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November 7, 2018

Abstract

A signed graph (G,Σ) is a graph G and a subset Σ of its edges which corresponds to an assignment
of signs to the edges: edges in Σ are negative while edges not in Σ are positive. A closed walk of a
signed graph is balanced if the product of the signs of its edges (repetitions included) is positive, and
unbalanced otherwise. The unbalanced-girth of a signed graph is the length of a shortest unbalanced
closed walk (if such a walk exists). A homomorphism of (G,Σ) to (H,Π) is a homomorphism of G
to H which preserves the balance of closed walks.

In this work, given a signed bipartite graph (B,Π) of unbalanced-girth 2k, we give a necessary
and sufficient condition for (B,Π) to admit a homomorphism from any signed bipartite graph of
unbalanced-girth at least 2k whose underlying graph is K4-minor-free. The condition can be checked
in polynomial time with respect to the order of B.

Let SPC(2k) be the signed bipartite graph on vertex set Z2k−1

2
where vertices u and v are adjacent

with a positive edge if their difference is in {e1, e2, . . . , e2k−1} (where the ei’s form the standard basis),
and adjacent with a negative edge if their difference is J (that is, the all-1 vector). As an application
of our work, we prove that every signed bipartite K4-minor-free graph of unbalanced-girth 2k admits
a homomorphism to SPC(2k). This supports a conjecture of Guenin claiming that every signed
bipartite planar graph of unbalanced-girth 2k admits a homomorphism to SPC(2k) (this would be
an extension of the four-color theorem).

We also give an application of our work to edge-coloring 2k-regular K4-minor-free multigraphs.

1 Introduction

In a recent work [1], we gave a necessary and sufficient condition for a graph of odd-girth 2k+1 to admit a
homomorphism from any K4-minor-free graph of odd-girth at least 2k+1. We also presented applications
of this result to edge-coloring of (2k+1)-regular K4-minor-free multigraphs. Recently, Naserasr, Rollová
and Sopena [9] introduced the notion of homomorphisms of signed graphs, as an extension of classic
graph homomorphisms. They showed that the classic graph homomorphism questions are captured by
the restriction of homomorphisms to the class of signed bipartite graphs, thus providing motivation to
study homomorphisms on this subclass.

In this paper, we provide a theorem that, for a given signed bipartite graph (B,Π) of unbalanced-
girth 2k, helps to decide whether every signed bipartite K4-minor-free graph admits a homomorphism
to (B,Π). Indeed, our theorem provides a necessary and sufficient condition on (B,Π) for when this is
the case. Proving that signed projective cubes of odd dimension satisfy the latter condition, we show
that they are examples of such homomorphism bounds. As an application, we consider edge-coloring 2k-
regular K4-minor-free multigraphs. Our work is motivated by some conjectures extending the four-color
theorem (these are discussed in [8]) and it provides partial support to these conjectures.

We start by giving our notation in Section 2. Then, we describe the main property used in our
characterization of bounds in Section 3. We then state and prove our main characterization theorem
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in Section 4. We present some algorithms based on this theorem in Section 5, and we give further
appplications of it in Section 6. Finally, we discuss our results and conclude the paper in Section 7.

2 Notation

Dealing with signed graphs requires some technical notations. We gather them in this section. The term
graph refers to simple and finite graphs (no loop or multi-edge). We do not consider loops in this work,
but multi-edges are important. When needed, a graph with possible multi-edges will be referred to as a
multigraph.

Given two graphs G and H , a mapping ϕ : V (G) → V (H) is a homomorphism from G to H if, for
any edge uv in G, ϕ(u)ϕ(v) is an edge in H . Homomorphisms generalize the notion of proper coloring
since a k-coloring is nothing but a homomorphism to Kk.

A graph H is a minor of a graph G if it can be obtained from G by a sequence of these operations:
deleting edges or vertices, and contracting edges. If a graph H is not a minor of a graph G, we say that
G is H-minor-free. In this work, we mainly focus on K4-minor-free graphs. These graphs are also known
as partial 2-trees.

2.1 Partial k-trees

For any fixed integer k, the class of k-trees is defined recursively as follows:

• the complete graph Kk is a k-tree,

• given a k-tree H and a k-clique K of H , the graph obtained from H by adding a vertex adjacent
exactly to the vertices of K is a k-tree.

A partial k-tree is any subgraph of a k-tree. Trees are 1-trees (and reciprocally) and the partial 1-trees are
exactly the forests. The classes of partial k-trees are closed under taking minors (the partial 1-trees are
exactly the K3-minor-free graphs and the partial 2-trees are exactly the K4-minor-free graphs, as shown
by Wald and Colbourn [12, Theorem 3.1]). In general, partial k-trees form a subclass of Kk+2-minor-free
graphs. In particular, partial 3-trees are K5-minor-free, however not every partial 3-tree is planar.

Partial k-trees have been studied under various equivalent viewpoints and are most notably known
as the class of graphs of tree-width at most k. Partial 2-trees are also known as series-parallel graphs
(see [3]). Note that, being K4-minor-free, partial 2-trees are planar.

The interest in viewing K4-minor-free graphs as partial 2-trees lies in the following natural definition:
given a 2-tree G, a 2-tree ordering of its vertices is an ordering v1, v2 . . . , vn where v1v2 is an edge
and each vi (for i ≥ 3) has exactly two neighbors among {v1, . . . , vi−1}; moreover, these two neighbors
are themselves adjacent. Observe that in general, more than one such ordering can be associated to
a 2-tree. In this work, a vertex ordering of a 2-tree will always refer to a 2-tree ordering. Then, an
ordering of a partial 2-tree will be an ordering of one of its completions to a 2-tree (such an ordering may
contain vertices that are not in the partial 2-tree). Observe again that there can be more than one such
completion.

2.2 Signed graphs

We now provide the necessary terminology about signed graphs. A signed graph is a graph G whose edges
are assigned signs: + or −. We consider both these signs as the elements of the 2-element (multiplicative)
group. By letting Σ be the set of negative edges, we write (G,Σ) to denote this signed graph. The set Σ
will be referred to as the signature of (G,Σ).

A resigning of a signed graph (G,Σ) is a switch of the signs of all edges along a cut of G. This can
also be seen as a sequence of resignings where at each step, the signs of all edges incident to a single
vertex are switched. Two signatures on a graph G are said to be equivalent if one is obtained from the
other by a resigning. It is easy to verify that this is an equivalence relation on the set of all signatures of
G.

Given a signed graph (G,Σ), a closed walk C of G is said to be balanced (respectively, unbalanced)
if the product of all edges of C (repetitions included) is + (respectively −). Observe that the balance
of a closed walk is invariant under resigning. The signature Σ partitions the set of cycles of G into two
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classes of cycles: balanced and unbalanced. The following theorem of Zaslavsky claims that this partition
determines the equivalence class of signatures to which Σ belongs.

Theorem 2.1. [13] Two signatures Σ1 and Σ2 on a graph G are equivalent if and only if they induce
the same set of unbalanced cycles.

Loops and unbalanced digons (unbalanced cycles of length 2) play an important role in the study
of coloring and homomorphisms of signed graphs (see the article by Brewster et al. [2]). As previously
mentioned, we mostly consider simple graphs and will specifically use the term multigraph when multiple
edges are allowed. This restriction allows a smoother definition of signed graph homomorphisms.

Homomorphisms of signed graphs Given two signed graphs (G,Σ) and (H,Π), a mapping ϕ :
V (G) → V (H) is said to be a homomorphism of (G,Σ) to (H,Π) if the image of each closed walk is
a closed walk with same balance. When such a homomorphism exists, we may write (G,Σ) → (H,Π).
Given a class C of signed graphs we say (H,Π) bounds C if every element of C maps to (H,Π). Observe
that if uv is an edge of G, then the natural closed 2-walk u − v − u is always balanced (independently
of the sign of uv), thus its image must also be a balanced closed 2-walk, that is, an edge of H . Thus, a
homomorphism of (G,Σ) to (H,Π) is always a homomorphism of G to H . In practice, we can use the
following theorem to determine whether there exists a homomorphism from (G,Σ) to (H,Π). The proof
of this theorem is a simple application of Theorem 2.1.

Theorem 2.2. Given two signed graphs (G,Σ) and (H,Π), a mapping ϕ : V (G) → V (H) is a homo-
morphism of (G,Σ) to (H,Π) if there exists a signature Σ′ of G equivalent to Σ such that:

(i) for every edge uv of G, ϕ(u)ϕ(v) is an edge of H, and

(ii) uv is in Σ′ if and only if ϕ(u)ϕ(v) is in Π.

In a sense, a homomorphism from a signed graph to another is a homomorphism between two equiv-
alence classes of signed graphs. The following lemma provides an easy “no-homomorphism” condition.
Let UCr be the signed graph (Cr ,Σ) where Σ is a single edge (it is a representative for all cycles of order
r having an odd number of negative edges).

Lemma 2.3. Given two positive integers k and l, UCl → UCk if and only if l and k have the same
parity and l ≥ k.

This leads to the notion of unbalanced-girth of a signed graph, that is, the length of a shortest
unbalanced cycle of the given signed graph (if no such cycle exists, we define it to be infinite). In fact,
Lemma 2.3 suggests to consider two variants of unbalanced-girth: the length of a shortest unbalanced
even-cycle, and the length of a shortest unbalanced odd-cycle. However, in this work we are only concerned
with signed bipartite graphs, thus we only have one kind of unbalanced cycles: the even-length ones. It
follows that if a signed bipartite graph (G,Σ) admits a homomorphism to a signed bipartite graph (B,Π),
then the unbalanced-girth of (G,Σ) is at least the unbalanced-girth of (B,Π).

In this work, the following question is our main focus.

Problem 2.4. Given a signed bipartite graph (B,Π) of unbalanced-girth g, does every signed bipartite
K4-minor-free graph of unbalanced-girth at least g admit a homomorphism to (B,Π)?

We shall provide a sufficient and necessary condition on (B,Π) to be such a bound. As a corollary,
we prove that signed projective cubes are such bounds. We now introduce this family of graphs.

Projective cubes The projective cube of dimension d, denoted PC(d), is the Cayley graph (Zd
2 , S =

{e1, e2, . . . , ed, J}) where {e1, e2, . . . , ed} is the standard basis and J is the all-1 vector. Each edge of
PC(d) can be associated with one of these vectors (which is equal to the difference between the edge’s
endpoints). For d = 1, as e1 = J , we allow a multi-edge, and thus PC(1) is a complete graph on two
vertices with two parallel edges joining these two vertices. For d ≥ 2, PC(d) is a simple graph; PC(2) is
K4, PC(3) is K4,4 and PC(4) is the Clebsch graph.
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Signed projective cubes The signed projective cube of dimension d, denoted SPC(d), is the signed
graph (PC(d),J ) where J is the set of edges associated to the vector J . Thus, SPC(1) is the unbalanced
digon. Further, SPC(2) is the signed K4 where two parallel (non-incident) edges are negative. The graph
SPC(3) is the signed K4,4 where the signature consists of the edges of a perfect matching. The following
theorem by Naserasr et al. [8] collects some of the key properties of the signed projective cubes SPC(d).

Theorem 2.5. [8] The signed projective cube SPC(d) satisfies the following:

• It is of unbalanced-girth d+ 1.

• In every unbalanced (respectively balanced) cycle C of SPC(d) and for each element x of {e1, e2, . . . , ed, J},
an odd (respectively even) number of edges of C correspond to x.

• Each pair of vertices belong to a common unbalanced cycle of length d+ 1.

Furthermore, it can be easily verified that when d is an odd number, the underlying graph PC(d)
of SPC(d) is a bipartite graph. Thus, SPC(2d − 1) is a signed graph in which all cycles, balanced
or unbalanced, are even. While for d ≥ 2 the girth of the graph is always 4, the unbalanced-girth of
SPC(2d− 1) is 2d.

2.3 Signed edge-weighted graphs and algebraic distance

The last general notion to be introduced is the one of signed edge-weighted graphs, an important tool
for our work. Let Z∗ be the set of nonzero integers. A signed edge-weighted graph (G,w) is a graph G
together with an edge-weight function w : E(G) → Z∗. Given a signed edge-weighted graph (G,w), a
resigning, as before, is to multiply the weights of all edges in an edge-cut by −1. Given an edge e of a
signed edge-weighted graph the absolute weight of e is |w(e)| and the sign of e is positive if w(e) > 0, and
negative otherwise.

A signed edge-weighted graph is said to be bipartite if there is a partition {X,Y } of its vertices such
that (i) for each edge e with one endpoint in X and the other one in Y , the weight w(e) is an odd number
(ii) for each edge e with both endpoints in the same part, the weight w(e) is an even number.

This definition is a natural extension of the notion of bipartiteness when weights of edges are defined
by the distances in a graph. To be more precise, if G is a connected bipartite graph, then the distance
between a pair of vertices is odd if they are in different parts and even if they are in the same part.
As we will work with this extended notion, we will repeatedly refer to a triangle in a bipartite signed
edge-weighted graph. A defining character of these graphs is that the total weight of the edges of any
given cycle is even (but not necessarily the number of these edges).

Given two signed edge-weighted graphs (G,w1) and (H,w2), we say that there is a homomorphism of
(G,w1) to (H,w2) if, after a resigning w′

1 of w1, there is a homomorphism of G to H which preserves the
edge-weights. Note that if each weight is either +1 or −1, then we have the notion of signed graphs and
homomorphisms of signed graphs; if all edges have the same weight, we have the classic notion of graph
homomorphisms. Furthermore, if (G,w1) → (H,w2) where (H,w2) is a bipartite signed edge-weighted
graph, then (G,w1) must also be a bipartite signed edge-weighted graph.

Given a graph G and a pair u and v of vertices, we denote by dG(u, v) the distance in G of u to v.
For a signed graph (G,Σ), we define the algebraic distance between two vertices u and v as follows:

ad(G,Σ)(u, v) =

{
dG(u, v) if there is a balanced u− v path of length dG(u, v)

−dG(u, v) otherwise.

While the absolute value of ad(G,Σ)(u, v) is only a function of G, its sign is a function of Σ and it
may switch if we resign at exactly one of u and v. If the graph G is bipartite, then, with respect to any
signature Σ, the signed edge-weighted graph (G, ad(G,Σ)) is also bipartite.

For a connected signed graph (G,Σ) of order n, the complete signed distance graph (Kn, ad(G,Σ)) of
(G,Σ) is the signed edge-weighted complete graph on vertex set V (G), where for each edge uv of Kn, its
weight is the algebraic distance ad(G,Σ)(u, v). Given any spanning subgraph H of Kn, the partial signed
distance graph (H, ad(G,Σ)) of G is the spanning subgraph of (Kn, ad(G,Σ)) whose edges are the edges of
H . Furthermore, if for every edge xy of H we have |ad(G,Σ)(x, y)| ≤ k, we say that (H, adG) is a k-partial
signed distance graph of (G,Σ).
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Observation 2.6. Let (G,Σ) be a signed graph of unbalanced-girth l and let C be an unbalanced cycle
of length l in (G,Σ). Then, for any pair {u, v} of vertices of C, the (algebraic) distance in G between u
and v is determined by their (algebraic) distance in C (with respect to the signs induced by Σ).

Proof. We first observe that the classic distance of u to v is determined by their distance in C. Suppose,
to the contrary, that there exists a u− v path P in G shorter than the shortest u− v path on C. Then,
the closed walk starting at u, walking through P then C and then P again, can be decomposed into at
least two cycles, each of which is smaller than C and at least one of which is unbalanced, contradicting
the fact that the length of C corresponds to the unbalanced-girth of (G,Σ). If P is of the same length as
the distance in C of u and v, but not of the same algebraic sign, then together with the shortest u − v
path in C, they form an unbalanced closed walk of length smaller than that of C. This closed walk must
contain an unbalanced cycle of length smaller than C, unless C is an even cycle and P is of length exactly
half of C, in which case we have defined the algebraic distance to be the positive one.

The following fact follows from Observation 2.6.

Observation 2.7. Suppose that (G,Σ) and (H,Π) are two signed graphs of unbalanced-girth l and that
ϕ is a homomorphism of (G,Σ) to (H,Π). If u and v are two vertices of (G,Σ) on a common unbalanced
cycle of length l of (G,Σ), then dH(ϕ(u), ϕ(v)) = dG(u, v).

In Observation 2.7, the distances are considered as the distance functions in the underlying graphs,
thus they are always positive. However, by carefully resigning (G,Σ) and with the homomorphism
described in Theorem 2.2, we may extend this observation to algebraic distances. In other words, if
(G,Σ) and (H,Π) are two signed graphs of unbalanced-girth l and ϕ is a homomorphism of (G,Σ) to
(H,Π) which, furthermore, preserves the signs under Σ and Π, then for any pair u and v of vertices of G
on an unbalanced l-cycle of (G,Σ), we have ad(G,Σ)(u, v) = ad(H,Π)(ϕ(u), ϕ(v)).

3 Main property: the notion of k-good triples

We now present a key property used in this work. We first fix a positive integer k for this whole section,
and define a class of bipartite signed graphs.

The signed graph T2k(p, q, r) Let p, q and r be three non-zero integers each having absolute value at
most k and such that their sum (p+ q + r) is even. The signed bipartite graph T2k(p, q, r) is any signed
graph built as follows. Let u, v and w be three vertices, join u and v by two disjoint paths: one of length
|p| and the other of length 2k − |p|. Do the same between u and w (paths of lengths |q| and 2k − |q|)
and between v and w (paths of lengths |r| and 2k− |r|). Concerning signs, if p is negative, pick one edge
on the path of length |p| between u and v to be negative; if p is positive, pick one edge on the path of
length 2k − |p| between u and v to be negative. Act accordingly for the two paths connecting u and w
with respect to q and for the two paths connecting v and w with respect to r.

Observe that the underlying graph of T2k(p, q, r) is uniquely determined by p, q, r and k. While there
is some freedom of choice for the signature of T2k(p, q, r), it is easily verified that all such signatures yield
equivalent signed graphs. Thus, in our work, which of these signatures is selected is of no importance. We
should also note that if we resign at u, or at v or at w, we obtain signatures representing signed graphs
T2k(−p,−q, r), T2k(p,−q,−r) and T2k(−p, q,−r), respectively. Thus, all these graphs are equivalent up
to resigning. Observe that since p+q+r is assumed to be even, all cycles of this graph are of even length,
thus the underlying graph is always bipartite.

3.1 The k-good triples

Let (p, q, r) be a triple of non-zero integers whose absolute values are at most k and whose sum is even.
We say (p, q, r) is a k-good triple if T2k(p, q, r) has unbalanced-girth 2k. Thus, the conditions on the triple
(p, q, r) are implicit when we say it is k-good. Note that there are a total of 11 cycles in T2k(p, q, r). Three
cycles using exactly two of u, v, w each (which are unbalanced cycles of length 2k by the construction),
and eight cycles using all three of these vertices (of which exactly four are unbalanced). Thus, checking
if a triple is k-good is an easy task, but we simplify this even further in the following proposition.

Three positive numbers a, b, c satisfy the triangle inequality if a ≤ b+ c, b ≤ a+ c and c ≤ a+ b.
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Proposition 3.1. Given integers p, q, r such that p + q + r is even and 1 ≤ |p|, |q|, |r| ≤ k, the triple
(p, q, r) is k-good if and only if either

• pqr < 0 and |p|+ |q|+ |r| ≥ 2k, or

• pqr > 0 and the triple {|p|, |q|, |r|} satisfies the triangle inequality.

Proof. Since |p|, |q|, |r| ≤ k, if pqr < 0, then the shortest unbalanced cycle of T2k(p, q, r) using all three
of u, v and w is of length |p|+ |q|+ |r| ≥ 2k. If pqr > 0, then, without loss of generality, we may assume
|p| ≤ |q| ≤ |r|. Now, the shortest unbalanced cycle of T2k(p, q, r) using all three of u, v and w is of length
|p|+ |q|+ 2k − |r| ≥ 2k. The claim of the proposition then follows easily.

In particular, we have the following sufficient conditions for a triple to be k-good.

Observation 3.2. Given three nonzero integers p, q, r such that p+ q+ r is even and 1 ≤ |p|, |q|, |r| ≤ k,

(i) if two of |p|, |q|, |r| belong to {k − 1, k}, then (p, q, r) is a k-good triple.

(ii) if one of |p|, |q|, |r| is equal to k and {|p|, |q|, |r|} satisfies the triangle inequality, then (p, q, r) is a
k-good triple.

Proof. For the first claim, if two of |p|, |q|, |r| belong to {k − 1, k}, since the third is nonzero, then the
triangle inequality always holds. Furthermore, if they are both k−1, then as p+ q+ r is an even number,
the third is at least 2 in absolute value. Thus, we always have |p| + |q| + |r| ≥ 2k. Hence, in all cases,
Proposition 3.1 applies.

For the second claim, we may also use the same proposition because the triangle inequality holds and
consequently |p|+ |q|+ |r| ≥ 2k.

3.2 The all k-good property

Now we are ready to define the main property we will use in this work. Let (G,w) be a bipartite weighted
signed graph such that |w(e)| ≤ k for any edge e of G. We say that (G,w) has the all k-good property if
for any edge uv of G with weight p and any integers q and r such that (p, q, r) is a k-good triple, there
exists a vertex z in V (G) such that uz and vz are edges of G with either w(uz) = q and w(vz) = r or
w(uz) = −q and w(vz) = −r.

The first consequence of this definition is that if G has at least one edge and w is a weighting such
that (G,w) is bipartite and has the all k-good property, then for each k-good triple (p, q, r), there is a
triangle in (G,w) whose edge weights are either p, q and r or equivalent to them (that is, (p,−q,−r),
etc.). More formally, we have the following lemma.

Lemma 3.3. Let G be a graph with a nonempty set of edges and w a weight function on its edges such
that |w(e)| ≤ k for any edge e of G and that (G,w) is a bipartite weighted graph. If (G,w) has the all
k-good property, then for each k-good triple (p, q, r), one of the triples (p, q, r), (−p,−q, r), (−p, q,−r),
(p,−q,−r) corresponds to the weights on the edges of a triangle in (G,w).

Proof. Since (G,w) has the all k-good property, it is enough to prove that G has an edge of weight p or
−p for every positive integer p satisfying p ≤ k. As G is not empty, there is an edge e with weight w(e).
Considering the parity of w(e), choose a from {k−1, k} such that a+k+w(e) is even. By Observation 3.2,
(w(e), k, a) is a k-good triple. Since (G,w) has the all k-good property, e is part of a triangle of G with
weights equivalent to (w(e), k, a). This means that there is an edge e′ in (G,w) of weight k or −k. Once
again, Observation 3.2 tells us that for a choice of b ∈ {k, k− 1} (depending only on the parity of p), the
triple (k, b, p) is a k-good triple. Hence, e′ must be in a triangle with weights equivalent to (k, b, p). This
means that there is an edge in (G,w) with weight p or −p, completing the proof.

3.3 Signed projective cubes and the all k-good property

In this subsection, we give an example of a graph that satisfies the all k-good property. We present it as
a theorem since the next section will make it a bound for the class of graphs that we consider. The proof
is slightly technical.
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Theorem 3.4. The complete signed distance graph of SPC(2k − 1), k ≥ 2, satisfies the all k-good
property.

Proof. Recall that the algebraic distance in a signed graph is the distance in the underlying graph
equipped with a sign: a positive sign when at least one shortest path has an even number of negative
edges, and a negative sign when all shortest paths have of an odd number of negative edges.

By Theorem 2.5, any two vertices of SPC(2k − 1) are in a common unbalanced cycle of length 2k.
Thus, the algebraic distances are bounded above by k in absolute value. Now, let x and y be two vertices
in SPC(2k− 1) with algebraic distance p between them. Since SPC(2k− 1) is vertex-transitive, we may
assume that x is the all-0 vector. Being at distance p means that vectors disagree on exactly p coordinates
if p is positive (in which case y is obtained from x by adding p distinct elements of {e1, e2, . . . , e2k−1}),
or agree on exactly |p| − 1 coordinates if p is negative (when y is obtained from x by adding J and p− 1
distinct elements of {e1, e2, . . . , e2k−1}). We distinguish between cases when p is positive or negative.

When p is positive In this case, we may assume without loss of generality that y is the vector with
the first p coordinates equal to 1 and the remaining 2k − 1 − p coordinates equal to 0. Let q and r be
two integers such that (p, q, r) is k-good.

• If both q and r are positive, we let t be the number p+q−r
2 . Since (p, q, r) is k-good, the sum p+q+r

is even, and so must be p+ q− r; thus t is an integer. Moreover, by Proposition 3.1, since pqr > 0,
p, q and r satisfy the triangle inequality. This ensures that t is non-negative. For the same reason,
we have q − r ≤ p and p − r ≤ q; the former implies that t ≤ p and the latter implies that t ≤ q.
Thus, t is smaller than both p and q. Next, we claim that q − t ≥ 2k − 1 − p. By replacing the
value of t, this is equivalent to the claim that p+q+r

2 ≤ 2k− 1, which is the case as each of p, q and
r are at most k and k ≥ 2.

Thus, to complete the proof in this case, we choose a vector z with q coordinates equal to 1, where
t of them are in the support of y. Then, to get z from x, one may add to it q distinct elements
of {e1, e2, . . . , e2k−1}; since q ≤ k, the algebraic distance of y to x is q. On the other hand, to
get z from y, one may add p − t elements of {e1, e2, . . . , e2k−1} which agree on the support of y,
and then add q − t more elements to match the remaining coordinates. Thus, we added a total of
p+ q − 2t = r elements, and therefore the algebraic distance of y to z is r.

• If both q and r are negative, we consider their opposites and find a triangle with distances p,−q
and −r by the previous argument.

• If qr is negative, we may assume, without loss of generality, that q is negative and r is positive. We

let t be the number p+|q|+r−2k
2 . By the same parity argument as earlier, this number is an integer.

Since pqr < 0, Proposition 3.1 ensures that p + |q| + r ≥ 2k, and hence t is non-negative. As |q|
and r are bounded above by k, t cannot exceed p (or p

2 to be more precise). Similarly, t is bounded

above by |q|
2 with equality only when p+ r = 2k, in which case, because of parity, |q| ≥ 2; thus in

all cases t ≤ |q| − 1. Furthermore, we have |q| − 1− t ≤ 2k − p, that is to say p+ |q| − 1− t ≤ 2k
which is indeed the case as we have assumed |p|, |q| ≤ k. Therefore, we can pick z to be a vector
with |q| − 1 coordinates equal to 0, with t of them being in the support of y. To get z from x (with
a shortest path), one may first add J and then |q| − 1 elements of {e1, e2, . . . , e2k−1} corresponding
to the 0-coordinates of z. Thus, z is at algebraic distance q from x. To get z from y via a shortest
path, we may add t elements of {e1, e2, . . . , e2k−1} to agree on the support coordinates of y, and
then 2k− 1− p− (|q| − 1− t) elements of {e1, e2, . . . , e2k−1} to agree on the remaining coordinates,
a total of 2t+ 2k − p− |q| = r elements. Thus, z is at algebraic distance r from y.

When p is negative In this case, we may assume, without loss of generality, that y is the vector with
the first |p| − 1 coordinates equal to 0 and the remaining 2k− |p| coordinates equal to 1. Let q and r be
two integers such that (p, q, r) is k-good.

• If both q and r are positive, we let t be the number |p|+q+r−2k
2 . Once again, this is an integer

by a parity argument. Moreover it is non-negative because pqr < 0, and thus by Proposition 3.1
|p|+ q + r ≥ 2k. If t = 0, then we choose u, v and w to be three vertices of an unbalanced cycle of
length 2k of SPC(2k− 1) such that the u− v path, the v−w path and the w−u path of this cycle
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are of lengths respectively |p|, q and r and such that the negative edge (the one corresponding to
J) is on the u − v path. Thus, we may assume that t ≥ 1. This in turn implies that |p|, q, r ≥ 2,
indeed if one of them is 1, being subject to parity and upper-bounded by k, the other two must be
k and k − 1, implying that t = 0, contradicting t ≥ 1. Next, we claim (under the assumption that
t ≥ 1) that t is bounded above by |p| − 1 and by q − 1. This is because |p|, q, r ≤ k, which in turn

implies that t ≤ |p|
2 and t ≤ q

2 , which are respectively smaller than |p| − 1 and q as |p|, q ≥ 2.

Thus, we can pick z to be the vector with q coordinates set to 1 with t of them being among the
0-coordinates of y. The algebraic distance of z to x is then q, and the algebraic distance from y can
be easily computed as before: it is r.

• If both q and r are negative, we consider their opposites and find a triangle with distances p,−q
and −r by the previous argument.

• If qr is negative, without loss of generality we may assume that q is positive and r is negative.
Furthermore, we may assume that |q| ≤ |r| as otherwise we could replace q and r with −q and −r,

respectively. We let t be the number |p|+q−|r|
2 . Again, by a parity argument, t is an integer. Since

pqr > 0, by Proposition 3.1, {|p|, |q|, |r|} satisfies the triangle inequality, thus t is nonnegative. The
case p = −1 can be verified as before, thus we may assume that |p| ≥ 2. This, together with the

assumption that q ≤ |r|, implies that t ≤ |p|
2 ≤ |p| − 1. We then pick z to be the vector with q

coordinates equal to 1 with t of them being among the 0-coordinates of y. This is possible because
first, y has |p| − 1 coordinates equal to 0 and t ≤ |p| − 1, and second, we have t ≤ q by the same
triangle inequality, and finally, the number of coordinates at which y is equal to 1 is 2k− |p|, which
is clearly at least q − t as |p|, |q|, |r| ≤ k. It can then be checked as before that z is at algebraic
distance q from z and r from y.

This concludes the proof.

4 Main theorem: characterizing bounds

In this section, we give our main theorem, which is a necessary and sufficient condition for a signed
bipartite graph of unbalanced-girth 2k to bound the class of signed bipartite K4-minor-free graphs of
unbalanced-girth at least 2k. We will use the notation SBSPG2k to denote this class of signed graphs.

Theorem 4.1. A signed bipartite graph (B,Π) of unbalanced-girth 2k bounds SBSPG2k if and only if

there exists a nonempty k-partial signed distance graph (B̃, ad(B,Π)) of (B,Π) which has the all k-good
property.

Proof. We first prove the sufficiency. Let (B,Π) be a signed bipartite graph of unbalanced-girth 2k and

let (B̃, ad(B,Π)) be a k-partial signed distance graph of (B,Π) which has the all k-good property. We
want to prove that any signed graph in SBSPG2k admits a homomorphism to (B,Π). Let (G,Σ) be such
a signed graph. We may assume that G is connected, as otherwise we may apply our technique on each
of its connected components.

The graph G is a partial 2-tree, so there exists a 2-tree completion H of G (V (H) = V (G) and
E(G) ⊆ E(H)). Let v1, v2, . . . , vn be a 2-tree ordering of the vertices of H . We let Hi denote the
subgraph of H induced by v1, v2, . . . , vi. This means that vi is of degree 2 in Hi and its neighbors form
an edge in Hi−1. We define a weight function ω on the edges of H as follows.

ω(x, y) =





ad(G,Σ)(x, y) if |ad(G,Σ)(x, y)| ≤ k,

k if dG(x, y) > k and dG(x, y) has same parity as k,

k − 1 otherwise.

In other words, for vertices far apart, we replace their algebraic distance with k or k − 1 depending on
whether they are in the same part of the bipartition of G; the resulting weighted graph remains bipartite
with our extended terminology. Since k is at least 2, the function ω never assigns value zero.

We first prove that for any three pairwise adjacent vertices x, y and z of H , (ω(x, y), ω(x, z), ω(y, z))
is a k-good triple. All three numbers are integers with absolute values between 1 and k, moreover their
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sum is even as the weighted graph (H,w) is bipartite. If the absolute values of (at least) two of the three
weights are in {k, k− 1}, then we are done by Observation 3.2. If exactly one of the absolute values is in
{k, k − 1}, then, by the triangle inequality and the parity argument, both conditions of Proposition 3.1
are met, unless one of the values is k − 1 and the sum of the other two is k − 1. In this case, we claim
that ω(x, y)ω(x, z)ω(y, z) ≥ 0; then, the second part of Proposition 3.1 applies. To see that the latter
claim holds, without loss of generality, suppose that |ω(x, y)| = k − 1 and |ω(x, z)| + |ω(y, z)| = k − 1;
then, by the definition of ω, we know that dG(x, z) = |ω(x, z)|, dG(y, z) = |ω(y, z)|, and by the triangle
inequality of the distance function in G, we have that dG(x, y) = k− 1. Now, if ω(x, y)ω(x, y)ω(y, z) ≥ 0,
the closed walk starting at x and passing through y and z using paths corresponding to ω(x, y), ω(x, y),
and ω(y, z) is an unbalanced walk of length 2k− 2, which must contain an unbalanced cycle of length at
most 2k − 2. This contradicts our assumption on the unbalanced-girth of (G,Σ).

We can now build a homomorphism ϕ from (H,ω) to (B̃, ad(B,Π)). We shall build this homomorphism
iteratively by finding an appropriate image for each vertex in the 2-tree ordering of V (H). The weighted
graph (H3, ω) is a triangle, thus the triple of its edge-weights is a k-good triple. By Lemma 3.3, there is

an equivalent triangle in (B̃, ad(B,Π)). We may resign at v1, v2 or v3, if needed, and map those vertices
to the adequate triangle (we recall that a homomorphism allows resigning in the source graph). We may
repeat this process. For i ≥ 3, vertex vi+1 has two neighbors in the graph Hi+1. Those two neighbors

(say x and y) are already mapped to (B̃, ad(B,Π)). Now, the three values of ω on the triangle defined by

x, y and vi+1 form a k-good triple. Since (B̃, ad(B,Π)) has the all k-good property, there is some vertex
that makes an equivalent triangle with ϕ(x) and ϕ(y). If needed, we may resign around vi+1 in H in
order to match the exact values on this triangle. In the end, we obtain a homomorphism from (H,ω) to

(B̃, ad(B,Π)). The edges of G are exactly those edges of H which are of weight +1 or −1. Since ϕ assigns

these edges to edges of (B̃, ad(B,Π)) with weight +1 or −1, it means that ϕ is also a homomorphism of
(G,Σ) to (B,Π). This concludes the proof of sufficiency.

We now prove the necessary part of the statement. First, we assume that (B,Π) is a minimal signed
bipartite graph of unbalanced-girth 2k bounding the class SBSPG2k. Our aim is to build a k-partial
signed distance graph of (B,Π) with the all k-good property.

Let C be the class of k-partial signed distance graphs (G̃, ad(G,Σ)) satisfying:
(i) (G,Σ) ∈ SBSPG2k;

(ii) G̃ is a partial 2-tree;

(iii) (G̃, ad(G,Σ)) is a k-partial signed distance graph of (G,Σ);

(iv) for every edge uv of G̃, u and v lies on a common unbalanced cycle of length 2k of (G,Σ).

It is clear that C is nonempty, for example if G is an unbalanced cycle of length 2k, then for any G̃
which contains G as a spanning subgraph we have G̃ ∈ C. Let us emphasize that G̃ does not necessarily
contain G as a subgraph, in fact if G contains an edge e which is in no unbalanced cycle of length 2k,
then e cannot be an edge of G̃.

Our aim is to show that if B∗ is minimal such that (B∗, ad(B,Π)) bounds C, then (B∗, ad(B,Π)) has
the all k-good property. We first need to show that such a B∗ exists. To this end, we show that
(K|V (B)|, ad(B,Π)) is a bound for C.

Indeed, since B bounds SBSPG2k, there exists a homomorphism f : (G,Σ) → (B,Π). If necessary,
by change of notation, we may assume that f is indeed a homomorphism with respect to Σ. We claim
that f is also a homomorphism of (G̃, ad(G,Σ)) to (K|V (B)|, ad(B,Π)) which preserves weights. Clearly,

f preserves edges of weight +1 or −1. Now, let uv be an edge of weight p in (G̃, ad(G,Σ)), p ≥ 2. By
Property (iv), u and v lie on a common unbalanced cycle of length 2k of (G,Σ). By Observation 2.6, we
have ad(G,Σ)(u, v) = ad(B,Π)(f(u), f(v)), that is, uv is mapped to an edge of weight p, which shows the
claim for f .

Now, consider a minimal graph B∗ with B ⊆ B∗ such that (B∗, ad(B,Π)) bounds the class C. By
Property (iv), every edge of a weighted graph in C has weight at most k, therefore, this is also the case
for B∗. In other words, (B∗, ad(B,Π)) is a k-partial signed distance graph of (B,Π). We will show that
(B∗, ad(B,Π)) has the all k-good property.

Clearly, we have E(B∗) 6= ∅. Therefore, assume by contradiction that for some edge xy with
ad(B,Π)(x, y) = p and some k-good triple {p, q, r}, there is neither a vertex z in B∗ with xz, yz ∈ E(B∗),
ad(B,Π)(x, z) = q and ad(B,Π)(y, z) = r, nor a vertex z′ with xz, yz ∈ E(B∗), ad(B,Π)(x, z) = −q and
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ad(B,Π)(y, z) = −r. By minimality of B∗, there exists a weighted signed graph (G̃xy, dGxy
) of C such that

for any homomorphism f of (G̃xy , dGxy
) to (B∗, ad(B,Π)), there is an edge ab of G̃xy of weight p, such

that f(a) = x and f(b) = y.

We now build a new weighted signed graph from (G̃xy, dGxy
) as follows. Let T̂ be a 2-tree completion

of the graph T = T2k(p, q, r) where T̂ contains the triangle uvw; edges of this triangle have weights p, q

and r in (T̂ , dT ). Then, for each edge ab of G̃xy with dGxy
(a, b) = p, we add a distinct copy of (T̂ , dT )

to (G̃xy, dGxy
) by identifying the edge ab with the edge uv of (T̂ , dT ) (observe that both have weight

p). It is clear that the resulting weighted signed graph, that we call (Ĝ′
xy, dG′

xy
), belongs to the class C.

Moreover, (G̃xy, dGxy
) is a subgraph of (Ĝ′

xy , dG′

xy
) (indeed the new vertices added in the construction

have not altered the distances between original vertices of Gxy). Thus, there exists a homomorphism φ

of (Ĝ′
xy, dG′

xy
) to (B∗, ad(B,Π)), whose restriction to the subgraph (G̃xy, dGxy

) is also a homomorphism.

Therefore, by the choice of Gxy, at least one pair a, b of vertices of Ĝ′
xy with dG′

xy
(a, b) = p is mapped by

φ to x and y, respectively. But then, the copy of T̂2k+1(p, q, r) added to G for this pair forces the existence
of the desired triangle on the edge xy of B∗, which is a contradiction and completes the argument.

Finally, to complete the proof, suppose that (B,Π) is a signed bipartite graph of unbalanced-girth
2k which bounds SBSPG2k but is not minimal. Then, there exists a minimal subgraph (B′,Π′) (where

Π′ is induced by Π) which bounds SBSPG2k. Let (B̃′, ad(B′,Π′)) be the k-partial signed distance graph

of (B′,Π′) which satisfies the theorem for (B′,Π′). Thus, each edge of B̃′ is in an unbalanced 2k-cycle
of (B′,Π′) and, therefore, of (B,Π). Hence, by Observation 2.6, ad(B′,Π′) is the restriction of ad(B,Π) to

the edges of B̃′ which means that (B̃′, ad(B′,Π′)) is a k-partial signed distance graph of (B,Π) and thus
satisfies the theorem for (B,Π) as well.

5 Algorithms

We now show three algorithmic applications of Theorem 4.1. The first one addresses the main question
of deciding whether a given signed bipartite graph of unbalanced-girth 2k bounds SBSPG2k. We give a
polynomial-time algorithm for this. Then, we discuss the possible YES and NO cases of this question. For
the NO case we show how a certificate can be built. For (B,Π) being a YES case, we give a polynomial-
time algorithm which does the following: for an input (G,Σ) which is a signed bipartite K4-minor-free
graph of unbalanced-girth at least 2k, our algorithm builds a homomorphism of (G,Σ) to (B,Π).

Before going into further details, we would like to point out that given a general signed graph (B,Π),
it can be checked in polynomial time whether it is a signed bipartite graph of unbalanced-girth 2k. To
start with, one must decide if B is bipartite. While many efficient methods can be employed, we consider
the following simple method which has a slightly stronger conclusion. Given some vertex x, we form the
set Ni(x) of vertices at distance i from x (by induction on i). At step i, i ≤ n − 1, we check if the set
Ni(x) induces a stable set. If for some i this is not the case, then there exists a closed walk of length
2i+ 1 starting from x. This walk is not necessarily a cycle, as it could consist of a path connecting x to
an odd-cycle. However, the smallest of all such walks, calculated over all vertices of G, corresponds to
the length of the shortest odd-cycle of B. Furthermore, B is bipartite if no vertex x is in an odd-cycle.

We can extend this algorithm to decide the unbalanced-girth of (B,Π) where B is a bipartite graph.
For a given vertex x of B and for i ≤ n− 1, we build two sets N+

i (x) and N−
i (x): N+

i (x) (respectively,
N−

i (x)) is the set of vertices at distance i from x with a path of length i from x whose product of signs
is positive (respectively, negative). These two sets can be built by induction on i. If for some i we
have N+

i (x) ∩ N−
i (x) 6= ∅, then there exists an unbalanced closed walk of length 2i containing x. The

unbalanced-girth of (B,Π) is then simply the minimum of the lengths of all such unbalanced walks taken
over all vertices, noting that a minimum unbalanced walk must necessarily be an unbalanced cycle.

Thus, having verified that the input graph (B,Π) is a bipartite signed graph of unbalanced-girth 2k,
the following algorithm decides if (B,Π) bounds the class SBSPG2k.

Algorithm 1. Deciding whether a signed bipartite graph of unbalanced-girth 2k bounds SBSPG2k.

Input: An integer k, a signed bipartite graph (B,Π) of unbalanced-girth 2k.
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1: Compute the set Tk of k-good triples.
2: Compute the algebraic distance function ad(B,Π) of (B,Π).

3: Let (B̃, ad(B,Π)) be the k-partial signed distance graph of B obtained from the complete signed
distance graph of B by removing all edges of weight more than k or less than −k.

4: If E(B̃) = ∅ return NO.

5: for e = xy in E(B̃) do
6: p ← ad(B,Π)(xy)
7: for each k-good triple {p, q, r} ∈ Tk containing p do

8: if there is no pair z, z′ of V (B) with either

ad(B,Π)(xz) = ad(B,Π)(yz
′) = q and ad(B,Π)(yz) = ad(B,Π)(xz

′) = r

or
ad(B,Π)(xz) = ad(B,Π)(yz

′) = −q and ad(B,Π)(yz) = ad(B,Π)(xz
′) = −r

then

# (the edge e fails for the all k-good property)

9: B̃ ← (B̃ − uv)
10: Go to Step 4 (restart the loop).
11: end if

12: end for

13: end for

14: return YES # (B̃ is a certificate)

end

In the next theorem, we show that the algorithm is correct and we discuss its complexity.

Theorem 5.1. Algorithm 1 checks in time O(m2n) = O(n5) whether a given signed bipartite graph
(B,Π) of unbalanced-girth 2k on n vertices and m edges bounds SBSPG2k.

Proof. First let us prove that Algorithm 1 is correct, that is, it returns “YES” if and only if (B,Π) is a
bound for SBSPG2k.

• Assume that (B,Π) is a bound. Then, by Theorem 4.1, there is a k-partial signed distance graph

(B̃, ad(B,Π)) of (B,Π) which has the all k-good triple property. Furthermore, as mentioned in the

proof of the theorem, a minimal bound B̃ can be chosen so that each of its edges belongs to an
unbalanced 2k-cycle of B. Therefore, by Observation 2.6, the weight function ad(B,Π) restricted to

the edges of B̃ would remain the same if the distances are calculated in the subgraph of B induced
by the edges of weight +1 or −1 of B̃, or if calculated in an intermediate subgraph. Therefore, no
edge of (B̃, ad(B,Π)) will be deleted in Step 5 of the algorithm and, by finiteness, YES will be the
output.

• Conversely, if (B,Π) is not a bound, then by Theorem 4.1, no subgraph (B̃, ad(B,Π)) has the all
k-good property. That is, as long as there is an edge, some edge will fail the check of Step 5 and
finally NO will be the output.

For the running time of the algorithm, having picked an edge e, one must consider at most n−2 triangles
containing e in order to decide if e is passing the test. In each call of Step 5, one may check at most m
edges thus a total of O(mn) checks before recalling the loop. Finally, the loop may be recalled at most
the total number of edges of the complete graph on V (B), thus total of O(m2n) steps.

5.1 Certificate of a NO answer

Assuming that the algorithm returns NO, one can backtrack it to build a signed bipartite K4-minor-free
graph of unbalanced-girth 2k which does not map to (B,Π). Let e1, e2 . . . , ej be the edges whose weights
were between −k+1 and k in the order that they are deleted in Step 5. Suppose ei is of weight pi and let
pi, qi, ri be (one of) the k-good triples which did not exist on ei. Starting from the end, we first build a
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weighted K4-minor-free graph as follows. The starting graph is the weighted triangle of weights pj , qj , rj .
At step i, having already built the graph Gi+1, we build Gi as follows. For every edge of weight pi of
Gi+1, build two new triangles on it, a (pi, qi, ri)-triangle and a (pi, ri, qi)-triangle. We build the signed
bipartite graph G from G1 as follows: an edge xy of weight l is replaced by two paths of lengths l and
2k− l. If l is negative, we assign a negative sign to an edge of the path of length l, otherwise we assign a
negative sign to the path of length 2k− l. Using Observation 2.7, one can easily verify that mapping G to
B would imply a mapping of the weighted graph G1 to (KV (B), ad(B,Π)), which contradicts the removal
of e1 at the first run of Step 5.

We note that this construction may end up having an order which is exponential in the order of B.
Given a signed bipartite graph of unbalanced-girth 2k for which Algorithm 1 has returned NO, we do not
know if there always exists a signed bipartite K4-minor-free graph of unbalanced-girth 2k which does not
map to B and whose order is polynomial in the order of B.

5.2 (B,Π)-coloring algorithm for YES instances

Assuming that a signed bipartite graph (B,Π) of unbalanced-girth 2k is a YES instance of our algorithm,
the next step is to give a polynomial-time algorithm which, for an input (G,Σ) (a signed bipartite K4-
minor-free graph of unbalanced-girth at least 2k) gives a homomorphism to (B,Π). The next algorithm

does exactly this using the weighted graph (B̃, ad(B,Π)) which is produced by Algorithm 1.

Algorithm 2. Finding a homomorphism of (G,Σ) to (H,Π).

Input: (B̃, ad(B,Π)), the YES certificate of (B,Π) and a signed bipartite K4-minor-free graph (G,Σ).

1: Complete G to a 2-tree extension G′. Compute a 2-tree ordering v1, v2, . . . , vn of G′.
2: Compute the signed distance function ad(G,Σ) for all edges of G

′. For edges of weight more than k
or less than −k + 1, replace the weight with k.

3: Find a triangle in (B̃, ad(B,Π)) whose edges are of the same weights as the edges of the triangle
induced by v1, v2 and v3 (possibly after a resigning in one of v1, v2, v3). Apply the resigning; if it
was needed in finding the triangle, to (G′, ad(G,Σ)). Then, map v1, v2, v3 by φ to the vertices of
the found triangle to preserve the algebraic distances.

4: for i = 4, . . . n do

5: Let xi and yi be the two neighbors of vi in v1, v2, . . . vi.
6: In (B̃, ad(B,Π)), find a vertex z whose algebraic distances from φ(xi) and φ(yi) is either the

same as the distances of vi from xi and yi (respectively) or it is their opposites.
7: Let φ(vi) = z.
8: In the latter case, resign (G′, ad(G,Σ)) at vertex vi.
9: end for

end

6 Applications

We now apply the results of the previous sections.

6.1 Application to projective cubes

An immediate corollary of Theorem 3.4 and Theorem 4.1 is the following.

Theorem 6.1. Every signed bipartite K4-minor-free graph of unbalanced-girth at least 2k admits a ho-
momorphism to SPC(2k − 1).

6.2 Application to edge-coloring

Let G be a K4-minor-free 2k-regular multigraph such that for any set X of an odd number of vertices,
at least 2k edges are incident with exactly one vertex of X . It is easily observed that this is a necessary
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condition for G to have edge-chromatic number equal to 2k. Graphs satisfying this condition are called
2k-graphs.

In [11], Seymour gave a formula for calculating the edge-chromatic number of all K4-minor-free
multigraphs, which implies that for the case of 2k-regular multigraphs with no K4-minor, this necessary
condition (to be 2k-edge-colorable) is also sufficient. As an application of our work, we give a simple
proof of this special case.

Theorem 6.2. Every K4-minor-free 2k-graph is 2k-edge-colorable.

Proof. Let G be a K4-minor-free 2k-graph. Thus, G is a planar multigraph and we will consider it as a
plane multigraph, that is, with a fixed planar drawing, and thus we can speak of the dual of G. One can
easily check that Tutte’s theorem can be applied, and thus G has a perfect matching. Let M be such a
matching. Let GD be the dual of G and assign a negative sign to all edges corresponding to M , and a
positive sign to all other edges. Thus (GD,M ′) is a signed graph which is of unbalanced-girth 2k (this
correspond to the fact that G is a 2k-graph). Furthermore, as M ′ corresponds to the matching M , every
facial cycle of (GD,M ′) is an unbalanced cycle of length 2k.

Thus, by Theorem 6.1, there exists a homomorphism ψ of (GD,M ′) to SPC(2k−1). In this mapping,
all facial cycles are mapped to unbalanced cycles of length 2k. Edges of any such cycle are in a one-to-
one correspondence with {e1, e2, . . . , e2k−1, J}. Re-assigning them to the edges of G then yields a proper
edge-coloring of G′.

7 Concluding remarks

We conclude this paper with some discussions.

7.1 Relation to related work

The question of mapping a signed graph (G,Σ) to signed projective cubes is of high importance as it
captures a packing problem (we refer to [8] for a proof of the following theorem).

Theorem 7.1 ([5]). Given a signed graph (G,Σ), we have (G,Σ)→ SPC(d) if and only if E(G) can be
partitioned into d+ 1 sets Σ1,Σ2, . . . ,Σd+1 where each Σi is equivalent to Σ.

Thus, in this work, we have shown that such a partition of the edges is possible for every signed
bipartite K4-minor-free graph of unbalanced-girth d+ 1. This is a partial support towards the following
general conjecture by Guenin [5]. (Note that in [5], Guenin actually makes a stronger conjecture which
would imply Conjecture 7.2.)

Conjecture 7.2 ([5]). Every planar signed bipartite graph of unbalanced girth 2k admits a homomorphism
to SPC(2k − 1).

The case k = 2 of Conjecture 7.2 is shown to be stronger than the four-color theorem in [9].
Regarding edge-coloring, Seymour, strongly extending Tait’s reformulation of the four-color theorem,

conjectured that the edge-chromatic number of any planar multigraph is determined by its maximum
degree and its fractional edge-chromatic number (which was later proved to be computable in polynomial
time).

Conjecture 7.3. Let G be a planar multigraph. Then χ′(G) = max{∆(G), χ′
f (G)}.

The restriction of this conjecture to the class of regular multigraphs is connected to homomorphisms to
projective cubes, as we saw in Theorem 6.2 (see also [8]). Seymour proved Conjecture 7.3 when restricted
to the class of K4-free multigraphs in [11]. Theorem 6.2 provides a simple proof for special cases of this
result.

7.2 Remarks on the algorithms

We would now like to give two reasons why the algorithms given in this work are of importance.
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Given a signed graph (H,Π), the planar (H,Π)-coloring problem takes as an input a signed planar
graph (G,Σ) and outputs YES if there is a homomorphism of (G,Σ) to (H,Π). The algorithmic com-
plexity of this question is of interest. Restricted to the class of graphs, and by the virtue of the four-color
theorem, if H contains a K4, then the answer is always YES. On the other hand, using a cross-over
gadget, it is shown in [4, Theorem 2.2] that for H being K3, this is an NP-complete problem. The results
of [7] imply that for H being the projective cube of dimension 4, there is a duality: a planar graph G
maps to PC(4) if and only if K3 does not map to G. This results in a polynomial-time algorithm for this
case. Conjecture 7.2 proposes a duality theorem for SPC(2k− 1), thus implying a polynomial-time algo-
rithm. Duality thus far is the only way of producing polynomial-time examples of this general question.
However, considering the difficulty level of Conjecture 7.2, even determining all signed graphs (H,Π)
for which a duality theorem with one signed graph (or a finite number of them) exists, seems out of
reach. Our algorithms then do this work for the simplest non-trivial cases: given a signed bipartite graph
(H,Π) of unbalanced-girth 2k, it decides in polynomial-time if UC2k−2 can provide a duality theorem for
determining if a signed bipartite K4-minor-free graph (G,Σ) maps to (H,Π). If (H,Π) passes the test,
then a signed bipartite K4-minor-free graph (G,Σ) maps to (H,Π) if and only if UC2k−2 does not map
to (G,Σ).

The second reason to describe the algorithm is to implement it. An implementation using Sage is
available at https://www.irif.fr/~reza. This is of importance for progress on looking for optimal
solutions mentioned in the previous section. As mentioned, some optimal solutions are already known.
A natural approach then is to guess a few more cases which may then allow to observe a general pattern.
Once a good guess is proposed, the program simply checks if the suggestion works, and then if a general
pattern is observed one may employ our main theorem to devise a theoretical proof. The bounds of order
O(k2) given in [1] for the analogous problem were indeed built in this way.

7.3 Future work and conclusion

As a corollary of our work, we have shown that every signed bipartite K4-minor-free graph of unbalanced-
girth at least 2k admits a homomorphism to the signed projective cube SPC(2k). Observing that this
graph has 22k−1 vertices, we believe that it is far from being an optimal such bound. We believe that
a subgraph of order O(k2) would work, and we have shown in [1] that this is the case for an analogous
problem concerning graphs (with no signature) and odd-girth. It is shown in [9] that every signed bipartite
K4-minor-free graph (of unbalanced-girth at least 4) admits a homomorphism to (K3,3,M) where M is
a perfect matching of K3,3; in fact the result holds even if one of the negative edges is deleted. It can be
easily checked that this is a subgraph of SPC(3).

Smaller bounds in general would imply stronger applications to edge-coloring. We refer to [1] for such
analogous results in the case of (non-signed) graphs.

We would also like to point out that any signed bipartite graph of unbalanced-girth 2k which bounds
SBSPG2k must be of order at least quadratic in k. In an ongoing work, He, Naserasr and Sun have
built signed bipartite K4-minor-free graphs of unbalanced-girth 2k for which any homomorphic image of
unbalanced-girth 2k would need Ω(k2) vertices.

Conjecture 7.2 is believed to be true even for some larger classes of graphs such as the class of K5-
minor-free graphs. A notable subclass of K5-minor-free graphs is the class of partial 3-trees. While
we plan to address this in forthcoming works, we point out that a signed bipartite partial 3-tree of
unbalanced-girth 2k is built in [10] for which any homomorphic image that is of unbalanced-girth 2k has
at least 22k−1 vertices. The construction in that work is presented as a planar graph, but it can be easily
verified that it is also a partial 3-tree.

In [5], Guenin in fact proposed a stronger conjecture than Conjecture 7.2. He suggested that the
condition of planarity not only can be replaced by being K5-minor-free, but also by odd-K5-minor-free.
Restricted this to the bipartite case, that would be to say:

Conjecture 7.4 ([5]). Let (G,Σ) be a signed bipartite graph of unbalanced-girth at least 2k which does
not have a (K5, E(K5))-minor. Then, (G,Σ)→ SPC(2k − 1).

This motivates further studies of the simpler class of (K4, E(K4))-minor-free signed graphs (or odd-
K4-minor-free graphs). In particular, we would like to ask if in our main theorem (Theorem 4.1), the
condition of “no K4-minor” for the underlying graph can be replaced by “no (K4, E(K4))-minor” for the
signed graph itself.
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