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Abstract

In order to manage quality, companies need to predict performance varia-
tions of products due to the manufacturing components deviations. Usually,
to enable the assembly of overconstrained mechanical structure, engineers
introduce clearance inside joints. We call mechanical assembly, a set of un-
deformable components connected together by mechanical joints. This paper
presents a solution: firstly, to compute the minimum value of clearance for
any given components sizes, and, secondly, to simulate variation of the min-
imum clearance value when the components dimensions vary between two
limits. To achieve this goal, a regularized closure function G is defined. It
depends on dimensional parameters, u, representing components dimensions,
on positional parameters, p, representing components positions and on clear-
ance parameters, j, representing mechanical joints clearance. A constrained
optimization problem is solved to determine the minimum clearance value.
An imaginative solution based on numerical integration of an ordinary dif-
ferential equation is proposed to show the clearance variation. The method
is designed to be used during the preliminary phase of overcontrained as-
semblies design. An advantage is the small number of input data unlike the
tolerance analysis dedicated software.
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Figure 1: (a) isoconstrained structure and (b) overconstrained structure.

1. Introduction

Shape of every manufactured workpiece is not ideal i.e. similar to the
nominal shape defined by the designer. Due to the manufacturing deviations,
the expected properties of mechanical assemblies are not exactly realized. To
insure the quality of their products, companies need to manage geometric
variations during the development and industrialization phases. It should be
noted that automotive industry is aware of this necessity because, on one
hand, the market is very competitive and, on the other hand, the number of
manufactured workpieces is huge. Other industrial domains, like aerospace or
building architecture, feel less concerned for many reasons e.g. less economic
pressure, small or medium volume of production, etc. However, because of
international competition, all industries must control the production quality.

In this paper, we deal with overconstrained rigid assemblies made of unde-
formable components connected together by mechanical joints. An assembly
is called overconstrained if the arrangement of components is impossible for
generic dimensions. For instance, as illustrated in figure 1 (a), six rods con-
nected together with four spherical joints form an isoconstrained structure
(a tetrahedron). The second structure in figure 1 (b) is made of ten rods
connected with four spherical joints. It represents the assembly of two tetra-
hedrons sharing three rods. So, twelve rods for the two tetrahedrons minus
three shared rods give nine rods to obtain a rigid isoconstrained structure.
Consequently, the tenths rod’s length must have a particular value. This sec-
ond structure is overconstrained. Usually, in an industrial context, to deal
with overconstrained assemblies, there is a need to introduce clearance into
the joints to allow mounting as well as interchangeability of workpieces. The
actual clearance should be larger than the computed clearance in order to
insure components interchangeability.

However, large clearance influences the global properties of the mechani-
cal assembly. The aim of this paper is to present a geometrical model designed
to predict, at early phase of development, the size of the minimum clearance
needed to insure the assemblability of overconstrained mechanical assemblies
in the context of mass production.

Components dimensions vary between two supposedly known limits. These
limits are small with respect to the nominal dimensions. The shape of nom-
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inal assembly is assumed to be known. Computer-aided tolerancing com-
mercial softwares like VSA edited by Tecnomatix, CETOL 6σ edited by
Sigmetrix and 3DCS edited by Dimensional Control Systems offer function-
alities to analyze effects of geometric variations on assembly characteristics.
This simulation is called tolerance analysis and was strongly studied dur-
ing the last decades. Mathematical concepts used for tolerance analysis are
Small Displacement Torsor by [1] and [2], Direct Linearization Method by
[3], Variational Geometric Constraint Network by [4] and some variations of
them. A good and complete description is given by [5]. To the best of our
knowledge, these concepts are based on the first order linearization of closure
equations representing the mechanical assembly. Approximations are made
around nominal dimensions of the parts and around the nominal positions of
the joints.

However, these tools are dedicated to detailed design of products because
they need a significant number of input data, which represents a disadvantage
for a fast study. Geometric dimensioning and tolerancing (GD&T) scheme
of each workpiece form important part of them. Otherwise, these approaches
seem to be effective for assemblies with a small number of parts and with
a small number of closed loops. For these reasons, existing solutions are
inappropriate in the context of preliminary design, on one hand because
they need a big amount of data to run the simulation. On the other hand,
because the first order linearization of the closure equations is an incorrect
approximation for a large stack of components, and also is a formalization
that may hide singularity configuration of the mechanical assembly. The
presented solution gives a response to the inadequacy of established solutions
for design of structure.

It should be understood that the aim is the existence of an overconsrained
assembly, and that simulating its behavior under working condition is a fur-
ther topic. It is well known that the existence of an overconstrained assembly
featuring nominal dimensions and perfect joints is well understood. But deal-
ing with dimensional uncertainty still needs scientific investigation: quantify
how dimensional uncertainty will influence the quality of joints. The manu-
facturing challenge is to get the best possible quality (small clearance) at a
reasonable manufacturing cost (not too small tolerance). The “working con-
dition” investigation is the next step, when the behavior of the assembly is
simulated by taking into account boundary conditions. This may suggest ge-
ometrical or topological changes and then, the whole design cycle is possibly
revisited: tolerance/clearence and working load.
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Figure 2: Theoretical investigation starts with the closure equation modeling the overcon-
strained problem. Then, the regularized closure equation transforms the overconstrained
problem into an underconstrained problem. Solutions of the underconstrained problem
are alternately obtained by minimizing the squared clearance, by finding a zero of the
lagrangian gradient or through an ordinary differential.

Detecting dependent/overconstrained subsystems [6], [7] is a valuable con-
cern. The point is that the proposed method overcomes this problem by
smoothly spreading dimensional uncertainty over all joints of the assembly.
It is significant to understand that if the assembly is isoconstrained (as the
one in figure 1 (a)), the method naturally computes a vanishing clearance,
meaning that the assembly is always perfectly adjusted despite dimensional
uncertainty.

Section 2 compares the present approach with the combinatorial rigid-
ity theory. Section 3 defines the closure equation. Section 4 defines what
is an overconstrained solution of the closure equation. Section 5 explains
how to introduce clearance parameters in the closure equation. Section 6
states the fundamental clearance minimization problem. Section 7 provides
the theoretical solution of the minimization problem. Section 8 extends the
theoretical solution by proving second order minimality condition. Section 9
sets up the ordinary differential equation modeling the clearance/tolerance
dependency. Section 10 implements the solution on assembly test cases. Fi-
nally, algorithmic aspects are detailed in section 12. Useful theorems and
lemmas are gathered in the appendix.

The reader who is not interested by mathematical details may advanta-
geously skip the proof of theorem 1 as well as section 8 and the appendix.

2. Combinatorial rigidity

The purpose of this section is to compare the present approach with the
combinatorial rigidity theory [8, 9, 10]. This analysis is done in [11]. It
features two concerns and is inserted here for completeness.

Combinatorial rigidity investigates structures made of rigid bars con-
nected at their end points by spherical joints. The combinatorial aspect
is the logical graph underlying the structure: bars are modeled by edges
and joints are modeled by vertices. The theory provides criteria for generic
rigidity of such structures.
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The first concern is that combinatorial rigidity handles spherical joints
only, while many other kinds of joint are needed in mechanical design: cylin-
drical, prismatic, revolute, coplanar, etc. The principle developed in the
present paper is not restricted to spherical joints.

The second concern is that combinatorial rigidity does not explicitly deal
with dimensional parameters. Variables of the edge function and its deriva-
tive, the rigidity matrix (the key feature of the theory) are vertices coordi-
nates of the graph structure. The theory is not suited to investigate dimen-
sional parameters influence. Indeed, combinatorial rigidity defines genericity
from the vertices coordinates point of view, which makes a big difference
with the present approach. Consider the 3D assemblies (a) and (b) in fig-
ure 1 and the 2D assembly in figure 3. They are all generically rigid from
the combinatorial theory point of view: any small perturbation of vertices
(joints) coordinates yields an assembly of the same nature. From the me-
chanical designer point of view, the situation is totally different. Any small
perturbation of bars lengths of assembly (a) in figure 1 yields an assembly
of the same nature. It is generic in this sense. Conversely, there exists arbi-
trary small perturbations of bars lengths of 3D assembly (b) in figure 1 that
make it impossible. Same thing with the 2D assembly in figure 3. They are
not generic in this sense. Bars lengths are not independent, they must fit a
special relationship, as investigated in [11]. From the manufacturing point of
view, the relevant variables are the mechanical parts dimensions as opposed
to vertices coordinates, which is a fundamental difference.

3. Closure equation

According to [11], two kinds of numerical parameters are involved to de-
fine a mechanical assembly. Dimensional parameters are lengths and angles
and they specify respective dimensions of rigid bodies. Positional parameters
are distances and angles and they specify relative positions of rigid bodies.
Noting U the space of dimensional parameters, P the space of positional
parameters and E the target space, the closure function is F : U × P → E.
Function F captures the nature of the mechanical system. It involves di-
mensional and positional parameters according to rigid bodies and joints.
Function F is generally analytic or even polynomial, so it is infinitely differ-
entiable. Furthermore, the derivative of F with respect to all its variables is
supposed to be full rank. The equation of the mechanical system is the so
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called closure equation
F (u, p) = 0 (1)

which is a shortcut to deal with dimE scalar equations.

Definition 1. A solution is a couple (u0, p0) ∈ U×P such that F (u0, p0) = 0.

Definition 2. A solution (u0, p0) is rigid if p = p0 is an isolated solution
of equation F (u0, p) = 0. In other words, there exists ε > 0 such that if
|p− p0| < ε and F (u0, p) = 0 then p = p0.

4. Overconstrained solution

Following again [11], understanding the overconstrained solution is made
easier by starting with the generic one. Intuitively, an arbitrary small pertur-
bation of the dimensional parameter does not change the nature of a generic
solution. This makes generic systems particularly attractive for manufactur-
ing because the mounting is not sensitive to dimensional uncertainties. The
formal definition is as follows.

Definition 3. The rigid solution (u0, p0) is generic if there exists ε > 0 such
that for any u such that |u− u0| < ε there exists p such that (u, p) is also a
rigid solution.

Conversely...

Definition 4. ...a rigid solution is overconstrained when exists an arbitrary
small perturbation v of u0 such that the equation F (v, p) = 0 has no rigid
solution.

Having no rigid solution means having no solution at all or featuring
other behavior changes that are investigated in [11]. In short, perturbing
the dimensional parameter of an overconstrained solution may unexpectedly
lead to unwanted behavior change.

From the manufacturing point of view, overconstrained situations are
unrealistic because dimensional parameters never fit the value u0, meaning
that the mechanical system never fits the expected behavior. So, there is
a need to change the overconstrained situation into a robust one where it
is possible to deal with dimensional uncertainties. Flowchart in figure 2
describes the next steps of theoretical investigation.

6



Figure 3: Case study number 1: two-dimensional over-constrained structure made of six
bars and four joints.

5. Regularized closure equation

Regularizing is to appropriately involve new parameters in the closure
function. They are named clearance parameters, noted j = (j1, · · · , jr) ∈ J

where J = R
r, r = dim J , and they behave like positioning parameters.

The goal is to deal with generic solutions, while preserving the consistency
with the initial (overconstrained) closure function. So, the closure function
F : U × P → E is transformed into G : U × J × P → E where mapping G
is designed in such a way that

G(u, 0, p) = F (u, p) (2)

for all (u, p) ∈ U × P . The regularized closure equation is

G(u, j, p) = 0. (3)

Definition 5. The triple (u, j, p) ∈ U×J×P is a nominal solution if u = u0,
j = 0 and p = p0 where (u0, p0) is a solution according to definition 1 .

Thanks to (2), a nominal solution is a solution of (3). From the mechan-
ical point of view, parameters j ∈ J are degrees of freedom added to the
mechanical system by replacing joints with more flexible ones.

Definition 6. A solution (u0, j0, p0) is mobile if there exists ε > 0 and two
smooth functions j :] − ε, ε[→ J and p :] − ε, ε[→ P of a scalar variable t
such that j(0) = j0, p(0) = p0, |j

′(0)|2 + |p′(0)|2 6= 0 and G(u0, j(t), p(t)) = 0
for all t ∈]− ε, ε[.

Notice that definition 6 does not say that functions t 7→ j(t) and t 7→ p(t)
are unique. It includes situations with more than one degree of freedom.

Definition 7. The mobile solution (u0, j0, p0) is generic if there exists ε > 0
such that for any u such that |u− u0| < ε there exists j, p such that (u, j, p)
is also a mobile solution.

Counting equations and parameters, the number dim J of clearance pa-
rameters is adjusted so that dim J + dimP > dimE. The issue is that
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solutions of (3) are highly mobile because of the large number of degrees of
freedom. In fact, fixing a dimensional parameter ū ∈ U , the generic solution
of G(ū, j, p) = 0 is a (dim J + dimP − dimE)-dimensional submanifold of
space J × P . Section 6 deals with defining the appropriate unique solution
according to mechanical considerations.

Furthermore, mapping G is designed in such a way that the nominal
solution (u, j, p) = (u0, 0, p0) is a generic mobile solution of (3) according to
definitions 6 and 7. In particular, if u = u0 then j(0) = 0 and p(0) = p0. This
is the value of the regularization process: it removes the sensitivity of the
solution to dimensional parameters uncertainty. In other words, it changes
the non generic situation into a generic situation.

The two technical conditions insuring the regularization effectiveness are
now explained. They involve the partial derivatives of G(u, j, p) with respect
to j and p at (u, j, p) = (u0, 0, p0), which, for clarity, are respectively noted

A = Gj(u0, 0, p0) (4)

and
B = Gp(u0, 0, p0). (5)

Firstly, the partial derivative of G with respect to j and p is full rank at the
nominal solution (u, j, p) = (u0, 0, p0). The linear mapping G(j,p)(u0, 0, p0) is
bloc defined by two matrices

G(j,p)(u0, 0, p0) =
(

A B
)

.

If G(j,p)(u0, 0, p0) is full rank, G(j,p)(u0, 0, p0)G(j,p)(u0, 0, p0)
T is invertible.

Since

G(j,p)(u0, 0, p0)G(j,p)(u0, 0, p0)
T =

(

A B
)

(

AT

BT

)

= AAT +BBT

the full rank condition is equivalent to

AAT +BBT is invertible. (6)

The second and very important condition involves the partial derivative with
respect to p.

BT (AAT +BBT )−1B is invertible (7)

Conditions (6) and (7) are verified in practice and allow the inversion of a key
linear mapping, which in turn makes the whole solution feasible, as stated in
section 7. Notice that, thanks to (2), B = Gp(u0, 0, p0) = Fp(u0, p0).
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Figure 4: Harmonic perturbations of rod’s lengths for case study number 1, the six bars
and four joints two-dimensional structure.

6. Optimization problem

The goal is now to set up the mathematical problem that defines a unique
solution which is meaningful from the mechanical point of view. Since the
point is to deal with a non nominal dimensional parameter, let u ∈ U be a
fixed and arbitrary dimensional parameter, meaning that u 6= u0 is allowed.
Among the infinity of j, p solutions of the regularized closure equation (3), the
preferred one will minimize the clearance, that is the magnitude of parameter
j. Precisely, the preferred solution minimizes the squared norm of parameter
j, that is

|j|2 =
r
∑

i=1

j2i . (8)

This is consistent with a nominal solution because, in this case, |j|2 = 0
which is surely a minimum. Technically, the optimization problem is as
follows. Given a (possibly non nominal) dimensional parameter u ∈ U , find
the clearance parameters j and the positional parameters p such that the
regularized closure equation (3) is satisfied and such that the magnitude of
clearance parameter j is as small as possible. This is classically written

min
G(u,j,p)=0

1

2
|j|2

but the "argument of the minimum" formulation is more appropriate to
highlight unknowns j and p vs. input parameter u.

(j, p) = Argmin

{

1

2
|j|2;G(u, j, p) = 0

}

(9)

In fact, (9) is a family of minimization problems parameterized by u ∈ U .
This implicitly defines a dependency between u and the optimum (j, p). The
hope is to get a positioning p that is close to the nominal positioning p0
when the dimensional parameter u is close to nominal value u0. This issue
is elucidated in section 7.

Clearly, the optimization criterion is based on pure geometry. One could
argue that functional or performance considerations are missing. It will be
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seen in section 7 that a small dimensional perturbation yields a perturbed
assembly that remains close to the nominal assembly. So, performance of the
perturbed assembly should be close to nominal performance. Nevertheless, a
functional or performance criterion Φ(u, j, p) can be added to the geometrical
criterion in order to involve non geometrical aspects, but this is out of the
scope of the paper.

7. First order solution of the optimization problem

This section is dedicated to theorem 1. It states that, from the mechan-
ical point of view, despite (u0, p0) is an overconstrained solution, a small
perturbation u of nominal dimension u0 yields a unique small perturbation p
of nominal positional parameter p0, the dependency between p and u being
smooth. Furthermore, the value of clearance parameter j is unique, meaning
that there is no way to mount the assembly with a tighter clearance. One
could argue that it is not sure that p is as close as possible to p0. The answer
is very simple: looking for a minimal j yields a unique p, which is necessarily
the best possible. In other words, choosing another p yields a non minimum j.
Furthermore, conclusion 3 of theorem 1 states that the positional parameter
p remains under control despite the perturbation of dimensional parameter
u. In addition, it is possible to estimate the first order dependency between
j and u in the neighborhood of j = 0 and u = u0 as well as the first order
dependency between p and u in the neighborhood of p0 and u = u0

Theorem 1. Consider an overconstrained solution of closure equation (1)
and its regularized closure equation (3) satisfying (6) and (7). Then, there
exist a neighborhood Y of u0, two unique and smooth functions j = j(u) and
p = p(u) defined over Y and a constant c such that

1. j(u0) = 0 and p(u0) = p0

2. for all u ∈ Y , (j(u), p(u)) satisfies the stationarity condition of (9)

3. |p(u)− p0| ≤ c|u− u0| for all u ∈ Y .

The proof is structured as follows. Clearly, (9) is a quadratic minimization
problem under non linear equality constraint. Classically, Lagrange multi-
plier λ is introduced to deal with the constraint. Then, Lagrange function
stationarity yields a non linear system featuring the same number of un-
knowns and equations. Finally, the implicit function theorem 3 provides a
smooth dependency between the optimal solution j, p and parameter u.
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Proof. The Lagrange function associated with (9) is L : U × J ×P ×E → R

defined by

L(u, j, p, λ) =
1

2
|j|2 + 〈λ,G(u, j, p)〉 (10)

where the Lagrange multiplier λ ∈ E is an additional unknown. A necessary
condition for the existence of a solution to (9) is the stationarity of function
(10). This means that its partial derivatives with respect to j, p and λ must
vanish, that is

Lj(u, j, p, λ) = 0

Lp(u, j, p, λ) = 0

Lλ(u, j, p, λ) = 0

where

Lj(u, j, p, λ) = j +Gj(u, j, p)
Tλ

Lp(u, j, p, λ) = Gp(u, j, p)
Tλ (11)

Lλ(u, j, p, λ) = G(u, j, p).

Now, consider the mapping H : U × J ×P ×E → J ×P ×E defined by the
triple of partial derivatives

H(u, j, p, λ) =





j +Gj(u, j, p)
Tλ

Gp(u, j, p)
Tλ

G(u, j, p)



 . (12)

By design, the stationary point (j, p, λ) of Lagrange function (10) is a solution
of equation

H(u, j, p, λ) = 0. (13)

At this step, it is important to remember that the unknowns of the sta-
tionarity problem (13) are j, p, λ and that u is a parameter. Equation (13)
defines a dependency between u and j, p, λ. The goal is now to investigate
this dependency by applying the implicit function theorem 3 to mapping H
at (u, j, p, λ) = (u0, 0, p0, 0). The first step is to check that (u0, 0, p0, 0) is a
solution of (13). Indeed, thanks to (2), (12) and to definition 1
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H(u0, 0, p0, 0) =





0
0

G(u0, 0, p0)



 =





0
0

F (u0, p0)



 =





0
0
0



 .

The second step is to investigate the inversion of the partial derivative H(j,p,λ)

at (u0, 0, p0, 0). By derivating (12)

H(j,p,λ) =





I +GT
jjλ GT

jpλ GT
j

GT
jpλ GT

ppλ GT
p

Gj Gp 0



 (14)

so, at (u, j, p, λ) = (u0, 0, p0, 0)

H(j,p,λ)(u0, 0, p0, 0) =





I 0 AT

0 0 BT

A B 0



 (15)

with notations (4) and (5). Thanks to lemma 1 and conditions (6) and (7),
H(j,p,λ)(u0, 0, p0, 0) is invertible. Then, according to the implicit function
theorem 3, there exist a neighborhood Y of u0 and three unique and smooth
functions j = j(u), p = p(u), λ = λ(u) defined over Y such that

j(u0) = 0

p(u0) = p0

λ(u0) = 0

which is conclusion 1 of the theorem, and

H(u, j(u), p(u), λ(u)) = 0

for all u ∈ Y , which is conclusion 2 of the theorem. Since u 7→ p(u) is
differentiable, there exists a constant c such that |p(u) − p0| ≤ c|u − u0| for
all u ∈ V , which is conclusion 3 of the theorem.

The first order dependency between positional parameter p and dimen-
sional parameter u can be estimated by computing p′(u0). Similarly, the first
order dependency between clearance parameter j and dimensional parame-
ter u can be estimated by computing j′(u0). Indeed, following the proof of
theorem 1, the implicit function theorem provides the differential equation





j′(u)
p′(u)
λ′(u)



 = −H(j,p,λ)(u, j, p, λ)
−1Hu(u, j, p, λ).
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Writing this expression at u = u0 and using (12) and (15) yield





j′(u0)
p′(u0)
λ′(u0)



 = −





I 0 AT

0 0 BT

A B 0





−1



0
0

Gu(u0, 0, p0)





which can be solved by hand in such a way that, notingD =
(

AAT +BBT
)

−1
,

p′(u0) = −
(

(

BTDB
)

−1
BTD

)

Gu(u0, 0, p0)

and
j′(u0) = AT

(

DB
(

BTDB
)

−1
BTD −D

)

Gu(u0, 0, p0).

8. Second order minimality condition

This section investigates the second order minimality condition of the
optimization problem (9). It is not useful to numerical solving, but it con-
solidates the theory by proving that the unique solution stated in theorem
1 is in fact the best possible. Surprisingly, the second order condition re-
quires two different proofs, depending on whether there are many clearance
parameters (dim J > dimE) or few clearance parameters (dim J ≤ dimE).

8.1. Additional condition

In addition to the full rank property (6), and if dim J < dimE, we
suppose that it is possible to split the positional parameter p into p = (q, w) ∈
Q ×W in such a way that the partial derivative of G with respect to (j, q)
is invertible at the nominal solution. This means that dim J + dimQ =
dimE. Noting p0 = (q0, w0), this means that G(j,q)(u0, 0, q0, w0) is invertible.
Then, the implicit function theorem yields two unique mappings (u, w) 7→
j(u, w) and (u, w) 7→ q(u, w) defined in a neighborhood of (u0, w0) such that
j(u0, w0) = 0, q(u0, w0) = q0 and

G(u, j(u, w), (q(u, w), w)) = 0

for all (u, w) in the said neighborhood. The additional condition involves the
partial derivative of j(·) with respect to w at the nominal solution:

jw(u0, w0)
T jw(u0, w0) is invertible. (16)
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If dim J = dimE no splitting is needed and variable p plays the role of
variable w. Condition (6) says that linear mapping Gj(u0, 0, p0) is invertible
and the implicit function theorem yields a unique mappings (u, p) 7→ j(u, p)
defined in a neighborhood of (u0, p0) such that j(u0, p0) = 0 and

G(u, j(u, p), p)) = 0

for all (u, p) in the said neighborhood. The additional condition (16) is
written

jp(u0, p0)
T jp(u0, p0) is invertible.

8.2. Second order theorem

Theorem 2. Under the conditions of theorem 1 and if, in addition, condition
(16) is satisfied, then, for all u ∈ Y , (j(u), p(u)) satisfies the second order
minimality condition of (9).

8.3. Proof of theorem 2 when dim J > dimE

Proof. Given u ∈ Y and since dim J > dimE, according to lemma 2 the
second order minimality condition of (9) is

|v|2 + 〈λ(u), Gjj(u, j(u), p(u), λ(u))vv〉 > 0 (17)

for all v ∈ J such that v 6= 0 and Gj(u, j(u), p(u), λ(u))v = 0. Note

ϕ(u, v) = 〈λ(u), Gjj(u, j(u), p(u), λ(u))vv〉

so that the left hand side of (17) can be written |v|2 + ϕ(u, v), that is a
perturbation of |v|2 by a quadratic form such that ϕ(u0, v) = 0 for all v.
Now,

|ϕ(u, v)| ≤ ψ(u)|v|2

where ψ(u) = |λ(u)||Gjj(u, j(u), p(u), λ(u))|, so that

|v|2 + ϕ(u, v) ≥ |v|2 − |ϕ(u, v)| ≥ (1− ψ(u))|v|2.

Since ψ(u0) = 0, an appropriate restriction of neighborhood Y makes 1−ψ(u)
larger that 1

2
. Finally, for all u in the restricted Y and all non zero v ∈ J

|v|2 + ϕ(u, v) ≥
1

2
|v|2 > 0.

The second order minimality condition is satisfied for all u in a neighborhood
of u0.
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Figure 5: Case study number 1. Various shapes of the two-dimensional structure under
dimensional perturbation.

8.4. Proof of theorem 2 when dim J ≤ dimE

Proof. Using notation of condition (16), the minimization problem (9) is
equivalent to

w = Argmin

{

1

2
|j(u, w)|2

}

.

The proof is to apply lemma 3 using j(u0, w0) = 0 and the inversion condition
(16).

9. Clearance/tolerance ordinary differential equation

This section makes use of theorem 1 to compute numerical variations
of clearance j according to the tolerance, which is the numerical variations
of dimension u. The guide line stated by [12] is to deal with an ordinary
differential equation, as it is particularly adapted to numerical integration.

9.1. The ordinary differential equation

So far, parameter u is taken from neighborhood Y of u0, Y being an open
subset of U . The idea is to consider an arbitrary curve in Y through u0. Let
u : R → U be a smooth mapping of a real variable t such that u(t) ∈ Y for
all t and u(0) = u0. Notice that there may exist non zero values of t such
that u(t) = u0.

The minimization problem (9) is now written using u(t) instead of u.
Given a real number t, find the positional parameters j and p such that the
regularized closure equation (3) is satisfied and such that the magnitude of
parameter j is as small as possible.

(j, p) = Argmin

{

1

2
|j|2;G(u(t), j, p) = 0

}

(18)

Now, (18) is a family of minimization problems parameterized by t ∈ R.
The solving technique follows the track of section 7. The Lagrange function
associated with (18) is L : R× J × P × E → R defined by

L(t, j, p, λ) =
1

2
|j|2 + 〈λ,G(u(t), j, p)〉. (19)
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Mapping H : R× J × P ×E → J × P ×E is defined by the triple of partial
derivatives

H(t, j, p, λ) =





j +Gj(u(t), j, p)
Tλ

Gp(u(t), j, p)
Tλ

G(u(t), j, p)



 . (20)

The stationarity equation (13) is transformed into

H(t, j, p, λ) = 0. (21)

The partial derivative ofH with respect to (j, p, λ) is invertible at (t, j, p, λ) =
(0, 0, p0, 0) just like in section 7 and for the same reason. So, the implicit
function theorem 3 applied to mapping H at (t, j, p, λ) = (0, 0, p0, 0) yields a
neighborhood ]− ε, ε[ of 0 and three unique and smooth functions j = j(t),
p = p(t) and λ = λ(t) defined over ]− ε, ε[ such that

j(0) = 0

p(0) = p0 (22)

λ(0) = 0

and
H(t, j(t), p(t), λ(t)) = 0

for all t ∈]− ε, ε[. Furthermore, functions j(t), p(t) and λ(t) are solution of
ordinary differential equation





j′

p′

λ′



 = V (t, j, p, λ) (23)

associated with the initial condition (22) where the vector field V (·) is

V (t, j, p, λ) = −H(j,p,λ)(t, j, p, λ)
−1Ht(t, j, p, λ). (24)

Symbol ′ in (23) is the derivation with respect to real variable t. The partial
derivative H(j,p,λ) can be detailed in terms of function G by using (14). The
partial derivative Ht can be detailed in terms of function G by using (12)
and the chain rule.

Ht(t, j, p, λ) =





(Guj(u(t), j, p)u
′(t))Tλ

(Gup(u(t), j, p)u
′(t))Tλ

Gu(u(t), j, p)u
′(t)



 (25)

16



Figure 6: Case study number 1. Zoom of a non-perfect spherical joint of the two-
dimensional structure. Red dot is the connection point. Black dots are rods’ extremities.

9.2. Variations of dimensional parameter u

For numerical investigation purpose, a simple and efficient choice intro-
duced by [12] is to design the curve t 7→ u(t) as a harmonic function oscillating
around the nominal value u0. In addition, a homotopy effect is used to start
from the nominal solution by using the mapping

µ(t) = 1− e−t.

Noting k = dimU and u = (u1, · · · , uk) the scalar coordinates of u, each
scalar function t 7→ ui(t) is defined by

ui(t) = u0i + µ(t)
∆i

2
sin(ωit) (26)

for i = 1, · · · , k. In formula (26), ωi is an angular frequency and ∆i is the
interval width, that is the manufacturing uncertainty of dimensional parame-
ter ui. Angular frequencies ωi are spread in such a way that when t increases,
the oscillating curve t 7→ (u1(t), · · · , uk(t)) "fills" the overall tolerance range
∆ =

∏k

i=1 ∆i as much as possible. Of course, a genuine space-filling curve
as described by [13] would be ideal, but (26) is very simple and numerical
simulations show that this is efficient. Feeding the ordinary differential equa-
tion (23) with the oscillating dimensions (26) and solving over a time interval
[0, T ] yields oscillating functions t 7→ j(t), p 7→ p(t) and λ 7→ λ(t) starting
with the initial condition (22). The result of interest is the maximum value
of clearance parameter j(t) when t ∈ [0, T ].

jmax = max{|j(t)|, t ∈ [0, T ]} (27)

This value does not depend on T provided it is large enough, which is not
difficult to set in practice. The quality compromise of mechanical design is as
follows. Larger dimensional tolerance ∆i means smaller manufacturing cost,
but also larger jmax. Larger jmax means bad quality of the manufactured
assembly. So, the balance is to adjust the ∆i to the smallest possible manu-
facturing cost in such a way that jmax fits the quality criteria. Clearly, this
can be achieved by using previous simulation through an iterative process.
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Figure 7: Clearance variation of the two-dimensional structure due to dimensional har-
monic perturbations.

9.3. Family of assemblies

By using t 7→ u(t) dimensional mapping and t 7→ p(t) positional mapping,
it is easy to set up a graphical animation of the assembly with respect to
parameter t. This could mislead the reader because the animation looks like
a dancing structure deformed by some physical phenomenon. In fact, it is
not one structure under deformation. It is an infinity of structures indexed
by t, each of them being defined by dimensions u(t) and positions p(t). It
must be understood as a continuous abstraction of the series of thousands of
products getting out of the factory.

10. Rod structure test cases

10.1. Framework

The assembly is an overconstrained three-dimensional structure made of
n rigid rods linked by m spherical joints. Rod’s lengths are noted li, i =
1, · · · , n. In a first step, the regularized closure function is set up. In order
to anticipate non-perfect connections of several rods at the same junction, m
connections points

Pi =





xi
yi
zi





i = 1, · · · ,m are introduced. The start point Oi of rod number i is

Oi =





si
ti
ri



 . (28)

The relative end point Ei of rod number i is

Ei = li





cos βi cosαi

cos βi sinαi

sin βi



 (29)

meaning that the extremities of rod number i are respectively Oi and Oi +
Ei. The network of rods is defined by a matrix N featuring 2n rows and
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m columns and filled with 0 and 1. It captures the coincidences of rods
extremities Oi and Oi + Ei with connection points Pj, which is gathered in
the following equation.















O1

E1 +O1
...
On

En +On















= N







P1
...
Pm






. (30)

Clearly, the dimensional parameters space is U = R
n gathering rod’s lengths

through
u = (l1, · · · , ln). (31)

Unknowns are connection points and rod’s extremities so that the positional
parameter space is

P =
(

R
3 × [0, 2π[×[−π, π[

)n
×
(

R
3
)m

and the target space is E = (R3)2n. Noting u = (l1, · · · , ln) and

p =









si
ti
ri





i=1,··· ,n

,

(

αi

βi

)

i=1,··· ,n

,





xi
yi
zi





i=1,··· ,m



 (32)

the closure function is

F : Rn ×
(

R
3 × [0, 2π[×[−π, π[

)n
×
(

R
3
)m

→
(

R
3
)2n

defined by

F (u, p) =















O1

E1 +O1
...
On

En +On















−N







P1
...
Pm






.

For grounding purpose, six positional parameters are set, so that the closure
equation F (u, p) = 0 features 5n+3m− 6 unknown scalar positional param-
eters and 6n scalar equations. A necessary condition for an over-constrained
structure is more equations than unknowns, that is n > 3m − 6. Intro-
ducing the clearance parameters in this context is straightforward because
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the closure function involves the appropriate geometry. Indeed, choosing
J = E = (R3)2n and j ∈ J , the regularized closure function is

G(u, j, p) = F (u, p)− j.

The regularized closure equation G(u, j, p) = 0 is clearly under-constrained
since it features 11n+ 3m− 6 scalar unknowns and 6n scalar equations.

Because of the particular shape of G, the optimization problem (9) leads
to a stationarity condition (21)

j − λ = 0

Fp(u(t), p)
Tλ = 0

F (u(t), p)− j = 0

which boils down to

Fp(u(t), p)
TF (u(t), p) = 0

j = F (u(t), p)

λ = F (u(t), p).

The corresponding differential equation (23) is

p′ = R(p, t)S(p, t)

p(0) = p0

where

R(p, t) = −
(

Fpp(u(t), p)
TF (u(t), p) + Fp(u(t), p)

TFp(u(t), p)
)

−1

and

S(p, t) = (Fup(u(t), p)u
′(t))

T
F (u(t), p) + Fp(u(t), p)

TFu(u(t), p)u
′(t)

completed with j(t) = F (u(t), p(t)) and λ(t) = j(t).
The two-dimensional version of the generic framework is easily obtained

by setting zi = 0, ri = 0 and βi = 0 and by grounding three unknowns.
Parameter space and target space are updated accordingly so that

P =
(

R
2 × [0, 2π[

)n
×
(

R
2
)m

and E = (R2)2n. Furthermore,

p =

(

(

si
ti

)

i=1,··· ,n

,
(

αi

)

i=1,··· ,n
,

(

xi
yi

)

i=1,··· ,m

)

.
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Figure 8: Case study number 2 is a three-dimensional overconstrained structure.

Figure 9: Case study number 2. Harmonic perturbations of rod’s lengths for the three-
dimensional structure.

10.2. Case study number 1: two-dimensional structure

As illustrated in figure 3, case study number 1 is a two-dimensional struc-
ture made of n = 6 rods and m = 4 joints the arrangement of which is
provided by matrix N .

N =















1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0
1 0 0 0
0 0 0 1















From the numerical point of view, the nominal configuration is defined by
connection points coordinates, which in turn define nominal lengths of all
rods. They are respectively

P 0
1 =

(

0
0

)

P 0
2 =

(

0
3

)

P 0
3 =

(

4
3

)

P 0
4 =

(

4
0

)

.

Dimensional perturbations are defined using (26) by setting ∆i = 1.0 for
i = 1, · · · , 6 and the following angular frequencies.

ω1 ω2 ω3 ω4 ω5 ω6

13 7 19 23 17 11

Harmonic perturbations of rod’s lengths are illustrated in figure 4. The
resulting clearance variation is illustrated in figure 7. Typical perturbed
structures are illustrated in figures 5 and 6. Each structure is distorted
in order to minimize the widths of non-perfect connections. Red dots are
connexion points, black dots are rod’s extremities.

10.3. Case study number 2: three-dimensional structure

As illustrated in figure 8, case study number 2 is a three-dimensional
structure made of n = 10 rods and m = 5 joints the arrangement of which is
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Figure 10: Case study number 2. Various shapes corresponding to dimensional perturba-
tions.

Figure 11: Case study number 2. Clearance variation of three-dimensional structures due
to dimensional harmonic perturbations.

provided by matrix N .

N =































1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0































From the numerical point of view, the nominal configuration is defined by
connection points coordinates, which in turn define nominal lengths of all
rods. They are respectively

P 0
1 =





0
0
0



P 0
2 =





2
1
1



P 0
3 =





0
2
0



P 0
4 =





−2
1
1



P 0
5 =





0
1
2



 .

Dimensional perturbations are defined using (26) by setting ∆i = 0.4 for
i = 1, · · · , 10 and the following angular frequencies.

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

2 3 5 7 11 13 17 19 23 29

Harmonic perturbations of rod’s lengths are illustrated in figure 9. The
resulting clearance variation is illustrated in figure 11. Typical structure
deformation is illustrated in figure 10. Here again, each structure is distorted
in order to minimize the widths of non-perfect connections. Red dots are
connexion points, black dots are rod’s extremities.

11. Case study number 3

As opposed to section 10, this case study involves cylindrical joints rather
than spherical joints. The assembly is made of two parts (part 1 and part
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Figure 12: Typical part and its dimensional parameters for case study number 3. Three
dimensional and skeleton geometry is illustrated.

Figure 13: Assembly and dimensional parameters of case study number 3.

2) which are instances of the typical part illustrated in figure 12. Part 1 and
part 2 are connected through two cylindrical joints, as illustrated in figure 13.
Clearly, the assembly is overconstrained and can be mounted provided some
assembly condition is satisfied, for example β1 = β2 = 0 and α1 + α2 = π.
It turns out to be a mobile mechanism if, for example, β1 = β2 = 0 and
α1 = α2 =

π
2
, but this configuration is out of the scope of the study.

11.1. Designing the perfect/non-perfect cylindrical joint

Consider a rigid line segment [A,B] and a line defined by a point C and
a normalized vector V . Capturing that the line segment slides on the line is
to specify that points A and B are located on the said line. Formally, there
exist two real numbers v and w such that A = C + vV and B = C + wV .
This suggests a closure equation like

C + vV − A = 0
C + wV − B = 0

and a corresponding closure function

F =

(

C + vV − A

C + wV − B

)

.

Here again, the regularized closure function is G = F − j. Indeed, if j = 0
the line segment is rigorously aligned with the line, thus modeling a perfect
joint, while if j 6= 0 the line segment is allowed to leave the line depending
on neighboring conditions, thus modeling a non-perfect joint.

11.2. Closure equation

Let D ∈ SE(3) be the relative position of part 2 with respect to part
1. It is defined by a rotation R including three angles a translation vector
T including three scalar parameters. As illustrated in figure 14, the closure
equation is obtained by writing that the line segment [A2, B2] of part 2 at
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Figure 14: Closure equation features of case study number 3.

position D is aligned with line C1, V1 of part 1 and to write that the line
segment [A1, B1] of part 1 is aligned with line C2, V2 of part 2 at position D.

C1 + v1V1 −D(A2) = 0
C1 + w1V1 −D(B2) = 0
D(C2 + v2V2)− A1 = 0
D(C2 + w2V2)− B1 = 0.

Choosing a self explanatory coordinate system where

C1 = C2 =





0
0
0



 V1 = V2 =





1
0
0





Ai =





li cosαi + d sinαi cos βi
li sinαi − d cosαi cos βi

−d sin βi



 Bi =





li cosαi − d sinαi cos βi
li sinαi + d cosαi cos βi

d sin βi





this leads to the following closure function F : R6 × R
4 × SE(3) → R

12

F (l1, α1, β1, l2, α2, β2, v1, w1, v2, w2, D) =









C1 + v1V1 −D(A2)
C1 + w1V1 −D(B2)
D(C2 + v2V2)− A1

D(C2 + w2V2)− B1









where the dimensional parameters are l1, α1, β1, l2, α2, β2 and the positional
parameters are v1, w1, v2, w2, D. The closure equation F = 0 features ten
positional parameters and twelve equations, meaning some overconstraint, as
expected.

The regularized closure function is defined by G : R6 × R
4 × SE(3) ×

R
12 → R

12 with G(u, j, p) = F (u, p) − j where u = (l1, α1, β1, l2, α2, β2),
p = (v1, w1, v2, w2, D) and j = (j1, · · · , j12).

11.3. Nominal configuration and uncertainties

Nominal dimensions are l01 = 1.0, l02 = 1.5, α0
1 = 3π

5
, α0

2 = 2π
5

, β0
1 = 0

and β0
2 = 0. Nominal positional parameters are r0 =

l0
2
cosα0

1
−l0

1

sinα0

1

, v01 = r0 − d,
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Figure 15: Dimensional perturbations for case study number 3.

w0
1 = r0 + d, v02 =

l0
2
−l0

1
cosα0

1

sinα0

1

− d, w0
2 = v02 + 2d. Nominal position D0 is made

of rotation R0 and translation T0 as follows

R0 =





cos(π − α0
2) − sin(π − α0

2) 0
sin(π − α0

2) cos(π − α0
2) 0

0 0 1



 T0 =





r0
l02
0



 .

Dimensional perturbations are defined using (26) by setting ∆ = 0.1 and the
following frequencies

ω1 ω2 ω3 ω4 ω5 ω6

5 7 11 3 13 2

respectively associated with l1, l2, α1, α2, β1 and β2, as illustrated in figure
15. It is noticeable that nominal parts are planar while perturbed parts are
non planar due to non zero angles β1 and β2. Figure 16 illustrates typical
configurations of perturbed assemblies resulting from dimensional perturba-
tions and optimal relative positioning. Notice the non-perfect joints. Figure
17 illustrates the clearance variation caused by dimensional perturbations.

12. Algorithm

Flowchart of figure 19 describes the implementation procedure. The algo-
rithmic aspect is now detailed. It includes three main steps: pre-processing,
solving, post-processing. Pre-processing is to compute the nominal dimen-
sions u0 and positions p0, and to generate the equations of the problem,
mainly mappings G(·), H(·) or V (·). Solving is to compute the clearance
and position mappings j(·) and p(·) over a sampling 0 < t1 < · · · < tK = T

of the investigation interval [0, T ]. The output of the solving step is a table
Table(·) so that, for k = 1, · · · , K, Table(k) is the couple of clearance and
position solution (j(t), p(t)) for t = tk. Three alternate solving techniques
are presented. They are respectively based on minimization, zero finding
and ODE integration. The solving step advantageously makes use of a soft-
ware library. Post-processing is to compute the maximum clearance values
by considering the output data of the solving step.
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12.1. Preprocessing

As explained in section 10, the test case is defined by the nominal posi-
tions P 0

i of connections and by the rods end connections through matrix N .
For clarity, this matrix is noted as a stack of rows

N =







N1
...

N2n






.

The nominal position parameter p0 is computed by setting points O0
i and

vectors E0
i so that equation (30) is satisfied, and by using definitions (28),

(29), (32). The nominal dimensions are rods lengths li, as defined by (31).

Input : Connections nominal position P 0
i , matrix N .

Output: Nominal dimension u0, nominal position p0.

for i := 1 to n do

O0
i := N2i−1







P 0
1
...
P 0
n







E0
i := N2i







P 0
1
...
P 0
n






−O0

i

li := ‖E0
i ‖

end

Algorithm 1: Computing nominal dimensions and positions.
Mappings defining the equations of the problem are automatically gener-

ated by using symbolic computation. The nominal geometry of the assembly,
its topology, dimensional uncertainties and frequencies are captured in a text
file, as illustrated in figure 18, which feeds a Maple program generating the
appropriate G(·) mapping. If needed, mappings H(·) and V (·) are deduced
from mapping G(·) by using symbolic computation again.

12.2. Solving: minimize

The shortest way is a single loop so that the minimization problem (18)
is solved at each step k by using a program from a mathematical software
library.
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Figure 16: Case study number 3. Typical configurations of the non-nominal assembly.
Notice the non-perfect cylindrical joints and the non-planar configurations.

Input : Nominal dimension u0, nominal position p0, mapping G(·).
Output: Clearance and position mappings Table(k) = (j(tk), p(tk)).

for k := 1 to K do
(j, p) := Argmin

{

1
2
|j|2;G(tk, j, p) = 0, {j, p}

}

Table(k) := (j, p)
end

Algorithm 2: Minimization algorithm for solving 2D and 3D test cases.
The drawback is that the library program is responsible for initializing

the searching, which can lead to unpredictable results. A variant is to con-
trol the initialization by providing the minimizer with the previous solu-
tion. The initial guess is written as the second argument of Argmin func-
tion. 3D and 2D test cases are successfully solved by using this algorithm.

Input : Nominal dimension u0, nominal position p0, mapping G(·).
Output: Clearance and position mappings Table(k) = (j(tk), p(tk)).

(j1, p1) := (0, p0)
for k := 1 to K do

(j, p) := Argmin
{

1
2
|j|2;G(tk, j, p) = 0, {j, j1}, {p, p1}

}

Table(k) := (j, p)
(j1, p1) := (j, p)

end

Algorithm 3: Minimization algorithm with controlled initialization for
solving 2D and 3D test cases.

12.3. Solving: zero finder

Next algorithm is to solve the non linear system (13) by using a zero find-
ing program of the software library, Newton-Raphson or the like. Unknowns
are clearance variable j, positioning variable p and Lagrange parameter λ.
The zero finder is initialized by using the previous solution. 3D and 2D test
cases are successfully solved by using this algorithm.
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Figure 17: Clearance variation for case study number 3.

Figure 18: Input text file for symbolic computation.

Input : Nominal dimension u0, nominal position p0, mapping H(·).
Output: Clearance and position mappings Table(k) = (j(tk), p(tk)).

(j1, p1, λ1) := (0, p0, 0)
for k := 1 to K do

Solve {H(tk, j, p, λ) = 0, {j, j1}, {p, p1}, {λ, λ1}}
Table(k) := (j, p)
(j1, p1, λ1) := (j, p, λ)

end

Algorithm 4: Zero finder algorithm for solving 2D and 3D structures
and the two sliders assembly.

12.4. Solving: ODE integration

Finally, if, through symbolic or numerical computation, the inversion (24)
can be performed, the vector field (24) of differential equation (23) is used to
feed a standard library ODE solver, say Runge and Kutta or the like. Then,
a single line of computer program is enough to get mappings t 7→ j(t) and
t 7→ p(t). For symbolic inversion purpose, only the 2D test case is solved by
this method.

Input : Nominal dimension u0, nominal position p0, mapping V (·).
Output: Clearance and position mappings t 7→ j(t) and t 7→ p(t).

ODESolve











j′(t)
p′(t)
λ′(t)



 = V (t, j, p, λ),





j(0)
p(0)
λ(0)



 :=





0
p0
0



 , {t ∈ [0, T ]}







Algorithm 5: ODE numerical integration for solving 2D structure test
cases.

12.5. Post-processing

Whatever the method used for solving, it provides (a numerical approx-
imation of the) clearance mapping t 7→ j(t). The extremal clearance is
computed according to (27) and illustrated in figures 7, 11, and 17. Local
analysis at each joint can be performed if needed by using the appropriate
coordinates of mapping j(·).
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Figure 19: The implementation procedure involves a preprocessing step for data initial-
ization, three alternate solving techniques and a postprocessing step for result analysis.

13. Conclusion

Overconstrained structures are represented by a set of closure equations
F involving two kinds of numerical parameters: dimensional and positional.
In an industrial context, engineers introduce clearance into joints to enable
mechanical structure assembly. Clearance parameters are called j. Closure
function F is transformed into regularized closure function G depending on
dimensional, positional and clearance parameters. From an algebraic point
of view, G function is highly underconstrained.

For specific rod’s lengths, the unique solution is computed by solving
the following optimization problem: minimize the squared norm of clearance
parameters with respect to the G function. Due to manufacturing devia-
tions, lengths of rods vary between two known limits. In the dimensional
parameters space, hyper-volume is scanned by a set of harmonic functions
parameterized by a single parameter t. Then, minimization, zero finding or
numerical integration of an ordinary differential equation handles the simu-
lation.

The number of input data of the proposed tool is very small: connec-
tivity matrix of the assembly structure, coordinates of the spherical joints
center and manufacturing precision class of the parts. First simulation re-
sults are quickly obtained but with a questionable degree of confidence. But
the longer the simulation is, the more reliable it is. Implementation is proto-
typed with mathematical software using standard toolboxes as well as formal
computation capabilities.

It should be understood that the geometrical model is not restricted to
rods and spherical joints and that equations can be generated through sym-
bolic computation. Any mechanical joint can be taken into account provided
it can be handled by a (regularized) closure function.

Three perspectives of this work are being considered. The first one is to
develop a data post processing i.e. computing clearance size into each joint,
maximum joint displacement in a specific direction, etc. Even further, keep
in mind that the method provides a family of assemblies indexed by t and
sharing the same topology. Then, a natural post processing is to simulate
some appropriate physical behavior over each assembly in order to under-
stand how dimensional uncertainty and clearance optimization influence the
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said physical behavior. This context is precisely the one of [14] address-
ing how to reuse computation from one model of the family to another one,
which is a promising track. The second perstective is to deal with more prac-
tical cases, including overconstrained mobile mechanisms such as deployable
structures. The third perstective is a fundamental investigation about how
to systematically introduce clearance parameters into perfect joints.

Appendix A. Theorems and lemmas

The appendix gathers the implicit function theorem 3 and the proofs of
lemmas 1 2 and 3. In the following, X, Y , Z, U , P , J and E are finite
dimensional euclidean spaces.

Theorem 3. Let f : X × Y → Z be a smooth function and let (x0, y0) such
that f(x0, y0) = 0. Suppose that the linear mapping fy(x0, y0) from Y to Z

is invertible. Then, there exists a unique function x 7→ ϕ(x) defined over a
neighborhood V of x0 onto a neighborhood W of y0 such that ϕ(x0) = y0 and,
for all (x, y) in V ×W , f(x, y) = 0 if and only if y = ϕ(x). In addition,
ϕ′(x) = −fy (x, ϕ(x))

−1
fx(x, ϕ(x)) for all x in V .

Lemma 1. Consider linear mappings A : J → E and B : P → E and
suppose that AAT + BBT ∈ L(E) is invertible. Consider the bloc defined
linear mapping M : J × P × E → J × P × E

M =





I 0 AT

0 0 BT

A B 0





Then, M is invertible if and only if BT (AAT+BBT )−1B ∈ L(P ) is invertible.

Proof. Because of the finite dimension of spaces J , P and E it is enough
to prove that M is injective, meaning that if Mw = 0 then w = 0. So, let




j

p

λ



 ∈ J × P × E and suppose that M





j

p

λ



 = 0. According to the bloc

structure of M , this means

j + ATλ = 0

BTλ = 0

Aj +Bp = 0.
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The first equation implies Aj +AATλ = 0 and, with the third one, AATλ =
Bp. The second equation implies BBTλ = 0. So (AAT + BBT )λ = Bp

and, by hypothesis, λ = (AAT + BBT )−1Bp. Using again the second equa-
tion, BT (AAT + BBT )−1Bp = 0. Now, if BT (AAT + BBT )−1B is invert-
ible, then p = 0 so λ = 0 and j = 0 meaning that M is invertible. Con-
versely, if BT (AAT +BBT )−1B is not invertible, there exists p∗ 6= 0 such that
BT (AAT + BBT )−1Bp∗ = 0. Then, considering λ∗ = (AAT + BBT )−1Bp∗

and j∗ = −ATλ∗, linear mapping M is not invertible because





j∗

p∗

λ∗



 6= 0 and

M





j∗

p∗

λ∗



 = 0, which ends the proof.

Lemma 2. Consider a smooth mapping G : J ×P → E with dim J > dimE

and the minimization problem

(j, p) = Argmin

{

1

2
|j|2;G(j, p) = 0

}

.

Consider the associated Lagrange function L : J × P × E → R

L(j, p, λ) =
1

2
|j|2 + 〈λ,G(j, p)〉.

If (j∗, p∗, λ∗) is a stationary point of Lagrange function, and if

|v|2 + 〈λ∗, Gjj(j
∗, p∗)vv〉 > 0

for all v ∈ J such that v 6= 0 and Gj(j
∗, p∗)v = 0, then j∗ is minimum.

Proof. Since (j∗, p∗, λ∗) is a stationary point of Lagrange function, j∗ +
Gj(j

∗, p∗)Tλ∗ = 0 and G(j∗, p∗) = 0. Let v 6= 0 be an arbitrary vector
of J such that Gj(j

∗, p∗)v = 0. Consider a smooth curve s 7→ j(s) such
that j(0) = j∗, j′(0) = v and G(j(s), p∗) = 0 for all s. By elementary
computation,

[

d2

ds2

(

1

2
|j(s)|2

)]

s=0

= |v|2 + 〈λ∗, Gjj(j
∗, p∗)vv〉

that is non negative, so j∗ is a minimum.
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Lemma 3. Consider a smooth mapping f : U×X → E with dimX < dimE

and the minimization problem

x = Argmin

{

1

2
|f(u, x)|2; x ∈ X

}

.

Suppose that exists (u0, x0) ∈ U × X such that f(u0, x0) = 0 and that the
linear mapping

fx(u0, x0)
Tfx(u0, x0) ∈ L(X)

is invertible. Then, there exists a neighborhood V of u0 and a unique map-
ping u 7→ x(u) defined over V such that x(u0) = x0 and x(u) satisfies the
stationary condition and the second order minimality condition.

Proof. The existence and uniqueness of mapping u 7→ x(u) is proven by
applying the implicit function theorem to mapping h : U × X → X de-
fined by h(u, x) = fx(u, x)

Tf(u, x). Indeed, h(u0, x0) = 0 and hx(u0, x0) =
fx(u0, x0)

Tfx(u0, x0) is invertible. Note g(u, x) = 1
2
|f(u, x)|2. Then,

gx(u, x(u)) = fx(u, x(u))
Tf(u, x(u)) = h(u, x(u)) = 0

for all u close to u0, which is the stationary condition. Furthermore, for all
ξ ∈ X,

gxx(u, x)ξξ = |fx(u, x)ξ|
2 + 〈f(u, x), fxx(u, x)ξξ〉.

The linear mapping fx(u, x(u))
Tfx(u, x(u)) is invertible for all u close to u0,

so there exists a0 > 0 such that |fx(u, x(u))ξ|
2 ≥ a0|ξ|

2 for all ξ ∈ X and all
u close to u0. Noting

ϕ(u, ξ) = 〈f(u, x(u)), fxx(u, x(u))ξξ〉

then
|ϕ(u, ξ)| ≤ ψ(u)|ξ|2

where ψ(u) = |f(u, x(u))||fxx(u, x(u))| is such that ψ(u0) = 0. Consequently,
for all u close to u0 and all ξ ∈ X

gxx(u, x(u))ξξ = |fx(u, x(u))ξ|
2 + ϕ(u, ξ)

≥ a0|ξ|
2 − |ϕ(u, ξ)|

≥ (a0 − ψ(u))|ξ|2

≥
a0

2
|ξ|2

which is the second order minimality condition.
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