X2,Z2)! X1 = X2

where Y is a sequence having at least one term.

In all kinds of constraints, the left-hand side is called the body of the con-
straint and consists of one atom or a conjunction of two atoms. We refer to
body(c) as the set of atoms in the body of a given constraint c. The right-hand
side of a constraint c is its head. The head can have one of the following atomic
formulas: a positive atom (for C

P

), the atom ? (for C
N

) or an atom with the
equality symbol X1 = X2 (for C

K

). It is worth noting that a constraint is acti-
vated only when its body is instantiated by a fact.

Example 2. In Section 2, Joe is not a�liated to a lab. The inconsistency of
the distributed database w.r.t. c

P1 is tolerated, but inconsistent information is
discarded from q1 answer. ⇤

When the body of a positive constraint matches a ground atom, the (now in-
stantiated) constraint head triggers side e↵ects, setting other facts which should
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also be true in the distributed database. To formally define this behaviour, we
introduce an immediate consequence operator.

Definition 1 (Immediate consequence operator). Let T be an operator
over a given set of constraints in C. Given an instance I over G, and a constraint
c, let ⌫ be a homomorphism that instantiates body(c) with constants appearing
in I. Let TC(I) = I [ {⌫(head(c)) | c 2 C and ⌫(body(c)) ✓ I}. When no doubts
are possible, we simply write T instead of TC . ⇤

In the above definition, when C is replaced by C
P

, results in [13] can be
applied, i.e. T is monotonic, the sequence defined by: T 0(I) = I and T k(I) =
T (T k�1(I)), for every integer k > 0, has a limit. This limit, referred to as the
least fixed point of T w.r.t. I, is denoted by lfp(T, I) or by T ⇤(I).

Example 3. Consider the second context of Section 2 and I = {Prod(T, John,
2016, V LDB,L1)}. Clearly we have T ⇤(I) = {Prod(T, John, 2016, V LDB,L1),
Aff(John, L1, 2016), CNRS(L1)}. In our query environment I is initialized by
the body instantiations obtained during the query evaluation. ⇤

4 Queries

We recall the general definition of conjunctive queries.

Definition 2 (Conjunctive query). A conjunctive query (CQ) q of arity n
over a given schema is a formula of the form q(X)  �(X,Y), where �(X,Y),
called the body of q, is a conjunction of atoms over the schema and q(X), denoted
as the head of q is an n-ary predicate. A boolean conjunctive query (BCQ) is
a CQ of arity zero. We denote by body(q) (respect. head(q)) the set of atoms
composing the body (respect. the head) of a given query q.

Let I be an instance for the given schema. The answer to a CQ q of arity
n over I, denoted as q(I), is the set of all n-tuples t 2 (�

C

)n for which there
exists a homomorphism h

t

: X [ Y ) �
C

[�
N

such that h
t

(�(X,Y)) ✓ I and
h
t

(X) = t. We denote by h
t

a homomorphism used to obtain an answer tuple t.
Technically, the answer false (i.e., a negative answer) for a BCQ corresponds

to the empty result set and the answer true (i.e., a positive answer) corresponds
to the result set containing the empty tuple. A positive answer over I is denoted
by I |= q. A union of CQ (UCQ) Q of arity n is a set of CQ, where each q 2 Q
has the same arity n and uses the same predicate symbol in the head. The
answer to Q over an instance I, denoted as Q(I), is defined as the set of tuples
{t | there exists q 2 Q such that t 2 q(I)}. ⇤

Query answers over a local database are computed by taking into account
stored facts and inference rules.

Definition 3 (Query answering under TGD). Let (S,⌃) be a given local
database. The models of S w.r.t. ⌃, denoted as mods(S,⌃), is the set of all
instances I such that I |= S [ ⌃, which means that I ◆ S and I satisfies ⌃.
The answer to a CQ q w.r.t. S and ⌃, denoted as ans(q, (S,⌃)), is the set
{t | t 2 q(I) for each I 2 mods(S,⌃)}. The answer to a BCQ q w.r.t. S and ⌃
is positive, denoted as (S [⌃) |= q, i↵ ans(q, (S,⌃)) 6= ;. ⇤
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Example 4. We consider the instance (S3,⌃3) of Source 3 (Figure 3). The eval-
uation of q

a

(X
a

)  AffS3(X
a

, X
l

, 2015) over this instance gives ans(q
a

, (S3,
⌃3)) = {(Tom), (Ann)}. Tuple (Ann) results from the inference available in⌃3.⇤

In this paper, we set aside aspects of mapping global and local systems (see
[3] for an overview) and assume that when a global query q has a non-empty set
of answers then there exists at least one re-writing of q in terms of sub-queries
q01 . . . q

0
m

where each q0
j

(1  j  m) is a sub-query to be evaluated in the local
database (S

ij ,⌃ij )) (1  i
j

 n).
Our approach can be presented as an independent module that interacts with

a query evaluation machine over a distributed database. It sends the query to this
machine, treats and filters its results, possibly with the help of simpler queries.
Di↵erent querying mechanisms can be envisaged as we will discuss in Section 8.

We write (S,⌃) |= q, a shorthand of (S1,⌃1) t · · · t (S
n

,⌃
n

) |= q, to de-
note that the answer of a BCQ q is positive w.r.t. to all local databases. In
this way, we see local databases as a whole, i.e., a local system (or distributed
database) capable of answering our global query. Notice the use of a disjoint
union to express that inferences work locally. Each source contributes to the
global answer with all its (inferred or stored) data. We denote by ans(q, (S,⌃))
the set of tuples obtained as answers for a conjunctive global query q over a
distributed database (S,⌃). For instance, from Example 4, ans(q

a

, (S,⌃)) =
{(Bob), (Tom), (Ann)}.

5 Constrained queries within a confidence degree

To produce trustable answers, the global system assigns a confidence degree
⌧
i

to each data source (S
i

,⌃
i

) and assume that a query q is associated to a
minimal confidence degree ⌧

in

. Only information coming from source databases
whose confidence degrees respect a given condition w.r.t. ⌧

in

should be taken
into account to build answers for q.

Definition 4 (Local querying with confidence). Let (S, ⌃, ⌧) be a local
source database where S is a database instance, ⌃ is the associated set of in-
ference rules and ⌧ is the truth or confidence degree of the database. Let q be
query over (S,⌃, ⌧) with the minimum required truth degree ⌧

in

. The answer of
this query over (S,⌃, ⌧) is defined as follows:

ans(q :⌧
in

, (S, ⌃, ⌧)) = {(t : ⌧
out

) | ⌧
out

= ⌧ and cond(⌧
in

, ⌧
out

) and t 2 q(I)
for each I 2 mods(S,⌃)}.

where cond(⌧
in

, ⌧
out

) is a condition we may establish to avoid considering some
sources. ⇤

We recall that in our examples in this paper, we use cond(⌧
in

, ⌧
out

) = (⌧
out

�
⌧
in

) discarding all sources whose confidence is inferior to ⌧
in

. One may decide to
settle no condition at this step, taking into account all sources in the computation
of a tuple confidence degree.
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Now, we consider how to put together answers produced by di↵erently trusted
database, in order to compose the response for a given query q :⌧

in

. To this end,
we build a set of possible candidate answers.

Definition 5 (Candidate answer over (S,⌃, ⌧) ). Let (S,⌃, ⌧) be a graph
database instance composed of n local databases having di↵erent truth degrees.
A couple (t : ⌧

out

) is a candidate answer for a global query (q : ⌧
in

, (S,⌃, ⌧)) if
the following conditions hold:

1. t is a tuple such that t 2 ans(q, (S,⌃));
2. ⌧

in

 ⌧
out

and
3. ⌧

out

= f(⌧
in

, {⌧1
outSi

, . . . , ⌧m
outSl

}) where:
– each ⌧k

outSj
is the degree of the tuples in ans(q

k

: ⌧k
in

, (S
j

,⌃
j

, ⌧
j

)) for the

sub-query q
k

(1  k  m) generated to be evaluated on the local source
(S

j

,⌃
j

, ⌧
j

) during the evaluation process of q (where i, j, l are integers
in [1, n]) and

– f is a function which computes a confidence degree from the query confi-
dence degree and the set of confidence degrees of data sources concerned
by the query. ⇤

It is worth noting that di↵erent functions f can be used; allowing some flexi-
bility to the user who can parametrize the use of confidence degrees. Let us con-
sider that in Definition 4 cond(⌧

in

, ⌧
out

) = true. In this case, the selection of t is
based only on the confidence degree computed by f – for instance, when f is the
average of all source confidence degrees, resulting ⌧

out

may take in account data
sources whose confidence is less than ⌧

in

. If however a condition such as ⌧
out

� 0.5
is used in Definition 4, only sources respecting it are used in the average compu-
tation. In this paper, our examples consider that f(⌧

in

, {⌧1
outSi

, . . . , ⌧m
outSl

}) cor-
responds to min({⌧1

outSi
, . . . , ⌧m

outSl
}), and as stated above, we disregard sources

whose confidence is inferior to ⌧
in

.

Example 5. In Section 2, q1 answer (L2, ODBASE,B) with ⌧
out

= 0.65 may be
obtained by the following sub-query results: ProdS1(T2, T om, 2015, TLDKS,L2) :
0.95, ConfS2(ODBASE) : 0.75 and RankingS4 (ODBASE,B) : 0.65. Note
that AffS3(Tom,L2, 2015) : 0.85 validates c

P1 , but does not interfere in the
computation of ⌧

out

. ⇤

In our approach, global query answers are restrained by constraints in C. To
find an answer t to a query q means to find an instantiation h

t

(homomorphism
from Definition 2) for the body of q that generates t. Verifying whether the
instantiated body of q (h

t

(body(q))) is valid w.r.t. C ensures the validity of our
answer. During this verification process, three situations can be distinguished:
(A) If in h

t

(body(q)) there is no instantiated atom matching the body of a
constraint in C, then the query answer is valid.
(B) If in the set h

t

(body(q)) there is at least one instantiated atom containing
a null value in �

N

that matches the body of a constraint in C, then the query
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answer validity cannot be stated. In this case, the answer has been obtained via
an inference rule in ⌃ (a TGD) on the basis of an unknown value (a fresh null).
The presence of this fresh null ensures the existence of an answer, but we do not
know whether this answer respects the constraints (since constraints can only
be activate by ground atoms). We discard this answer without triggering the
constraint verification procedure.
(C) If in the set h

t

(body(q)) all instantiated atoms that matches the body of a
constraint in C are facts, then the query answer should be tested w.r.t. C.

Example 6. In the example of Section 2, consider a query containingAff(X
a

, X
l

,
X

y

) in its body. As S3 contains Prof(Ann, 2015, T ours) then the inference pro-
duces Aff(Ann, z2, 2015) (as in Example 1), meaning that Ann is associated to
an unknown research laboratory. In the second context, there is a matching with
c
P2 . As this matching involves a fresh null, this answer is discarded. Figures 2-3
show other instantiations of Aff which activate c

P2 in this case. For example,
Aff(Bob, L2, 2015) requires CNRS(L2) to be true in (S,⌃, ⌧). ⇤

The following definition deals with the need of well identifying the set of
atoms capable of activating constraints. A constraint cannot be triggered by
an atom containing a fresh null (i.e., a piece of unknown information). Indeed,
constraint verification cannot always be ensured in the presence of nulls values
(which may appear due to TGD).

Definition 6 (Unknown test function). Let I be a set of instantiated atoms.
Let C be a set of constraints. The unknown test function states whether a con-
straint c can be activated on the basis of atoms in set I. Let unknwon(I, C) =
true if there is an atom ↵ 2 body(c) for which there exists a homomorphism ⌫
such that ⌫(↵) 2 I and the image of ⌫ contains at least one value v

null

2 �
N

.
Otherwise unknwon(I, C) = false. ⇤

Now we put together constraint and confidence degree verification to answer
global queries. Let q :⌧

in

be a conjunctive global query and C = C
P

[ C
N

[ C
K

be a set of constraints over G. Valid candidate answers are those that respect
constraints and are obtained by trusted databases. We do not consider answers
for which the unknown test function is true.

Definition 7 (Valid candidate answers). Given a query q restrained by C
with the minimum required truth degree ⌧

in

, valid candidate answers of q :⌧
in

, C
over a database (S,⌃, ⌧) are defined as follows:

valCandAns(q :⌧
in

, C,(S,⌃, ⌧)) = {(t : ⌧
out

) | t is a candidate answer as
in Definition 5 and h

t

is a corresponding homomorphism (Definition 2) and
Unknown(h

t

(body(q)), C) = false and (h
t

(body(q)) is valid w.r.t. (C
P

, ⌧
in

)
and T ⇤

CP
(h

t

(body(q)) is valid w.r.t. (C
N

, ⌧
in

) and (C
K

, ⌧
in

)} ⇤

Definition 7 is completed by the definitions of validity w.r.t. each kind of
constraints in C.
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Definition 8 (Validity w.r.t. (C
P

, ⌧
in

)). A set of facts I is valid w.r.t.
(C

P

, ⌧
in

) if for each fact L 2 T ⇤
CP

(I) we have a positive answer for q() L : ⌧
in

on (S,⌃, ⌧). ⇤

In Definition 7, the computation of the least fixed point of T starts with
the literals in the body of the instantiated rule q(t) (where t is a tuple in
ans(q :⌧

in

, (S,⌃, ⌧)), as in Definition 5. Thus, the computation of ans(q :⌧
in

,
(S,⌃, ⌧)) is the key for obtaining the facts in the initial set I. Then, by finding
the least fixed point of TCP

over I, we produce all the facts which are imposed

to be true in (S,⌃, ⌧) by C
P

and that respect ⌧
in

. This is a first filter applied to
ans(q :⌧

in

, (S,⌃, ⌧)), since invalid answers are eliminated from the result given
to the user. For instance, in Section 2, q1 instantiation (Figures 2-3) triggers
constraint c

P1 : Bob and Tom should be a�liated to L2 in year 2015 (a success)
while Joe should be at L3 in 2016 (a failure).

When the body of a negative constraint c matches a fact in a set of facts
I, c is triggered to produce ?. Similarly, for key constraints, the triggered con-
straints will produce an instantiated equality expression. The formalization of
this behaviour can be done by applying T , once, on the previously computed set
of facts, i.e., we start with I = T ⇤

CP
(h

t

(body(q)).

Definition 9 (Validity w.r.t. (C
N

, ⌧
in

)). A set of ground literals I is valid
w.r.t. (C

N

, ⌧
in

) if:

1. ? 62 TCN
(I) and

2. 8L 2 I and c 2 C
N

of the form L1, L2 ! ?, if there is a homomorphism
⌫ such that1 ⌫(L

i

) = L, then there is no homomorphism ⌫0 that extends ⌫
and for which ans(q : ⌧

in

, (S,⌃, ⌧)) 6= ;, where body(q) = ⌫0(L
i

). ⇤

Definition 10 (Validity w.r.t. (C
K

, ⌧
in

)). A set of ground literals I is valid
w.r.t. (C

K

, ⌧
in

) if:

1. All equalities obtained in TCK
(I) are true (i.e., we do not obtain a = b for

two di↵erent constants) and
2. 8L 2 I and c 2 C

K

of the form A(Y, X1,Z1), A(Y, X2,Z2) ! X1 = X2 if
there is a homomorphism ⌫ such that ⌫(A(Y, X1,Z1)) = L, then ans(q0 : ⌧

in

,
(S,⌃, ⌧)), where q0 is the query q(X2)  ⌫(A(Y, X2, Z2)), is a singleton
containing the tuple value ⌫(X1). ⇤

Definitions 9 and 10 introduce the possibility of generating a new (but sim-
pler) query to certify whether the original query q is valid w.r.t. C

N

and C
K

.

Example 7. In Section 2, instantiations of body(q1) contain Prod(T3,Mary, 2016,
ICEIS, L3), Conf(ICEIS) and Ranking(ICEIS,C). Constraint c

P1 is verified
(Aff(Mary, L3) is true) while c

N1 and c
K1 (Mary is in two labs in 2016) fail. ⇤

1 In our notation, if i = 1 then i = 2 and vice-versa.
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We are now ready to define answers for a constrained query with a required
confidence degree. Notice that for identical tuples the result only contains those
with higher confidence degree.

Definition 11 (Answers on (S,⌃, ⌧)). Given a global query q, constrained
by constraints C and having the minimum required confidence degree ⌧

in

, the
set of answers for (q :⌧

in

, C) over (S,⌃, ⌧) is defined as:

ans(q :⌧
in

, C, (S,⌃, ⌧))) = {(t : ⌧
out

) | ⌧
out

= max{⌧1
out

, . . . , ⌧k
out

},
where (t1 : ⌧1

out

) . . . , (tk : ⌧k
out

) are all in
valCandAns(q :⌧

in

, C, (S,⌃, ⌧)) and t1 = · · · = tk = t} ⇤

6 Proof of concept

As a proof of concept we consider our approach over three di↵erent query evalu-
ators. These first tests are done over non distributed system and without using
confidence degrees. The current implementation of our constraint checking mech-
anism has two main steps:

1. a first step rewrites a given query q by completing its body according to pos-
itive constraints, performs a first C

N

checking and sends q to the evaluator;
2. a second step produces auxiliary simpler queries on the basis of C

N

, C
K

and the answers of q obtained in step 1. Optimisation of this second step
are under investigation, but for the moment we consider tests where all
subsidiary queries are evaluated (and thus in some examples, one such a
query may be executed many times). The solution for avoiding invalid pieces
of data being checked again and again should be the use of a cache memory.

As a first validator, we use Graal [2], a Java toolkit to query knowledge
bases within Datalog± (and thus where inference rules can be implemented).
Tests were performed on a processor Intel(R) Core(TM) i7, CPU 2.70GHz, 4
Core(s), 8 Logical Processor(s) 16.0GB RAM. For very simple queries, e.g. one
having just one join and 2 variables, Graal returned 25000 answers in 2s after
performing step 1 above over 50000 facts. Our tests validated 7249 answers w.r.t.
3 constraints in 100s. For queries requiring more variables and joins (such as q1
in Section 2) Graal returned 1908 answers over 7250 facts in 8min for step 1. Our
tests were faster (2s, 4 constraints, 447 valid answers). In the first example, to
verify remaining constraints over initial results, at most 2 sub-queries by answer
(i.e., at most 50000 sub-queries) should be evaluated. In the second case, we had
at most 5724 sub-queries to test. Moreover, the first database had seven times
more facts than the second one.

A second validator uses MySQL (i.e., our validation module connects a
MySQL database). We created synthetic tuples on the database schema consid-
ered in Section 2 (without the inference rules) and we considered the execution
of query q1 on the second context where all constraints are taken into account.
With approximately 2500 tuples we obtained 620 answers after performing step 1
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above in 26s. The second step consisted of validating 1487 queries and was done
in 7s. We obtained 149 answers as our final result. With 15000 tuples the re-
sults were: 3477 answers in 1954s for step 1; and, a second step performing 9917
validations in 55s to obtain 1247 answers.

Our third validator interrogates DBpedia2 data sets after translating our
datalog query into a SPARQL query. We have considered an RDF data fragment
concerning 5 classes and 5 properties. Our initial query had 8 predicates in its
body with a chain join and 6 constraints (2 of each type). Query evaluator here
was performed by the Virtuoso SPARQL query service in [1]. We obtained 556
answers after performing step 1 above in 1.9s (average of 5 tests). The second
step consisted of validating 1878 queries and was done in 77s (each query requires
a remote connection). We obtained 68 final answers.

The tests with the second and third validators were performed on an Intel(R)
Core(TM)2 Duo CPU, 2.53GHz, 2GiB memory.

Our experiments show that our approach is viable and that we can envis-
age scalability provided that some optimization tools are implemented (e.g. to
limit repeating tests). Determining whether it is better to evaluate many simple
queries instead of rewriting the user’s query into a complex query (completed by
constraint requirements, in the lines of step 1 above) is a tricky problem. E�-
ciency depends on the evaluator, the database schema and instance. For example,
we considered MySQL tests without the rewriting phase of step 1: although we
had more simple queries to evaluate, we obtained a global evaluation time for q2,
in the second context, of 10s instead of 33s obtained when applying the step 1
above. Thus a finer analysis of database schema and instance may be needed to
e�ciently choose one of the following implementation strategy: query rewritten
to take constraints into account or evaluating many simple queries.

7 Group-by queries

Towards our goal of collecting data for further analysis, we summarize our lan-
guage extension (inspired in [19]) to allow a group by query q

ag

: ⌧
in

which is a
formula of the form:

q(X
i1 , . . . , Xik , a1, . . . , am) aggr(�(X1, . . . , Xn

), i1, . . . , ik,
a
l

= func
l

(X
j1 , . . . , Xjkl

)) for each 1  l  m
with a required confidence degree ⌧

in

where:
aggr is a second order predicate; �(X1, . . . , Xn

) is a conjunction of atoms over a
schema; i1, . . . , ik are positions in [1, n]; X

i1 , . . . , Xik , and X
j1 , . . . , Xjkl

are vari-
ables in {X1, . . . , Xn

}; a1 . . . am are new variables not existing in {X1, . . . , Xn

};
func

l

is a function which returns a real value.
The answer of (q

ag

:⌧
in

, C) over (S,⌃, ⌧), denoted by ans(q
ag

:⌧
in

, C, (S,⌃, ⌧))
is the set of t : ⌧

out

such that each tuple t is the concatenation of a tuple u and
m real values a, i.e., t = u.a1. . . . .am (for m � 0) defined as follows:

2 http://mappings.dbpedia.org/server/ontology/classes/
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– u : ⌧
out

2 ans(q1(Xi1 , . . . , Xik) : ⌧in, C, (S,⌃, ⌧)) and h
u

is its associated
homomorphism, i.e., one used to find u as an answer to the conjunctive query
q1(Xi1 , . . . , Xik)  �(X1, . . . , Xn

) with the minimal expected confidence
degree ⌧

in

.
– For each real value a, we have a = func(ans(q2 : ⌧in, C, (S,⌃, ⌧)) where q2

is the conjunctive query q2(Xj1 , . . . , Xjkl
)  h

u

(�(X1, . . . , Xn

)). The body
of q2 is an instantiated version of the body of q1 and that instantiation is
done with h

u

(i.e., h
u

(�(X1, . . . , Xn

)) = h
u

(body(q1))). The answer of q2
is composed by k-tuples. Each a value is obtained by the application of a
function on this set of tuples.

Example 8. Consider query q(X
l

, X
y

, X
r

, a)  aggr(Prod(X
t

, X
a

, X
y

, X@, Xl

),
Conf(X@), Ranking(X@, Xr

), X
l

, X
y

, X
r

, a = count(X
t

)) with ⌧
in

= 0.60 on
the first context mentioned in Section 2. Here, to simplify, we abuse of the
notation using X

l

, X
y

, X
r

to also indicate positions. The answer over instance
in Figures 2 and 3 is (L2, 2015, B, 2) : 0.65 since authors Bob and Tom from L2
published in TLDKS in 2015. ⇤

8 Related work and further discussion

In this paper, we propose a user-friendly environment to query a distributed
semantic data graph (such as RDF documents) that ensures reliable results even
when data source quality is not guaranteed. Our query environment would evolve
to deal with a big amount of distributed data. Our long-term goal is to produce
a user-friendly tool for helping graph analysis.

Queries, constraints and confidence. Ontological queries (such as in [6,7,9,12])
have inspired our query language on graph databases. Contrary to them, our
positive constraints are not just inferences but are closer to traditional database
constraints (e.g. if A(a) is imposed as true by a constraint c

P

, sources should
have this information; c

P

does not infer it). Our constraints are triggered by
instantiated atoms in the query body (a step towards e�cient treatment of
large amount of data). Only key constraints are treated in [17] and an answer
is given if it is restricted to query positions not constrained by a key. For in-
stance, the query q(Z) r(X,Y, Z) in the presence of a key constraint r(X,Y1,
Z1), r(X,Y2, Z2) ! Y1 = Y2 and data r(a, b, c), r(a, b0, c) o↵ers c as an answer.
This result is discarded in our approach due to constraint violation. Indeed, for
us, answers are issued from facts (in the query body) taking no part in a con-
straint violation. The proposal in [15] is close to the one in [17] but, in addition,
similarly to us, provenance information is used in answer computation. In [18] we
find di↵erent semantics for query answering over inconsistent Datalog± ontolo-
gies. Their goal is to propose corrections to the database, while ours is to avoid
answering on the basis of inconsistent data. Di↵erent work deals with unwilling
data (e.g. , [4,5,11,23]). An important characteristic in these approaches is that
an answer may be considered true even if it is obtained with confidence degree
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inferior to 1; avoiding the strictness point of view of classical logic that eliminates
results not responding entirely to constraints. Our approach is inspired in [4,5]
where a fuzzy datalog is presented. Our originality is to allow parametrized use
of confidence information. We can also envisage extensions where a minimal con-
fidence degree is associated to constraints and where result is sorted according
to confidence degree – augmenting the flexibility of our approach.

Implementation aspects. Our proposal allows the implementation of an indepen-
dent module capable of interacting with di↵erent query evaluation mechanisms.
A global query is sent to the evaluator and answers are filtered according to the
established context (fixed by the global constraints). In this paper, we have de-
scribed the whole system in a general manner; imagining sources also expressed
in a logic programming formalism, with inferences. However, one can envisage
di↵erent source formats.

For instance, our module can interact with distributed relational sources. A
global query can be rewritten according to a LAV method such as Minicon [21]
and use MapReduce-based solutions – some MapReduce solutions have already
been proposed for dealing with RDF management at large scale (see [16] for a
survey). To deal with graph databases (and, thus, RDF data) multiple MapRe-
duce jobs are required in order to evaluate a given query. Optimization in this
domain focus on the reduction of the number of MapReduce jobs ([14]). Thus,
our query evaluation would be done by steps according to the required joins.

Our module can also interact with distributed systems such as the one used
in [20] where distributed fragments group data according to allocation pat-
terns. In this context, our query can be processed by exploring the existence
of these patterns. Each server executes in parallel the same query plan, using
asynchronous BSP (Bulk Synchronous Parallel) computation model. A server
s computes, locally, sub-query answers depending on locally stored data. For
those sub-queries whose data are not available locally, s either requests the re-
mote serves to transmit data or yields to them the rest of the computation. When
slaves finish computing the query plan, their results are sent to the master.

We are currently concerned by our approach optimization and employment
over large amount of RDF data. In this context, we intend to explore two di-
rections. The first one consists in deploying additional frameworks running over
Hadoop, and, to this end, we should propose an e�cient translator of our dat-
alog query into Pig Latin or Hive. The second one consists in using the system
proposed in [20] as an evaluator of our query.

Given a query q, it is worth noting that our approach may require multiple
auxiliary query in order to answer q w.r.t. C. As already said, our current im-
plementation rewrites q w.r.t. C

P

, before sending it to the evaluator. Negative
and key constraints could be treated similarly if the evaluator is capable of (e�-
ciently) evaluating negation (currently, this is not the case, for instance, for [20]).
Notice however that rewriting is an implementation option: an automatic way
for imposing our constrained environment. The other option, is the production of
auxiliary simple queries (mostly boolean queries). This option can be optimized
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by the use of cache memories. We should therefore evaluate how to implement
e�ciently our approach in accordance with the (lower-level) evaluator.

9 Conclusions and perspectives

Our querying semantics originality is summarized by the following aspects:
(1) A user can settle a personalised context where query answers are filtered.
Constraints, imposed on queries and not on data sources, are an important fac-
tor of this personalisation. No correction trial is performed on an inconsistent
database but answers are ensured to be valid w.r.t. the established context.
(2) Data confidence according to provenance is taken into account. The user can
parametrize how information concerning source confidence is taken into account.
Even if in this paper, examples given use a very simple strategy, our semantics
allows more sophisticated approaches.
(3) Our approach can be implemented in an independent module, o↵ering flex-
ibility to the user. Freedom benefits user in two di↵erent levels: (A) Di↵erent
choices are possible for the lower level query evaluation mechanism; demanding
only relatively simple interfaces. (B) Context parameters (including constraints
and confidence degrees) may be settled for a group of queries, but changed for
another group of queries.
(4) The use of a querying constrained environment is a lighter and customized
tool that facilitates data access under given quality requirements. Sophisticated
queries might integrate restrictions and, in this way, simulate the settled context.
However, the use of a set of simple queries to impose constraints may remedy
the lack of lower level mechanisms capable of evaluating non conjunctive queries.

Our overall goal is to build a parametrized environment to produce valid and
reliable results even when the source data quality cannot be entirely ensured – an
important aspect when dealing with large amount of data. To achieve this goal,
we are currently working on implementation and optimization devices such as
the use of caches to avoid repeating validity checks. As a future research direction
we consider language extensions to deal with complex objects as needed in later
data analysis.
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