N
N

N

HAL

open science

Performance Analysis of SIMD vectorization of
High-Order Finite-Element kernels

Gauthier Sornet, Sylvain Jubertie, Fabrice Dupros, Florent de Martin,

Sébastien Limet

» To cite this version:

Gauthier Sornet, Sylvain Jubertie, Fabrice Dupros, Florent de Martin, Sébastien Limet. Performance
Analysis of SIMD vectorization of High-Order Finite-Element kernels. The 2018 International Con-
ference on High Performance Computing & Simulation (HPCS 2018) - HPCS 2018, Jul 2018, Orléans,
France. pp.423-430, 10.1109/HPCS.2018.00074 . hal-01915519v2

HAL Id: hal-01915519
https://hal.science/hal-01915519v2
Submitted on 9 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01915519v2
https://hal.archives-ouvertes.fr

Performance Analysis of SIMD vectorization of
High-Order Finite-Element kernels.

Gauthier Sornet(1,2), Sylvain Jubertie(1), Fabrice Dupros(2), Florent De Martin(2), Sebastien Limet(1)
Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022.(1), BRGM, BP 6009, 45060 Orléans Cedex 2, France.(2)
Email: gauthier.sornet@univ-orleans.fr; sylvain.jubertieQuniv-orleans.fr;f.dupros@brgm.fr;
f.demartin@brgm.fr; sebastien.limet@univ-orleans.fr

Abstract—Physics-based three-dimensional numeri-
cal simulations are becoming more predictive and are
already essential for improving the understanding of
natural phenomena, such as earthquakes, tsunami,
flooding or climate change and global warming. Among
the numerical methods available to support these sim-
ulations, Finite-Element formulations have been im-
plemented in several major software packages. The
efficiency of these algorithms remains a challenge due to
the irregular memory access that prevents the squeez-
ing out of the maximum level of performance out of
current architectures. This is particularly true at the
shared-memory level with several levels of parallelism
and complex memory hierarchies. Despite significant
efforts, automatic optimizations provided by compilers
and high-level frameworks are often far from the per-
formances obtained from hand-tuned implementations.
In this paper, we have extracted a kernel from the
EFISPEC software package developed at BRGM (the
French Geological Survey). This application imple-
ments a high-order finite-element method to solve the
elastodynamic equation. We characterize the perfor-
mance of the extracted mini-app considering key pa-
rameters such as the order of the approximation, the
memory access pattern or the vector length. Based
on this study, we detail specific optimizations and we
discuss the results measured as regards to the roofline
performance model on Intel Broadwell and Skylake
architectures.

I. INTRODUCTION

The landscape of multicore processors or accelerators
available to implement scientific applications leads to in-
creasing concerns as regards to the real efficiency of key
applications.

Each vendor is working on next-generation hardwares
able to overcome exascale barriers. These upcoming ar-
chitectures will probably combine high number of hetero-
geneous computing cores associated with advanced mem-
ory technologies. Efforts to prepare applications for this
upcoming system should rely on a deep understanding
of the algorithms to predict the performance. In fact,
many works, like [1], [2], [3], [4], [b], deal with the effi-
ciency concern from the interrelation between hardware
and algorithms. Finite-element methods are representative
of such situation, as these numerical approaches are at
the heart of many open-source or commercial software
packages [6], [7], [8]. One of the key features of this class
of algorithm is the ability to handle complex geometrical

object shapes. On top of the complex and unstructured
meshes generally involved, the algorithm implements ir-
regular data access to match with both the local and
the global computational phases. Moreover, the order of
the interpolation described by the basis functions sig-
nificantly impacts the CPU-intensive element-by-element
computational phase. Indeed, in [9], the authors show that
increasing the polynomial approximation order improves
the operational intensity of the kernel.

Our effort in this paper is to conduct a comprehensive
study of the performance of High-Order Finite-Element
numerical kernels. In case of an explicit time-marching al-
gorithm, the summation of the element contributions (as-
sembly phase) is a bottleneck. Our study target a rep-
resentative Finite-Element Method (FEM) application.
EFISPEC code ([10]) is developed at BRGM, the French
Geological Survey, and solves the three-dimensional elas-
todynamic equations. The standard version of this code is
implemented in Fortran2003 and heavily relies on the MPI
library. The kernel extracted corresponds to the computa-
tion of the internal forces and represents a maximum of
90% of the total elapsed time. This paper extends previous
works dealing with mono-core vectorization [11] and data-
layout reorganization [12]. Our contributions in this paper
are as follows:

e Theoretical performance for FEM numerical kernels
based on the roofline performance model [13].

o Study of the impact of the order of approximation as
regards to the operational intensity.

o Evaluation of both direct and indirect data access
pattern on the peak performance.

e Comparison of the performance on Intel Broadwell
and Skylake dual-socket computing nodes.

The paper proceeds as follows. Section II describes the
related work. Section III details the elastodynamic equa-
tions and the spectral-element method implementation.
Section IV details the challenges for efficient implemen-
tations on current architectures. In sections V and VI, we
show the results obtained with AVX-2 and AVX-512 SIMD
(Single Instruction Multiple Data) instructions. Finally,
we conclude this study and present some future work.

II. RELATED WORK

Though this work of evaluating the performance of a
finite-element numerical kernel has already been done by
using simpler approaches (for instance the Mantevo bench-
mark!, optimizing applicative performance is a continuous
effort as regards to emerging chips (growing vectorization
capabilities for instance).

Besides the scientific problems, one major challenge is to
face key breakthroughs on both the hardware and software
sides that will drive the community to the Exaflops. For
instance, the energy consumption wall, for systems built
with several millions of heterogeneous cores, remains an
open topic. Consequently, both the scalability and the ef-
ficiency (computation and memory movements) of current
applications are critical.

As regards to earthquakes modeling on distributed-
memory systems, several references ([14], [15], [16]) un-
derline the scalability of explicit formulations to solve
the elastodynamic equation. In this case, we benefit from
limited amount of point-to-point communications between
neighboring MPI sub domains. Significant works have been
made to extend this parallel results on heterogeneous
and low-power processor ([17], [18]), mainly for the sim-
pler Finite-Difference method. For example, both auto-
tuning and machine learning strategies ([19], [20]) have
been considered to explore the usual and large space of
optimization parameters (compiler flags, space and time
tiling, memory mapping). These approaches have not yet
been fully investigated for High-Order Finite Element
methods. This is probably due to the complexity of the
implementation of such kernels.

Nevertheless, few papers discuss low-level parallelism for
Finite-Elements based methods ([21], [22], [23], [24], [25]).
Among these contributions, mesh coloring algorithms have
gained significant attention these last few years due to
their ability to reduce synchronizations at the shared-
memory level. The counterpart is the limited efficiency
as regards to cache memory. In [12] we have extended
this approach to parallel FEM assembly on multi-core
architectures by implementing colored packs of elements
along with advanced vectorization strategies.

Finally, one can change the data structure as detailed
in [11]. In this reference, the authors compared the
SOA (Structure of Arrays) data layout to the AOS (Array
of Structures). This strategy shows limited impact on the
performances that are mainly governed by the efficiency
at the SIMD level. If we exploit knowledge from the
physics as regards to specific geometries (for instance in
geosciences), we can benefit from hybrid approaches that
combines a structured mesh (with regular data access
for the main part of the computation) and unstructured
meshes (with irregular data access). This approach has
been successfully implemented in [8].

Lhttps://mantevo.org/MantevoOverview.pdf

0

Figure 1: Referenced cube with (4+1)3 = 125 GLL points.

III. EFISPEC: SPECTRAL FINITE ELEMENT SOLVER

The spectral-element method (SEM) appeared more
than 20 years ago in computational fluid mechanics [26],
[27], [28]. The SEM is a specific formulation of the finite-
element method for which the interpolated points and
the quadrature points of an element share the same loca-
tion. These points are the Gauss—-Lobatto-Legendre (GLL)
points, which are the p+1 roots of (1—52)P1§(£) = 0, where
P} denotes the derivative of the Legendre polynomial of
degree p and £ coordinate in the one-dimensional reference
space A = [—1,1].

The generalization to higher dimensions is done through
the tensorization of the one-dimensional reference space.
In three dimensions, the reference space is the cube [0 =
A x A x A (see Fig. 1).

The mapping from the reference cubes to a hexahedral
element (), is done by a regular diffeomorphism F, : 0 —
Q.. In a finite-element method, the domain of study is
discretized by subdividing its volume 2 into welded non-
overlapping hexahedral elements Q., e = 1,...,n, such
that Q = Ul Q..

The elements . from the mesh of the domain. On the
one hand, each element €2, has a local numbering of the
GLL points ranging from 1 to p+ 1 along each dimension
of the tensorization. On the other hand, the mesh has a
unique global numbering ranging from 1 to IV the global
number of GLL points (see Fig. 2). The mapping from the
local numbering to the global numbering is the so-called
7assembly” phase of all finite-element calculations.

Each GLL point of an element . is redirected to a
unique global number, V2.. When multiple elements share
a common face, edge or corner, the assembly phase sums
the local GLL value into the global numbering system.
In this article, the problem of interest is the equation of
motion whose weak formulation is given by

/pWT~iidQ:/VW:TdQ—/ wT~fdQ—/WT~TdF
Q Q Q r

A) Global GLL numbering B) Local GLL numbering

Element a Element b Element a Element b

1]12]3 3 |10)|13 alllal2|al3| (bll|b12|b13
4 | 5|6 6 |11 |14 a2l|a22|a23| |b21|b22|b23
7189 9 |12)|15 a3l|a32|a33| |b31|b32|b33

Figure 2: Global and local view of the GLL numbering.

where €2 and I" are the volume and the surface area of the
domain under study, respectively; p is the material density;
w is the test vector; ii is the second time-derivative of
the displacement u; 7 is the stress tensor; f is the body
force vector and T is the traction vector acting on I'.
Superscript T' denotes the transpose, and a colon denotes
the contracted tensor product.

Our study focuses on the internal forces defined by (see

[29])

p+1p+1p+1 3

/ Vw: ’7'dQezE:E:E:E:Wf‘ﬁ7 X
Qe

a=1p=1v=11i=1

p+1 -
W~ Z |:wa ja B Z o ﬂVa ga’] :x(fo/)

a’'=1 Jj=1
p+1
Fwalsy E
B'=1
p+1

Fwawg Z

with 7 the stress tensor (= ¢: Vu); J2 7 the jacobian
of an element Q. at the GLL points o’ 8v; wy integration
weight at the GLL point A; &, 7, ¢ local coordinates along
the three dimensions of the reference cube; ¢ derivative
of the Lagrange polynomial at the GLL point A. ¢ is the
elastic tensor and Vu is the gradient of the displacement
defined by

[wﬁ/JO‘MZ [P 0;me ﬁﬁ(ﬁﬂ)

[wv jaﬁ’y Z aﬁv 9; C’Y (Cw’)

p+1
a’iuj (fa’?ﬂ(v) = lz uljjﬁﬁyg/a (ga) a’ié‘aﬁ’y
o=1
p+1 7
Z U?M% (Ma) OiMap~y
o=1
p+1

Z U?ﬁaaf (Ca) 0iCapy
o=1 i

IV. CHALLENGES
A. Data access

Our numerical simulations are computed over a domain.
The domain is discretized in GLL points following a 3D
mesh. These GLLs contains the physical values. Each
element represents a subspace of the simulated domain.

= Polynomial Order;
Direct GLL(i,j,k,e)=
global GLL [(((exo+k)xo+]j)*o+i)];

p = Polynomial Order+1;
Indirect GLL(i,j,k,e)=
global GLL [ElmIdx [e][((k*p+])*p+i)]];

Figure 3: The direct and indirect GLL access formulation.

Structured part
“®hight resolution

- Unstructured
interface

Structured part
low resolution

Figure 4: Two-dimensional mesh interface exemple be-
tween two levels of resolution.

We assembled each element following its GLL and pa-
rameters. Basically, each element has a 3D grid of in-
dices that refer to GLL points from a global GLL list.
The elements from structured meshes can be allocated
following a three-dimensional regular grid as in Fig 5.
Thus, the GLL address is found with the direct address
formulation Fig. 5. Therefore, without any GLL index,
the operational intensity is higher. Unstructured meshes
do not allow to allocate the GLL data as a regular 3D
grid. Thus, the GLL data have to be assessed by the
indirect address formulation Fig. 3. We only evaluate the
indirection over costs. Therefore, our input GLL data
are always the same regular grid as in the figure 5. The
difference between direct and indirect implementations
comes from the GLL data access formulation Fig. 3.

The EFISPEC application has to deal with unstructured
meshes. His original implementation requires to use an
indirect GLL access.

The Geoscience meshes can have some large computing
zones with very local regions of interest. Thus, some
unstructured sub-meshes can be located at the interfaces
between two different regions represented by structures
meshes a shown by the figure 4. Therefore, it is interesting
to evaluate the performances of a regular access GLL
structure as shown by the figure 5. To summarize, the
main idea is to separate the computation between struc-
tured and unstructured areas of the same mesh. Although,
the unstructured mesh areas cannot be allocated as a
regular 3D grid, it is still possible to optimize its GLL
allocation orders.In fact, the reverse Cuthill-McKee algo-
rithm is used to optimize the neighboring locality [30]. We
also assumed that METIS optimizes the element locality.

Private GLL Shared GLL
Figure 5: Gauss—Lobatto—Legendre (GLL) direct access
structure

B. Vectorization

The vectorization of our kernel is mainly described
in [12], [11]. It is based on the use of intrinsics since
we observed that compilers are not able to vectorize
the code efficiently. The principle is to compute several
elements at the same time depending on the SIMD unit
width. In our previous work, we have implemented this
approach on AVX and AVX-512 capable architectures. In
this paper, we also consider the AVX-512/256 instruction
subset which is part of the AVX-512 instruction set but
process only 256 bits of data at a time instead of 512. The
AVX-512/256 subset extends the AVX2 instruction set by
adding scatter intrinsics to implement the indirect data
access in a simpler way. It allows to gather and scatter
GLL values between global and local arrays as detailed
from in sub-section IV-A. Thus, we can study the impact
of doubling the SIMD width with the same instructions.

C. Operational intensity

We compare our different kernel implementations using
their Operational Intensities (O.1.), as defined in [13]. This
0.1 is defined as the ratio between the number of floating
point operations and the number of bytes loaded from the
DRAM.

Each element of order o is composed of (o + 1)3 GLLs.
Computing an element consists in loading its GLL values
and applying floating point operations. Data loaded from
DRAM may be reused by the operations according to the
element order as detailed in the table I.

Computing a three dimensional element of order 4, as the
one in figure 1, requires (4 + 1) = 125 GLL values to
load from DRAM and some additional parameters (GLL
weights and Lagrange derivatives). It represents 11120
bytes of data on which 48150 floating point operations
are applied. Thus, the operational intensity of an order 4
element is 48150/11120 = 4.33. We determine this O.I. for
the different kernel implementations and compare them
with each other.

V. EXPERIMENTAL SETUP

A. Experimental context

Two different platforms are considered. The first one is
equipped with two Intel Xeon Gold 6148 processors based
on the Skylake architecture. The second one comes with
two Intel Xeon 2697v4 processors based on the previous

Order || Flop/Element | Data access | Byte/Element | O.I
2 7974 Regular 2316 3.44
Irregular 2424 3.29

4 48150 Regular 10620 4.53
Irregular 11120 4.33

8 411966 Regular 61596 6.69
Irregular 64512 6.39

Table I: Operational Intensity (O.I) with respect to the
order of the elements. The irregular version requires an
additional indirection array whereas the regular one uses
a direct access to the GLLs.

Platform Skylake | Broadwell
physical cores 2x 20 2 x 18
base frequency 2.4GHz 2.3GHz
AVX frequency 1.9GHz 2.0GHz
AVX-512 frequency 1.6GHz -

Table II: Platform characteristics

Broadwell architecture. Table IT contains the characteris-
tics of both platforms. Hyperthreading is disabled on both
platforms.

To compare the O.I. of each of our implementations,
we propose to use the Original Roofline Model (ORM)
to study the performance and the limitations of our
implementations. However, in [5], [3], [4], authors show
some limitations of the ORM when the model is used to
drive the optimization process. These works propose other
roofline models, such as the Cache Aware Roofline Model
(CARM) and Locality Aware Roofline Model (LARM),
which take into account more architectural details. In
our case, we only use the ORM to discuss the relative
performance of our implementations and not to drive the
optimization process.

The rooflines has been established for both platforms
from a BLAS SGEMM benchmark and the STREAM
benchmark [31]. Figure 6 shows the resulting rooflines. The
Broadwell and Skylake platforms achieve a peak perfor-
mance of respectively 2,314 GFLOPS and 3,826 GFLOPS.

We consider two different compilers in our study: ICC
2017 and Clang 5. Since results obtained with both com-
pilers are not significantly different and exhibit a similar
behavior, we only present results obtained with Clang 5.

B. Kernels

We have derived several versions from the original EFIS-
PEC kernel to study the impact of the approximation
order and mesh structure. Two data access patterns are
considered:

1) Trregular: the original EFISPEC access pattern
based on an indirection array to access GLL elements
in an unstructured mesh, also used in common FEM
implementations.

2) Regular: GLL elements are stored in a regular pat-
tern suitable to represent a structured mesh.

Broadwell e5-2697v4 2x18x2.3Ghz roofline
4096

2314 GFlops

2048

1024

948 GFlops e
A2

512

GFlops

256

6.69 Reg Order 8

18.08
Operational Intensity

36.16 64

Skylake Gold 6148 2x20x2.4Ghz roofline

8192

4096 3826 GFlops

2048

1236 GFlops

GFlops

19.98 29.07 32

Operational Intensity

Figure 6: Rooflines for the Broadwell and Skylake platforms.

For each access pattern, we derive three variants for
orders 2, 4 and 8. Each variant comes in three SIMD
versions:

1) AVX2: it operates on 256-bit registers and is able
to run on both the Broadwell and Skylake platforms,

2) AVX-512: it operates on 512-bit registers thus it is
only able to run on the Skylake platform,

3) AVX-512/256: it is the same as the AVX2 version
but uses a specific 256-bit SIMD scatter instruction
(accessible through the = mm256 i32scatter ps
intrinsics) only available in the AVX-512 instruction
set.

Comparing the AVX-512 and AVX-512/256 versions al-
lows to study the gain brought by doubling the width of
the SIMD unit. Note that, as reported in table II, cores
adapt their frequency depending on the kind of SIMD
instructions processed. For each kernel, the corresponding
operational intensity, as indicated in table I, is reported
into the rooflines. On both platforms, rooflines show that
our kernels are memory-bound. Additionally, we have
introduced a peak application performance for each archi-
tecture. These values are computed with a small example
able to fit into the cache. In this case we measure a peak
value of 948 GFLOPS on Broadwell and 1,236 GFLOPS on
Skylake. Based on these local peak performances, we can
observe that the implementation of the order 8 versions
are CPU-limited in almost all cases.

VI. EXPERIMENTAL RESULTS
A. Impact of the data access pattern

In this section, we comment on the impact of direct or
indirect data access pattern on the performance observed.
One of the key point is coming from the fact that an
indirect data access implementation involves more data
movement compared to a direct version (see Table I).
In this case, each element requires to be transformed to
a local representation before the compute and assembly
phase. Even if the vectorization can deal with indirect
loads and stores, we still need to retrieve the indices from

DRAM to cache memory.

From figure 7, that represents the peak performance with
respect to the data access strategy on Intel Broadwell and
Skylake hardware, we can extract two main outcomes.
First of all, the best results as regards to both scaling and
peak performance are obtained with the direct and simpler
data access pattern. This is expected as operational inten-
sities of these algorithms are higher (for instance the O.1
for the order 2 version is 3.44 in the direct case and 3.29
for the indirect case). Moreover these implementations can
fully benefit from vectorization thanks to the regularity in
the memory accesses.

Second of all, regardless of the polynomial order, the
gap between direct and indirect data access versions is
higher on Skylake. The direct data access pattern version
outperforms the indirect one by 47% on Skylake but only
by 34% on Broadwell for the higher polynomial order.
Similar trend could be observed for lower polynomial
orders as the benefit from regular data access pattern is
clearly growing with the size of the SIMD vector.

B. Impact of the polynomial order

The main objective of this section is to discuss the
impact of the order of approximation for the element-
by-element computation. One common suggestion is that
the extra computation coming with a higher polynomial
order that improves the O.I factor.If we study the shape
of the plots from Broadwell and Skylake platforms (see
Figure 7), we can observe a saturation of the peak
performance as we increase the number of cores. This
behavior could be explained by the roofline model and
underlines that the higher order versions are more likely
to be CPU-bound for direct access pattern. For irregular
versions, the results on the Skylake platform are different
as the lower order version performs better than the
others. A similar behavior is observed on the Broadwell
platform also with almost the same level of performance
between both implementations.

These results do not match the operational intensity
values we have determined (3.29 for order 2 and 6.39 at

700

650 |mIndirect Vecto x8 Order 8
Indirect Vecto x8 Order 2

600 [mDirect Vecto x8 Order 8

550 (mDirect Vecto x8 Order 2

500
14 16 18 20 22 24 26 28 30 32 34 36

10 12

GFlops
e NN W oW s s
- - -]
88888888 %

Oh.llliiii
123456 8 9

7
Number of threads

650 |mIndirect Vecto x16 Order 8
Indirect Vecto x 16 O rder 2

600 |mDirect Vecto x16 Order 8

ss0 mDirect Vecto x16 Order 2

500

- II

250 I

200 I

150

E I I I I I

50

0.lllIIIII

Number of threads

GFlops

Figure 7: Comparison of the implementations with direct or indirect data access pattern on Broadwell (left) and Skylake

(right) platforms.

order 8). Indeed, profiling the code with VTune shows
that the time spent in cache accesses is multiplied by two
with the indirect data access from order 2 to 8.When
we increase the order of approximation, the amount of
data is significantly larger, exceeding cache size and
generating much more memory traffic with slower levels
of memory. To illustrate this, Fig. 8 compares local or
remote memory access situations on our dual-socket
shared-memory systems. If we compare both memory
mapping strategies, the NUMA penalty leads to a reverse
ranking of the different implementations as regards to
their peak performances.

C. Impact of the vectorization

The support of the AVX512 allows the hardware to

compute 16 single precision floats by instruction. We recall
from [12] that automatic optimizations provided by the
compilers hardly reach 140 GFLOPS on both platforms,
this represents less than 5% of the theoretical peak perfor-
mance. Figure 9 compares the performance between 256-
bit and 512-bit SIMD instructions.
The AVX-512 with irregular data access version exhibits
a speedup of 1.20 for order 2 and 1.13 for order 8 com-
pared to AVX-512/256 implementations. As expected, the
performance gain from the use of AVX-512 instructions is
lower than 2 as regards to AVX-512/256. Conversely, the
direct data access implementation benefits more from this
improvement as we measure almost a speedup of 2.

D. Comparison with roofline model results

The operational intensities of our different implemen-
tations are shown in Figure 6. Most of the kernels are
bounded by the memory bandwidth. Therefore, we esti-
mate the maximal GFLOPS peak performance of an im-
plementation on a given platform by multiplying the peak
memory bandwidth by the O.I factor. For instance, the
implementation based on an indirect data access pattern
and an order 2 approximation (IReg Order 2) shows a peak

performance of 3.29 x 128 = 421.12GFLOPS .

The outcomes of the previous sections underline the fol-
lowing points. Firstly, the performance levels expected
from the operational intensity values are far from being
reproduced during real experiments. For instance, the
ratio between the O.I for order 2 and order 8 imple-
mentations is 1.94. For simpler data access pattern and
one core, measured results approximately match with the
O.I ratios (i.e.1.51 on Broadwell and 1.21 on Skylake).
When more computing cores are involved, the quality of
the theoretical model tends to diminish due to a lack
of refinement as regards to complex interactions at the
shared-memory level.

Secondly, for the indirect memory access pattern, the
ratio is reversed in almost all cases. That underlines the
limitation of our model to take into account complex data
movements on hierarchical architectures.

Data AVX2 | Order 1 thread 36 threads
Indirect /256 2 12.9 GFLOPS 284.1 GFLOPS
access 8 8.6 GFLOPS 295.0 GFLOPS
Direct /256 2 11.9 GFLOPS 319.4 GFLOPS
access 8 18.0 GFLOPS 442.3 GFLOPS

Table III: SIMD 256 bits performances from the Broadwell

platform.

Data AVX512 | Order 1 thread 40 threads
/256 2 16.4 GFLOPS 474.0 GFLOPS
Indirect 8 10.4 GFLOPS | 393.9 GFLOPS
access 512 2 19.6 GFLOPS 474.0 GFLOPS
8 11.7GFLOPS | 371.2 GFLOPS
/256 2 14.3 GFLOPS | 458.4 GFLOPS
Direct 8 19.1 GFLOPS 610.4 GFLOPS
access 512 2 28.2 GFLOPS 546.0 GFLOPS
8 34.0 GFLOPS | 696.0 GFLOPS

Table IV: SIMD 256 bits and SIMD 512 bits performances

from the Skylake platform.

VII. CONCLUSION AND FUTURE WORK

Optimizing the most popular numerical methods for
parallel architectures is a continuous effort. Though the

r

B
Hit

Distant

dwell 9 cores Qrder 8
w | 8 cores Qr er%
[< rder

0a
0a
0a ores

GFlops

NUMA Memory allocation node

350

cores Qrder 8
cores Qrder 4
cores Order 2

300 :g

250

200

150

- I
0

Local Distant

<<
oL
M ® ®
wnunn
NN
NNN
[olele]

GFlops
o

w
o

NUMA Memory allocation node

Figure 8: Comparison of local or remote memory access strategies with the indirect data access pattern on Broadwell

and Skylake platforms.

700
650 |mIndirect Vecto x16 Order 8
Indirect Vecto x16 Order 2
600 (mIndirect Vecto x8 Order 8
550 mIndirect Vecto x8 Order 2

500
14

GFlops
bR NN W oW A
w5 LSk &L s
3838888338

450
oniill
12 18 20 22 24 26 28 30 32 34 36 38 40

Number of threads

10 12

700

6so |mDirect Vecto x16 Order 8
Direct Vecto x16 Order 2
600 [mDirect Vecto x8 Order 8
550 |mDirect Vecto x8 Order 2 I

500
32 34 36 38 40

[ocToel ol

450

@

4

: I
, ||
; |
21 l I
1 |
1 -.
i ||
11 |
12345

678

GFlops
- -]
8388382338

o
o

Number of threads

Figure 9: Comparison between AVX512 and AVX-512/256 with regular and irregular data access on the Skylake

platform.

main characteristics of these kernels are already well
known, finding the best algorithms or implementations on
each architecture can be viewed as a quest. Our paper
underlines some of the key aspects of the Finite-Element
Method by exploiting the popular roofline theoretical
performance model. As explained in the sub-section V-A,
we are comparing our results with the ORM but further
investigations should be done with the CARM and the
LARM to clearly identify the involved bottlenecks. We also
study the correlation between the operational intensity
and the real performance on two leading dual-socket Intel
platforms.

Based on the theoretical model, we have underlined the
impact of the data access patterns that represent a major
bottleneck as regards to the expected performance. Ad-
ditionally, from real experiments, we have demonstrated
the limited improvements coming from higher polynomial
orders on current architectures. One major outcome of this
study is also the tremendous complexity of performance
prediction, particularly on available chips that combine
several levels of parallelism and cache hierarchies.
Obviously, the proposed optimizations would benefit from
an integration in a high-level framework in order to ease

their integration in a large number of scientific applica-
tions. We also believe that significant efforts should be
made at the performance modeling level, probably with
a wider usage of low-level emulation tools, to bring key
applications up to speed on emerging processors.

ACKNOWLEDGMENT

The authors thank Philippe Thierry, principal engineer
at Intel, for many interesting discussions and for providing
us access to Broadwell and Skylake platforms. We would
also like to thank Faiza Boulahya from BRGM (French
Geological Survey) for relevant comments on this paper.
The work of Gauthier Sornet is co-funded by the Region
Centre-Val de Loire and BRGM.

REFERENCES

[1] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick, “Op-
timization of a lattice boltzmann computation on state-of-the-
art multicore platforms,” Journal of Parallel and Distributed
Computing, vol. 69, no. 9, pp. 762 — 777, 2009. Best Paper
Awards and Panel Summary: 22nd International Parallel and
Distributed Processing Symposium (IPDPS 2008).

[2] K.-H. Kim, K. Kim, and Q.-H. Park, “Performance analysis and
optimization of three-dimensional fdtd on gpu using roofline
model,” Computer Physics Communications, vol. 182, no. 6,
pp. 1201 — 1207, 2011.

(3]

(4]

[6]

[7]

(8]

[9]

(10]

(11]

(12]

13]

14]

(15]

[16]

(17]

(18]

D. Marques, H. Duarte, A. Ilic, L. Sousa, R. Belenov, P. Thierry,
and Z. A. Matveev, “Performance analysis with cache-aware
roofline model in intel advisor,” in 2017 International Con-
ference on High Performance Computing Simulation (HPCS),
pp. 898-907, July 2017.

N. Denoyelle, B. Goglin, A. Ilic, E. Jeannot, and L. Sousa,
“Modeling Large Compute Nodes with Heterogeneous Memo-
ries with Cache-Aware Roofline Model,” in High Performance
Computing systems - Performance Modeling, Benchmarking,
and Simulation - 8th International Workshop, PMBS 2017,
vol. 10724 of Lecture Notes in Computer Science, (Denver (CO),
United States), pp. 91-113, Springer, Nov. 2017.

A. llic, F. Pratas, and L. Sousa, “Cache-aware roofline model:
Upgrading the loft,” IEEE Computer Architecture Letters,
vol. 13, pp. 21-24, Jan 2014.

N. Moller, E. Petit, L. Thébault, and Q. Dinh, “A case study on
using a proto-application as a proxy for code modernization,”
Procedia Computer Science, vol. 51, pp. 1433 — 1442, 2015. In-
ternational Conference On Computational Science, ICCS 2015.
D. Komatitsch, D. Michéa, and G. Erlebacher, “Porting a
high-order finite-element earthquake modeling application to
{NVIDIA} graphics cards using {CUDA},” Journal of Parallel
and Distributed Computing, vol. 69, no. 5, pp. 451 — 460, 2009.
T. Ichimura, K. Fujita, P. E. B. Quinay, L. Maddegedara,
M. Hori, S. Tanaka, Y. Shizawa, H. Kobayashi, and K. Minami,
“Implicit nonlinear wave simulation with 1.08t dof and 0.270t
unstructured finite elements to enhance comprehensive earth-
quake simulation,” in Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage
and Analysis, SC ’15, (New York, NY, USA), pp. 4:1-4:12,
ACM, 2015.

F. Kruzel and K. Bana$, “Vectorized opencl implementation of
numerical integration for higher order finite elements,” Comput-
ers & Mathematics with Applications, vol. 66, no. 10, pp. 2030
— 2044, 2013. ICNC-FSKD 2012.

F. De Martin, “Verification of a spectral-element method code
for the southern california earthquake center loh.3 viscoelastic
case,” Bull. Seism. Soc. Am., vol. 101, no. 6, pp. 28552865,
2011.

S. Jubertie, F. Dupros, and F. D. Martin, “Vectorization of
a spectral finite-element numerical kernel,” in Proceedings of
the 4th Workshop on Programming Models for SIMD/Vector
Processing, WPMVPQ@QPPoPP 2018, Vienna, Austria, February
24, 2018, pp. 8:1-8:7, 2018.

G. Sornet, S. Jubertie, F. Dupros, F. De Martin, P. Thierry, and
S. Limet, “Data-layout reorganization for an efficient intra-node
assembly of a Spectral Finite-Element Method,” in PDP2018,
(Cambridge UK, United Kingdom), Mar. 2018.

S. Williams, A. Waterman, and D. Patterson, “Roofline: An in-
sightful visual performance model for multicore architectures,”
Commun. ACM, vol. 52, pp. 65-76, Apr. 2008.

D. Roten, Y. Cui, K. B. Olsen, S. M. Day, K. Withers, W. H.
Savran, P. Wang, and D. Mu, “High-frequency nonlinear earth-
quake simulations on petascale heterogeneous supercomputers,”
in Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC 2016,
Salt Lake City, UT, USA, November 13-18, 2016, pp. 957-968,
2016.

S. Tsuboi, K. Ando, T. Miyoshi, D. Peter, D. Komatitsch,
and J. Tromp, “A 1.8 trillion degrees-of-freedom, 1.24 petaflops
global seismic wave simulation on the K computer,” IJHPCA,
vol. 30, no. 4, pp. 411-422, 2016.

J. Tobin, A. Breuer, A. Heinecke, C. Yount, and Y. Cui, “Ac-
celerating seismic simulations using the intel xeon phi knights
landing processor,” in High Performance Computing - 32nd In-
ternational Conference, ISC High Performance 2017, Frankfurt,
Germany, June 18-22, 2017, Proceedings, pp. 139-157, 2017.
D. Goddeke, D. Komatitsch, M. Geveler, D. Ribbrock, N. Ra-
jovic, N. Puzovic, and A. Ramirez, “Energy efficiency vs. per-
formance of the numerical solution of pdes: An application
study on a low-power arm-based cluster,” J. Comput. Physics,
vol. 237, pp. 132-150, 2013.

M. Castro, E. Francesquini, F. Dupros, H. Aochi, P. O. A.
Navaux, and J. Méhaut, “Seismic wave propagation simulations

(19]

20]

(21]

(22]

23]

[24]

(25]

[26]

27)

(28]

29]

(30]

(31]

on low-power and performance-centric manycores,” Parallel
Computing, vol. 54, pp. 108-120, 2016.

P. Souza, L. Borges, C. Andreolli, and P. Thierry, “Chapter 24 -
portable explicit vectorization intrinsics,” in High Performance
Parallelism Pearls (J. Reinders, , and J. Jeffers, eds.), pp. 463
— 485, Boston: Morgan Kaufmann, 2015.

F. Martinez-Martinez, M. J. Rupérez-Moreno, M. Martinez-
Sober, J. A. S. Llorens, D. Lorente, A. J. Serrano, S. Martinez-
Sanchis, C. M. Aranda, and J. D. Martin-Guerrero, “A finite
element-based machine learning approach for modeling the me-
chanical behavior of the breast tissues under compression in
real-time,” Comp. in Bio. and Med., vol. 90, pp. 116—-124, 2017.
J. Bolz, I. Farmer, E. Grinspun, and P. Schréoder, “Sparse
matrix solvers on the gpu: Conjugate gradients and multigrid,”
ACM Trans. Graph., vol. 22, pp. 917-924, July 2003.

C. Farhat and L. Crivelli, “A general approach to nonlinear
fe computations on shared-memory multiprocessors,” Computer
Methods in Applied Mechanics and Engineering, vol. 72, no. 2,
pp. 153 — 171, 1989.

L. Thébault, E. Petit, M. Tchiboukdjian, Q. Dinh, and W. Jalby,
“Divide and conquer parallelization of finite element method
assembly,” in Parallel Computing: Accelerating Computational
Science and Engineering (CSE), Proceedings of the Interna-
tional Conference on Parallel Computing, ParCo 2013, 10-18
September 2013, Garching (near Munich), Germany, pp. 753~
762, 2013.

C. Cecka, A. J. Lew, and E. Darve, “Assembly of finite element
methods on graphics processors,” International Journal for
Numerical Methods in Engineering, vol. 85, no. 5, pp. 640—669,
2011.

G. R. Markall, A. Slemmer, D. A. Ham, P. H. J. Kelly, C. D.
Cantwell, and S. J. Sherwin, “Finite element assembly strate-
gies on multi-core and many-core architectures,” International
Journal for Numerical Methods in Fluids, vol. 71, no. 1, pp. 80—
97.

A. T. Patera, “A spectral element method for fluid dynamics:
laminar flow in a channel expansion,” J. Comput. Phys., vol. 54,
pp. 468-488, 1984.

Y. Maday and A. T. Patera, “Spectral element methods for the
incompressible navier-stokes equations,” State of the art survey
in computational mechanics, pp. 71-143, 1989.

P. F. Fischer and E. M. Rgnquist, “Spectral-element methods
for large scale parallel Navier-Stokes calculations,” Comput.
Methods Appl. Mech. Engrg., vol. 116, pp. 69-76, 1994.

D. Komatitsch and J. Tromp, “Spectral-element simulations of
global seismic wave propagation-I. Validation,” Geophys. J. Int.,
vol. 149, no. 2, pp. 390-412, 2002.

D. Komatitsch, J. Labarta, and D. Michéa, A Simulation of
Seismic Wave Propagation at High Resolution in the Inner Core
of the Earth on 2166 Processors of MareNostrum, pp. 364-377.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
J. McCalpin, “Sustainable memory bandwidth
performance computers,” 1995.

in high-

