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Detection of geomagnetic jerks using wavelet analysis

Mioara Alexandrescu,! Dominique Gibert,? Gauthier Hulot,!
ean-Louis Le Mouél,! and Ginette Saracco®
3

Abstract. Wavelet analysis is applied to detect and characterize singular events,
or singularities, or jerks, in the time series made of the last century monthly mean
values of the east component of the geomagnetic field from European observatories.
After choosing a well-adapted wavelet function, the analysis is first performed on
synthetic series including an “internal”, or “main”, signal made of smooth variation
intervals separated by singular events with different “regularities”, a wlhite noise and
an “external” signal made of the sum of a few harmonics of a long-period variation
(11 years). The signatures of the main, noise, and harmonic signals are studied and
compared, and the conditions in which the singular events can be clearly isolated in
the composite signal are elucidated. Then we apply the method systematically to
the real geomagnetic series (inonthly means of Y from European observatories) and
show that five and only five remarkable events are found in 1901, 1913, 1925, 1969
and 1978. The characteristics of these singularities (in particular, homogeneity of
some derived functions of the wavelet transform over a large range of timescales)
demonstrate that these events lave a single source (of course, internal). Also the
events are more singular than was previously supposed (their “regularity” is closer

1

to 1.5 than to 2., indicating that noninteger powers of time should be used in

representing the time series hetween the jerks).

Introduction

The study of the time-varying geomagnetic field oh-
served at the Eartlh’s surface is one of the best means
of gaining information about the core dynamics. On
timescales between a month and several centuries [Lan-
gel, 1987, Blozham et al., 1989], the main coutribu-
tion to this field is the one, known as the “main field”,
generated by the geodynamo process which takes place
within the core. The time variations of this field, the
secular variation, mainly ocenr ou decade anud longer
timescales, and its temporal spectriun was originally
thought to be restricted to periods longer than 1 year
(Currie [1966, 1968] suggested a cutoff at 3.7 years),
the shorter periods being attributed to exterual sources.
However, it had also been known for some time (as early
as Fisk [1931]) that clear solar cycle (11 years) effects
the earlier spectral separation was at least partly in-
correct. These solar cycle effects were investigated and
confirmed by many authors, among them Courtillot and
Le Mouél [1976a,b], who modeled the secular variation
with a smooth parabolic trend and interpreted the resid-
uals as solar-related effects. This model was consistent.
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with the 1947-1967 data, but difficulties arose with the
data of the late 1960s, leading Courtillot et al. [1978] to
use two successive parabolic trends instead of a single
one. The change of trend occurred in 1970 and implied
that contrary to prior belief, the main field could ex-
perience changes on timescales of 1 year or less. This
discovery has since been confirmed by many authors
(see the review by Courtillot and Le Mouél [1988] for a
historical perspective), and the sudden change of trend
is now known as the “1970 jerk” [Malin et al., 1983].
Subsequent studies have focused on the worldwide ex-
tent of the event [e.g., Chau et al., 1981; Le Mouél et
al.,, 1982; McLeod, 1992] and its origin [e.g., Alldredye,
1984; Nevanlinna, 1985; Backus et al., 1987; Stewart
and Whaler, 1992]. Spherical harmonic analysis [e.g.,
Malin and Hodder, 1982; Gubbins, 1984; McLeod, 1985,
1992] are in favor of an internal origin for the jerk, al-
though these analyses do not allow separation of the
main field from those induced in the conducting mantle
by external sources.

In its present acceptance, the jerk is idealized as a
sudden change in the slope of the secular variation de-
fined as the first time derivative of the field. Alldredge
[1984] underlined the possibility that some external sig-
nal might contribute to sharpen the change. Indeed,
such a possibility cannot be excluded at once by refer-
ring to the previous spherical harmonic analysis since
only a small contribution is required. Strong evidence
has been presented against this view by Gavoret et al.
[1986] and Gubbins and Tomlinson [1986], who corre-
lated as much as possible of the observed field with in-
dexes monitoring the external activity. The removal
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of the corresponding contribution produced a smoother
residual signal nevertheless displaying a very sharp jerk,
implying an event duration shorter than a year.

Alldredge [1984] also discussed the identification of
the jerk and argued that discontinuities in the second
time derivative of the field are not determined by the
analysis but constitute an a priori assumption. This
prompted Backus and Hough [1985] and Backus et al.
[1987] to carry out some tests using mnch smoother
functions to model the main field; they concluded that
the jerk model leads to no better but no worse descrip-
tion of the data. In their review, Courtillot and Le
Mouél [1988] give evidence for a slight advantage in fa-
vor of the jerk model which is now generally accepted as
the working model for sudden events in the main field
[Stewart, 1991]. Several other such events have been
reported in the literature in 1913 [Ducruiz et al., 1980],
in 1978 [Gavoret et al., 1986; Gubbins and Tomlinson,
1986] and at possibly other epochs [e.g., Golovkov et al.,
1989; Stewart, 1991; McLeod, 1992], but none have been
scrutinized with as much intensity as the 1970 event.

The present paper intends to cast a completely differ-
ent light on the subject. Admitting that sudden events
of some unknown nature and at undefined dates may
have occurred in the Earth’s geomagnetic field, we wish
to detect and characterize these events independently of
any a priori information. Wavelet analysis is suited to
this purpose since it can detect localized events without
requiring a priori assumption. One further advantage of
this analysis is its special sensitivity to localized events
which we will refer to as singularities and define as dis-
continuities of some a derivative of the signal («, the
regularity of the singnlarity, being not necessarily an
integer). If such a singularity is included in the signal,
wavelet analysis can detect it, give the time at which it
occurred, and provide a measurement of the regularity
a. Jerks, from now defined as any singularity oceurring
within the main field, can be studied in a more general
way.

The next section of this paper describes how the
wavelet transform can be used to detect and charac-
terize singularities in time series when both noise and
harmonic components are also present in the data. De-
tailed synthetic examples and numerous fignres should
help the reader to evaluate the limits of the method.
The following section presents the Y monthly mean val-
ues analysis of the geomagnetic field series from 12 Eu-
ropean observatories.

Theoretical Background

Detection of Singularities With Wavelets

In order to make this paper self-consistent, we only
introduce the wavelet transform and recall its main
properties with respect to the study of abrupt changes
in signals [Grossmann, 1986; Grossmann et al., 1987].
More recent applications are given by Mallat and Hwang
[1992], and references therein. The reader interested in
the wavelet, transform from a more general point of view
is referred to Meyer [1990] and Daubechies [1992]. The
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wavelet transform appeared as a section of mathemat;.
cal analysis about 10 years ago (see Meyer [1990] for 5
historical perspective) after the pioneering work of the
geophysicist Jean Morlet [Goupillaud et al., 1984] anq
consists in expanding signals upon well-localized osci]-
lating functions called “wavelets”. The major charac.
teristic of the wavelets 1s that all members of a given
wavelet family are generated by translating and dilat-

ing a given initial wavelet, 1 (t), called the “analyz-
ing wavelet”. The localization and characterization of

singularities are best done with the continuous wavelet
transform which is translation invariant and allows ap
optimal focusing on the sharp variations present in the
signal.

We are interested in detecting singularities resulting
from a discontinuity of the ath derivative of the signal,
a being eventually a noninteger positive number. How-
ever, in practice, we will have to deal with “imperfect”
data, and a number of difficulties will arise because ac-
tual data are both noisy and made not only of singular-
ities. This will generate complications in the analysis
procedure which we need to understand. It is not our
aim to study this problem in the most general case, and
we will make the assumption, realistic in geomagnetic
studies, that the data series are the sum of a “main
signal” including singularities whose regularities are to
be found, of a “long-period harmonic signal”, and of
noise. The analyzed signal is then supposed to have the
following canonical structure

FOI=BE-t)y+c)+n(), (1)

where c (t) is the long-period harmonic component, n (t)
is a stochastic process representing the noise present in
the signal, and the distribution [Gel’fand and Shilov,
1962]

0 t<tq

(t—t)" t>t0 ’ @

(t—to)§ = {

represents the abrupt change of interest with a regular-
ity o and localized at the time ;. For instance, the
singularity associated with the Heaviside function H (1)
has a regularity a = 0, while those associated with the
Dirac distribution, & (t) = (d/dt) H (t), and the ramp
function, r(t) = [ H (t) dt have a regularity o = -1
and a = 1, respectively. A jerk (in its classical accep-
tance), j (t) = [ r(t) dt, is such that a = 2.

The formalism of the continuous wavelet transform
was first introduced by Grossmann and Morlet [1984]
and proved very powerful in characterizing the fine
structure of multiscaled signals such as turbulence data
[Muzy et al., 1991]. For the present study we shall define
the wavelet transform under the form of the convolution
product

Wf (t, “) =f*x1h, (t) ) (3)

where 1, (t) = a9 (t/a) and « > 0 is the dilation pa-
rameter. Provided the analyzing wavelet 9 (t) is well-
localized around ¢ = 0 and has a vanishing integral,
the transformation is invertible for a large class of sig-
nals f (t). Owing to its intrinsic zooming property, the
wavelet transform can be used as a mathematical mi-
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croscope both to detect singularities and to analyze the
Jocal regularity of signals. Grossmann [1986] gives an
approach to detect singularities with a complex ana-
lytical wavelet and indicates that in the vincinity of
an isolated sharp variation located at ¢y, the lines in
the timescale halfplane (t,a) where the phase remains
constant converge to the time ty when a | 0. Sharp
variations can also be detected by using the modulus
|WF(t,a)| of the wavelet transform along these lines
of constant phase. An alternative approach using real
wavelets is followed by Mallat and Hwang [1992], who
characterize singularities by studying the variations of
the absolute value of the wavelet coefficients along lines
of maxima. The method explained in the present pa-
per is more reminiscent of this latter approach. The
linearity of the wavelet transform gives

Wf(t,a) = BW[(t—1tu)i] (2 a)
+We(t,a)+ Wn(t,a), (4)

and we will first explore the ways by which the infor-
mation characterizing the singularity can be recovered
from the wavelet, transform W (¢t — tn)‘_l"_. The other two
terms in (4) will be discussed later.

Let us consider that the analyzing wavelet can be ex-
pressed as the nth derivative of an everywhere positive,
localized, and C*>" function ¢ (¢). The wavelet trans-
form of the singularity is

BW [(t — to)}] (¢, )

1 dJd" t
— s e —1t 13
ﬁa(l(t/a)"¢ (a) * (t=to)y
dn—u—l t d(x+1
= o« - 0000000 - - (t—1 34
ﬂ“ d (t/a)n—u—l(ﬁ (u) * dpet+l ( “)+

= T (a+1)Ba*pr—e-1 ((’—‘) * 8 (t —to)

t—-1
= I‘(a + 1) ﬁaa(ﬁ(n_“—l) (_z") , (5)
[¢
where we used the property [Gel’fand and Shilov, 1962]
du+1 " .
W(t—t())+=I‘(O(+1)5(t—-t()), (())

and assumed n > o + 1. Let us now suppose that
|¢("“”'1) (t)| possesses N; maxima

'{d’nmx,j 7=1,-- ':Nl}

located at the times
{tmax,j;j= 1:"':Nl}' (8)

The wavelet transform modulus |W [(2 — tn)_‘:_] (t,a)|
possesses N} maxima located at the times

{6tmax,j +to;i=1,---,Ni} (9)

which converge to ¢, when a | 0. The maxima of the
wavelet transform modulus arrange themselves onto N,
lines

(7)

{tzatmax,j +t();j=11"')N1}1 (10)
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which converge toward the time ¢y at which the singu-
larity occurs. We can then define the “ridge function”,
r;, as the absolute value of the wavelet transform along
a given line of maxima:

rj(a) = |ﬂW [(t - to)i] (@tmax,; + to, a)l

= T'(a+1)|8|a“max,;- (11)

Clearly,
Inr;j (a) = alne+InT (a + 1)+1n |#|+1n $max,;- (12)

This formula shows that when plotted in a log-log dia-
gram, the ridge function is a straight line whose slope
equals the regularity «.. This result is derived by Mal-
lat and Hwang [1992] in a slightly different way. This
very distinctive feature arises because singularities are
self-similar events on all timescales.

In the following numerical computations the input
signal is evenly sampled with a 1-month interval, which
we shall hereafter adopt as the unit of time, and local
maxima are detected by direct comparison with the pre-
vious and next sampling points. Strictly speaking, it is
not permitted to discuss pure singularities for sampled
signals, and we must instead say that at the sampling
resolution, the signal behaves as if it had a discontinuity
at 1o, although it is possible that it is continuous but has
a sharp transition which is not visible at this finite res-
olution. We can only compute the wavelet transform at
scales @ > apin, where api, must be such that the nar-
rowest wavelet is properly sampled. On the other hand,
the finite length of the signals limits the maximum scale
max available. In practice, this upper boundary is con-
trolled both by the limit beyond which convolutional
edge effects become intolerable and by the proximity of
the different singularities present in the signals. The
sampling along the dilation axis is not governed by any
law for this kind of applications of the wavelet trans-
form. It must be both fine enough to allow for an easy
tracking of the lines of maxima and coarse enough to
reduce the computational burden. In the present study,
we exponentially sampled the dilation axis with a mul-
tiplicity of 20 samples per octave.

If we want to estimate regularities smaller than an
integer m, we need a wavelet with at least m vanishing
moments (see equation (5)). A wavelet with m vanish-
ing moments has at least m + 1 extrema. In order to
both reduce the amount of computation and improve
the readability of the results, we would like to minimize
the number of maximarequired to detect the interesting
abrupt changes in the signal. We must choose a wavelet
with as few as possible vanishing moments compatible
with the maximum regularity we look for. The results
presented in this study were obtained with the analyz-

ing wavelet
&3 12
a3 P\ 72

shown on Figure 1. Since it possesses three vanish-
ing moments, included the zero-order one, it allows the

P (1) = (13)
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wavelet

N

-4 -2 Q 2 4
time (months)

Figure 1. Graph of the analyzing wavelet used in the

present study. This function is the third derivative of a

Gaussian (see equation (13)) and possesses three van-
ishing moments.

study of singularities with o < 3. Its Fourier transform
(Figure 2),

b (u) = —i (2m) " uP exp (—27%u?), (14)
possesses extrema at u, = +/3 /2w and has no signif-
icant energy beyond a cutoff frequency u. = 0.7 so the
wavelets can be sampled at a unit time interval with-
out aliasing error for a > amin > 1.4. The choice for
the analyzing wavelet (13) leads to simple algebraic ex-
pressions, but many other analyzing wavelets conld be
used. The results obtained are insensitive to the partic-
ular choice as long as the wavelet possesses a sufficient
number of vanishing moments [e.g., Baery et al., 1991].

Let us now look at the way this machinery works by
examining the case study of a canonical signal made up
of several singularities (Figure 3). The modnlus of the
wavelet transform of this test signal is shown on Figure
4a. Since the wavelet coefficients vary in a wide range,
a gray scale adapted to the whole |W f (¢, a)| map can-
not enable an easy view of the lines of maxima over the
entire [@min, @max] range. Following Argoul et al. [1989],
we chose to adapt the gray scale independently for each
horizontal line of the |Wf (¢,¢)| map. This allows a

imaginary part
(=)

Lol 4

-1 -0.5 0 0.5
frequency (1/month)

Figure 2. Graph of the Fourier transform of the ana-
lyzing wavelet (see equation (14)) shown in Figure 1.
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main signal
=
(9]

1F
0.5

0 —

0 200 400 600 800 1000 1200 1400

time (months)

Figure 3. Synthetic signal with various sip-
gularities.  This signal was created according to
s(t) = 026(t—t1) +0.1H(t—1t2) +0.01r(t~t,)

—0.001 (t—t4)i/2 +0.0001 7 (¢ — t5) and possesses sin-
gularities with o« = -1, 0, 1, 3/2, and 2 a
{t1,t2,13,24,85} = {255,511,767,1023,1279}, respec-
tively.

better tracking of all lines of maxima over the whole
dilation range. All wavelet transforms are displayed ac-
cording to this setting. As predicted by the theory, the
lines of maxima converge toward the locations of the
abrupt change when the dilation parameter decreases
(Figure 5). The number N; of lines of maxima attached
to a given singularity decreases when its regnlarity in-
creases. For a Dirac singularity,

Wo(t,a) = 68(t)*va(t)

= aly (f;) , (15)

and N; = 4, the number of extrema of the analyzing
wavelet (Figure 1). For a jerk,

7() *va(t)

= a”1j(t)« @ PX)( i)
- 7 (l(t/a)3 > 2a*

2 &8

t2
) e _
(lt3'7 () * exp ( 2(1.2)

. 1*
= a2t —
a’d (t) * exp ( 2{12)
. ¢
— 2 _
= a exp( 202) ,

and N; = 1. Generalizing these calculus to the case
of noninteger « would involve the use of more so-
phisticated noninteger derivatives of functions. We
made a practical investigation of this case and found
that the number of lines of maxima corresponding to
a noninteger regularity ecuals the number of such lines
associated with the nearest smaller integer regularity
Ni(e> —1) = N; (max{n € Z;n < a}). An example
is given by the sharp variatiou located at ¢ = 1023 on
Figure 5. It is such that ¢ = 1.5 and is associated

Wj(t,a) =

= «

(16)
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Log,(dilation)

Log,(dilation)

Time (months)
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Time (months)

Figure 4. Absolute value of the wavelet transforms of the synthetic signals used to check our
methodology. The dilations range from amn = 2 to amax = 64. Largest values are in light
gray and smallest in heavy gray. (a) Wavelet transform of the “main” synthetic signal shown on
Figure 3 and made up of pure singularities. Notice the symmetry of the lines of maxima excepted
for those attached to the singularity with the non-integer regularity o = 3/2 at ¢4 = 1023. (b)
Wayvelet transform of the “main” synthetic signal shown on Figure 3 polluted with a Gaussian
white noise with a standard deviation 62 = 1072. Notice the appearance of numerous lines of
maxima produced by the noise. (c) Wavelet transform of the composite harmonic signal shown
on Figure 9. (d) Wavelet transform of the synthetic signal shown on Figure 12 and equal to the

sum of the “main” signal with the composite harmonic signal.

:h
(=)
]

Log,(dilation)

lllllllllIllllllll[llllllllll

500.0 1000.0 1500.0
time (months)

Figure 5. Lines of maxima extracted from the wavelet
transform (Figure 4a) of the synthetic signal shown on
Figure 3. Notice that the number of lines attached to
a given singularity decreases when the regularity in-
creases. Lines attached to the singularity with a non-

integer regularity are nonsymmetrical (see text for de-
tails}.

with two lines of maxima as in the case of the singu-
larity located at ¢ = 767 for which « = 1. The number
of lines of maxima is then an indicator for the possi-
ble range of the regularity. Various ridge functions are
shown on Figure 6, and one can check that the slopes
are in agreement with the theoretical regnlarities of the
singularities present in the synthetic signal.

Adding Noise

In this section, we address the influence of noise. The
wavelet transform Wn (¢, a) of the noise is a stochas-
tic process, and assuming that the input noise is white
Gaussian with zero mean and variance ¢2, the linear-
ity of the wavelet transform ensures that this process is
also Gaussian with a variance

ala) = o [

-_—

+ o .
V2 (2) dt

In, (17)

This expression shows that the variance of Wn (t,a),
which is also the variance of Wf (1, «), decreases like
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Figure 6. Log-log plots of the ridge functions associ-
ated witl: the labeled lines of maxima shown on Figure
5. These curves accurately fit straight lines whose slopes
are the theoretical regularities of the abrupt changes
present in the synthetic signal shown in Figure 3.

a~! when the dilation a increases. Therefore, as a in-
creases, the typical amplitude of the noise decreases like
a—1/? and in the vincinity of a singularity with « >
—1/2, the signal-to-noise ratio increases like ac+1/2,
Eventually,

WF(t,a>a)~WI[(t— tu):] (t,a>a), (18)
where a, is a corner dilation corresponding to a signal-
to-noise ratio of the order of 1. The precise value of this

corner dilation depends of course on the variance o2, the
regularity and strength of the singularity. Conversely,
for small dilations, the variance will be large and

Wfta<ga)=Wn(ta<a).

We then expect a twofold behavior for the lines of max-
ima and ridge functions corresponding to a singularity
with & > —1/2: they will be essentially controlled by
the noise for small dilations and by the deterministic
signal for large ones. In the case of a singularity with
regularity o < —1/2 (such as a Dirac singularity) the
conclusion is just the opposite: noise will be responsi-
ble for the behavior of the lines of maxima and ridge

(19)
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functions when the dilation is large, and the determiy.
istic signal will show up only for small dilations. Qf
course, in both cases, the fransition between the de.
terministic and noise-related behaviors will be all the
clearer that « is more different from the critical valye
a = —1/2. Figure 4b shows the wavelet transform of
the synthetic signal after addition of a Gaussian white
noise with a2 = 10~* (of the order of the noise found in
real data). Figures 7 and 8 show the associated lines of
maxima and ridge functions. As can be seen, although a
very large nuraber of new lines of maxima arise, almost
all of these lines fail to reach dilation value 2%, In addj
tion, all corresponding new ridge functions have smaller
absolute values than those associated with the singular-
ities (see, for instance, ridge function 6 on Figure 8). In
fact, the main effect of noise appears to be the distor-
tion of the still detectable singularity-related lines of
maxima and ridge functions. The weakest of these can
be seriously perturbed, as is the case with some of the
lines associated with the singularities at times ¢, = 255
and t4 = 1023 (Figure 7) and as will also usually be the
case with the weak additional line of maxima we expect
to find when the regularity parameter a is not far be-
low an integer value (the closer a is below such a value,
the weaker is the additional line). There will neverthe-
less always remain at least one main line of maxima
and the corresponding ridge function which will follow
a pattern that can easily be related fo the theoretical
considerations seen before. For instance, this pattern
is very clear for ridge functions 3, 4 and 5 correspond-
ing to @ = 1,1.5,2. A corner dilation «. can indeed be
found, the noisy part of the functions having the ex-
pected shaky negative slope of about —1/2, while the
part controlled by the deterministic component is only
very slightly perturbed. Ridge functions 1 and 2 illus-
trate two situations when the scale of dilations used for
the computation of the wavelet transform is not wide
enough to clearly detect the corner dilations. In the
case of ridge function 2, the stable slope which is dif-
ferent from —1/2 indicates that we are dealing with the
deterministic part of the function and that the comer
dilation is larger than 2%. The shaky but close fo -1

6.0 3 4

<]
(=)
|

>
=)
l

Log,(dilation)
W
o
|

1.0 | I T LI

1500.0

500.0 1000.0
time (months)

Figure 7. Lines of maxima extracted from the wa..velet
transform (Figure 4b) of the noisy synthetic signal.
Only the longest lines are drawn.
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Figure 8. Log-log plots of the ridge functions associ-
ated with the labeled lines of maxima shown on Figure
7 extracted from the wavelet transform (Figure 4b) of
the noisy signal. The slopes found for lines 1, 2, 3, 4,
and 5 are @ = —1.18 and —0.02 for a > 2 and o = 1.12,
1.47, and 2.0 for a > 23, respectively. Ridge function 6
is entirely due to noise.

slope of the ridge function 1 corresponds to the situ-
ation when we observe the transition between the two
deterministic and noise-related behaviors. In such a sit-
uation it will not be possible to derive a precise value for
the regularity of the singularity. From the previous con-
siderations we conclude that in practice one should not
rely on the number of lines of maxima to estimate the
regularity of a singularity. Rather, and as was already
suggested in the previous section, one should only con-
sider the most significant lines of maxima, focus on the
behavior of the corresponding ridge functions, look for
clear linear portions, and find out the values of the cor-
responding slopes. This then allows a proper estimate
of the regularity of the singularity, assuming the signal
is made of pure singularities and noise. This, however,
18 not, exactly the case since long-period harmonic com-
ponents contribute to the signal in geomagnetic series.
We therefore now need investigate the effect of acding
such components to the main signal.
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Adding Long-Period Harmonic Components

Let us now consider the case when ¢ (t) (recall equa-
tion (1)) is made of long-period harmonic components.
The transform of a pure sinusoidal component reads

W [sin %] (t, a)

_ 7/2 SL_ 3 _21!'2(12 2_7!1
= (27) (T) exp ( Tz ) s (20)
and its modulus is maximum for
ar = TV3/2x (21)

along any line t = const in the (¢, a) plane. Equation
(21) allows for a correspondence between dilations, ar,
and harmonic frequencies, 1/T". As a first step, we an-
alyze a composite signal (Figure 9) made of harmonic
components with periods T'= 11, 5.5, 3.7, and 1 years
corresponding to log, ar = 5.2, 4.2, 3.6, and 1.73, re-
spectively, this choice being motivated by the geomag-
netic data we will analyze next. Also, the relative phas-
ing between the four sinusoids has been adapted to give
the composite signal the appearance of a sawtooth sig-
nal. This choice has been made in order to analyze the
most singular signal possible which can be created with
the four harmonic components cited above. The wavelet
transform (Figure 4c) of this signal is an interference
pattern between the different. transforms (20), although
complex this pattern possesses lines of maxima with a
typical fork-shaped motif in the |Wc(t,a)| map (Fig-
ure 10). The ridge functions of these lines often possess
maxima very near the ars, although these maxima may
interfere constructively to give “plateaus” (Figure 11).
In any case, and as could easily be expected from equa-
tion (20), all ridge functions sharply decrease beyond
the dilation ap = 252, corresponding to the largest pe-
riod present in the composite signal, a distinctively dif-
ferent behavior from the one (linear in a log-log scale)
we previously described for the ridge functions associ-
ated with singularities.
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Figure 9. Composite harmonic signal made up of four
sinusoids with periods T' = 11, 5.5, 3.7, and 1 year
and respective amplitudes Ay = 0.01, 0.005, 0.005, and
0.005.
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Figure 10. Lines of maxima of the wavelet transform
modulus (Figure 4c) of the composite harmonic signal
(Figure 9).

The possibility of recovering information about the
singularities in the main signal when it is perturbed by
the harmonic signal can then be investigated by analyz-
ing the superimposition of the two signals (Figure 12).
Relative amplitudes are conformed to real geomagnetic
data. A quick glance at Figure 14 in view of Figures 6
and 11 suggests a rather straightforward identification
of the various features due to the main signal and the
harmonic signal, respectively. A similar identification
is also suggested for the lines of maxima (compare Fig-
ures 5, 10, and 13). It is likely that those which overlap
on the typical fork-shaped motif are related to the har-
monic signal, whereas those which have “deep” roots
are related to the main signal. The interaction between
the main signal and the harmonic signal leads to the
vanishing of several maxima lines, while some remain-
ing lines of maxima branch from a line associated with
one signal to a line associated with the other signal.
Identification and interpretation of the lines of maxima
in the combined signal must therefore be carried out
with some care.

Classification of the Synthetic Ridge Functions

The previous synthetic examples show that the sin-
gularities, random noises and harmonic components can
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Figure 11. Log-log plots of the ridge functions associ-
ated with the labeled lines of maxima shown on Figure
10.
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Figure 12. Signal made up of the sum of the majy
signal (Figure 3) with the composite harmonic signal
(Figure 9).

produce ridge functions whose more or less complicated
shapes depend on the relative balance between these
three kinds of signals forming the data (equation (1)).
‘We now need to elaborate some criteria to safely deride
whether or not a given ridge function is mainly created
by a singularity. Relying on roles played by the signal
components considered in the previous three sections,
the ridge functions can be classified into three types:
Type 1 is for ridge functions displaying a positive lin-
ear trend (i.e. a > 0) for most of the dilation range and
especially for a > 2%2. A limited small-dilation range
can ‘eventually be controlled by the harmonic signal (as
illustrated on Figure 14 by the ridge functions 9, 10, 13,
14, and 16, when no noise is present), the random noise
(for ridges 3, 4, and 5 in Figure 8), or more generally
by a combination of the two. Ridge functions of type 1
may safely be considered as mainly due to singularities.
Type 2 corresponds to ridge functions having a wol-
bling pattern (cases 1, 4, 8, 11, and 15 in Figure 14) and
possibly displaying a sharp decrease for a > 2%2 (cases
4, 8, and 11 in Figure 14), typical of ridge functions
caused by harmonic components (see equation (20)).
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Figure 13. Lines of maxima of the wavelet transform
modulus (Figure 4d) of the signal made up of the st-
perimposition of the main signal and of the composite
harmonic signal (Figure 12).
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Figure 14. Log-log plots of the ridge functions associated with the labeled lines of maxima
shown on Figure 13. Line 2 is associated with the Dirac singularity, lines 5 and 6 correspond
to the Heaviside event, lines 9 and 10 are for the ramp singularity, line 13 is related to the
singularity with @ = 3/2, and line 16 is associated with the jerk. The slopes found for these
lines are o = =1.29 (2! <0 < 2%%), @ = 0.11 (¢ > 2), v = 0.08 (¢ > 2), @ = 0.99 (a > 2%%),
a=1.09 (a>2%%), 0« = 142 (a > 2*5), and a = 2.01 (« > 227), respectively.

The influence of a random noise is limited to the small
dilations and does not destroy the overall pattern of
the ridge functions. This type of ridge functions will be
principally due to the harmonic component.

Type 3 is for cases not. clearly falling in either type 1
or 2. This will be especially the case for ridge functions
caused by singularities with o ~ 0 (cases 5 and 6 in Fig-
ure 14) or by harmonic components (case 3 in Figure
14). Ridge functions mainly due to the harmonic sig-
nal and lacking the characteristic decrease for a > 25-*
because of the influence of a nearby singularity are also
encountered (cases 7 and 12 in Figure 14). Ridge func-
tions displaying a linear trend with a negative slope (i.e.,
@ < 0, case 2 in Figure 14, or case 6 in Figure 8) also
fall into type 3 since they cannot be safely attributed
to either a noisy singularity or to pure uoise (compare
cases 1 and 6 in Figure 8).

From a. practical point of view, detecting and analyz-
ing a singularity will consist in looking for ridge func-
tions of type 1 and studying its linear portion. As a
consequence also, only singularies with & > 0 can be
expected to be recovered.

Real Data Analysis

We now apply the wavelet analysis to real geomag-
netic series. Of course, possible man-made singularities
introduced by poor baseline control or poor correction
for change of site may also be detected. As we wish nof
to confuse them with geophysically significant. events,
data series from several independent and nearby obser-
vatories are processed in parallel. We therefore decided
to process the data from European observatories only
(Figure 15). As the jerks in Europe are particularly
clear on the Y (east) component of the field {which is
also the component the least affected by the external
field) [Courtillot and Le Mouél, 1988; Stewart, 1991],
we shall in this paper focus on Y. We shall also put
a special emphasis on Chambon-la-Forét data since we
have easy access to their full history.

Processing of the Chainbon-la-Forét series

The data series of the monthly mean values of the
Chambon-la-Forét (CLF) geomagnetic observatory span
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Figure 15. Location of the 12 geomagnetic observa-
tories whose series of monthly mean values of the Y
component are used in this study.

a time interval of more than a centwry (from January
1883 to December 1992; see Figure 16). Since the be-
ginning of its activities, the observatory moved from
the Parc St. Maur (1883-1900) to the Val Joyeux (1901-
1935), and is currently fixed at Chambon-la-Forét (since
1935). The whole series has been reset to the Chambon-
la-Forét reference level with great care. The monthly
means analyzed here are averages of all hourly mean

values of each month without any removal of perturbed
periods.

The wavelet map (Plate 1, CLF) reveals five conspic-
uous events of large amplitude for epochs 1901, 1913,
1925, 1969, and 1978 for which jerks have previously
been recognized. These jerks have been shown to be
worldwide except the one in 1925 which seems to be
restricted to the European area [Gire et al., 1984]. Nu-
merous events of smaller amplitude are visible towards
the small dilations and arrange themselves into a pat-
tern very reminiscent of the one obtained for the anal-
ysis of the synthetic signal made up of harmonic com-
ponents (Figure 4c). This is particularly clear in the
quiet period from 1925 to 1969 where no strong event
appears and confirms the results obtained by Kerridge
and Barraclough [1985]. Figure 17 represents the 14
lines of maxima which go beyond a = 2°, and the cor-
responding ridge functions are displayed in Figure 18
where one can recognize the three basic typical styles
discussed in the previous section. Type 1, characteristic
of pure singularities (see ridge functions 4 and 5 in Fig-
ure 8), applies to ridge functions 1, 2, 4, 13, and 14 in
Figure 18. Type 2, characteristic of the ridge functions
of the synthetic signal made up of harmonic compo-
nents (Figure 11), applies to ridge functions labelled 3,
5,6,9, 11, and 12 in Figure 18. Type 3 applies to the
ridge functions 7, 8, and 10. Therefore the five strong
events which we previously described as being related
to published jerks are obviously created by singulari-
ties. The slopes of the linear parts of the corresponding
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Figure 16. Data series of the Y component for the
Chambon-la-Forét observatory.

ridge functions are well-determined and fall in the in-
terval [1.47,1.65], depending upon the particular ridge
function chosen. This important result (to be discussed
later) already shows that the detected singularities are
not jerks as usually defined (i.e., with & = 2) but, in-
stead, more singular events.

Results for Other European Observatories

The monthly mean values of the Y component of the
other 11 observatories (Figure 15) considered in this
study were provided by the National Geophysical Data
Center (Boulder, Colorado) on the compact disk (CD-
ROM) labeled NGDC-05/1. For some observatories the
data series edited by the World Data Center present
several gaps. In such sitnations the monthly mean val-
ues edited by the observatory itself (e.g., in their year-
books) were added. Gaps for which no data could be
obtained from the yearbooks were filled in by a linear
interpolation. No gap longer than ¢ months was ac-
cepted. Having maximized both the length and con-
tinuity of the timeseries, we noticed that in some in-
stances, corrections to the instrumental baselines were
still required. We performed a crossvalidation of the an-
nual mean values computed from monthly means with
the annual mean values obtained from the World Data
Center. It appeared that in some cases, corrections for
known instrumental changes had been applied to an-
nual mean values but not to monthly mean values. Nu-
merical comparison of the two annual mean data sefs
allowed the proper corrections to be made. When it ap-
peared that some timeseries would still possibly contain
undetected changes in the base level, further informa-
tion was requested directly from the observatories and
used to complete these timeseries.

The wavelet maps of these 11 series are displayed,
together with the one corresponding to Chambon-la-
Forét (CLF) (Plate 1). The common axis scales allow
for easy comparison of the pictures, and one can read-
ily check that whenever a data record is long enough,
strong events can be found at the same dates as for
CLF. A rough dating of the five main events can be
obtained by picking the dates along their lines of max-
ima at the dilation a = 23-%, which corresponds to the
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Plate 1. Modulus of the wavelet transform of the Y series for the 12 European observato-
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Figure 17. Lines of maxima of the wavelet transform
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transition between the part of the ridge function dom;.
nated by the external signal and the one controlled by
the abrupt changes. Such a criterion gives the followiy
average dates: 1901.3 (1), 1913.5 (2), 1925.74+0.72 (4)
1969.3 % 0.38 (12), and 1978.0 % 0.13 (11) where the 4
value is for one standard deviation and the integers i,
parentheses indicate the number of observatories used
to derive these figures.

The 1901 event detected at CLF cannot be clearly
seen at any other observatory because of tlie shortness
of the data series. Ouly the late edge of an energy
packet can be seen in the wavelet map of the Niemegk
series around 1900-1910 and for dilations 2% < q < 5
(Plate 1, NGK). -

The 1913 event is clearly fouud in the CLF and NGK
wavelet maps and corresponds to a truncated oue in the
RSV wavelet map (Figure 1RSV). The ridge functions
for this event are shown in Figure 19 and clearly are
type 1. The linear behavior of the ridge function for
NGK is excellent beyond a = 2% and gives a slope
a = 1.66. This linear trend is less perfect for the CLF
ridge function which appears more affected by the ex-
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Figure 18. Log-log plots of the ridge functions associated with the labeled lines of maxima
shown on Figure 17 and extracted from the wavelet map of the Chambon-la-Forét data (Plate 1,
CLF). The slopes computed for ridge functions 1, 2, 4, 13, and 14 are o« = 1.61, 1.47, 1.51, 1.65,

and 1.60, respectively, for dilations a > 23-5.
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Figure 19. Log-log plots of the ridge functions of the
1913 event found in the Chambon-la-Forét and Niemegk
series. The slopes of the ridge functions are a = 1.44
for CLF and o = 1.66 for NGK beyond a = 228.

ternal component, especially for dilations a < 23. The
slope, determined for dilations larger than 228 is less
accurately defined and found to be o = 1.44.

The 1925 event, already known to be regional, is con-
spicuous on the CLF, ESK, NGK, and RSV wavelet
maps (Plate 1). All corresponding ridge functions are
of type 1 (Figure 20) and their slopes are respectively
a=151,1.54,1.27, and 1.20, respectively, for a > 23-%.

The 1969 event is strong and visible in all observato-
ries (Plate 1). The ridge functions displayed in Figure
91 are mutually consistent and of type 1. The slopes are
determined for a > 23-®° for an average a = 1.70 £ 0.07
(the = is for one standard deviation) excepted for PAG
whose ridge function is not so clearly linear and has an
ill-defined slope o ~ 1.40.

The 1978 event is seen in all observatories but GDH
which, despite a sufficiently long record, displays no no-
ticeable event around 1978 (Plate 1, GDH). This prob-
lem is likely to be related to the fact that this observa-
tory is located at a high magnetic latitude where distur-
bances of external origin are strong. The wavelet map
(Plate 1, GDH) reveals the presence of an important ex-
ternal contribution during the years around 1980. This
may strongly alter an eventual ridge function linked to
a singular event in 1978. The ridge functions, shown
on Figure 22, appear to be more disturbed by the ex-
ternal signal than the ones for the 1969 event (Figure
21). This results in a poorer linear behavior of the ridge
functions whose slopes fall in the range [1.08,1.68] with
an average o = 1.39 4 0.17. However, one should note
that the 1978 event falls in the domain of the wavelet
maps where the convolutional edge effecis are strong
and prevent the ridge functions from being tracked be-
yond dilation a = 2° (Figure 22). Of course, future
additional data will help make this picture clearer. The
present results, however, suggest that a singularity is
indeed responsible for the 1978 event.

Discussion and Conclusion

The aim of the present paper is not so much to “redis-
cover” the well-known fact that geomagnetic time series
have experienced a number of so-called jerks during the
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present century as to answer a number of doubts and
questions that have been expressed about, for instance,
the reality and source nature of these jerks. Indeed,
making use of wavelet analysis in the way we described
brings a number of important and, we believe, convine-
ing answers.

Our wavelet. analysis of the geomagnetic series issued
by European observatories unambiguously isolates five
and only five singularities during the last century: 1901,
1913, 1925, 1969, and 1978. All those events had been
previously pointed out using more classical techniques,
although in an heterogeneous and sometimes debatable
way. In contrast, the present analysis is carried out
homogeneously and without the help of any a priori
information. The more subtle possibility of sharpening
the jerk with some additional external signal can also be
discarded. This reinforces the notion that jerks are of an
internal nature. Indeed, all singularities detected in the
geomagnetic series show ridge functions whose linear-
ity extends from time constants of the order of 2 years
till time constants of decades. Such a constant value of
the slopes for this whole range of scales establishes that
these events are due to a single coherent source. One
can hardly believe that the detected events could pos-
sess an accurate self-similarity resulting systematically
and by chance from a sharp external variation superim-
posed on a smoother internal one. The lack of linearity
of the ridge functions for time constants shorter than
2 years can be interpreted in view of the study that
was carried out with the synthetic harmonic signal. It
shows that the strong annual harmonic component con-
trols most of the ridge functions in the small-dilation
range (compare for instance Figures 14 and 21) which
also happens to be most sensitive to noise. The signal
eventually created by the singularity at small dilations
is therefore hidden. Thus the singularities we detected
definitely occur in less than 2 years.

A last interesting result is that the events are more
singular than jerks (with the retained acceptance of the
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Figure 20. Log-log plots of the ridge functions of the
1925 event. The slopes calculated for CLF, ESK, NGK,
and RéSSV are o = 1.51, 1.54, 1.27, and 1.20 for dilations
a> 27,
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Figure 21. Log-log plots of the ridge functions of the 1969 event found in the 12 European
observatories used in this study. The slopes derived for dilations a > 23 and for the observatories
listed in alphabetic order are o = 1.65, 1.65, 1.64, 1.72, 1.77, 1.56, 1.76, 1.39, 1.69, 1.65, 1.70,

and 1.82.

term for which a = 2). Although the regularities o
are not determined with a very high accuracy, this ac-
curacy is good enough to show that the a are always
significantly less than 2 and usually close to the valne
1.5. When applied to the synthetic signal, the analysis
brings the practical results for a (see Figure 14) of -
1.29, 0.11, 0.08, 0.99, 1.09, 1.42, and 2.01 instead of the

theoretical values -1, 0, 0, 1, 1, 1.5, and 2. These tests
indicates that regularities « € [1; 2] are determined with
a relative uncertainty of about 10%. Jerks are more
subtle singularities than previously thought, and previ-
ous studies will probably have to be resumed (parabola
replaced by noninteger power of ¢ — tg, tg being the
time of the event), and any new study will have to take
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Figure 22. Log-log plots of the ridge functions of the 1978 event found in 11 European observa-
tories used in this study. The slopes, computed for a > 233, are o = 1.58, 1.08, 1.47, 1.68, 1.42,

1.37, 1.50, 1.29, 1.26, 1.21, and 1.41.
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this result into account. One can first think of studies
in the spirit of the one carried out by Backus [1983],
which assumes that the observed characteristics of the
jerks are the result of a rather pure core signal distorted
by the slightly conducting mantle; an approach that can
lead to a number of interesting constraints for the value
of the conductivity within the mantle [e.g., Ducruiz et
al., 1980; Achache et al., 1980, 1981; Courtillot et al.,
1984]. Recent high-pressure measurements lead to very
low estimates for the mantle conductivity [Peyronneau
and Poirier, 1989; Poirter and Peyronneau, 1992] and
strongly suggest that a second approach to the jerks
should be developed. The observed characteristics of
these jerks could very well be a direct consecuence of
the mechanisms that are responsible for them within
the core [Le Mouél and Courtillot, 1981, 1982]. The sub-
ject is of crucial importance for the dynamo theory, and
recent studies suggest that jerks cannot be considered
independently from the rest of the mechanisms gener-
ating the Earth’s main magnetic field. For instance,
Jault and Le Mouél [1994] have shown that jerks cannot
be created by superficial flows, and Hulot ef al. [1993]
have given evidence that jerks could be related to ma-
jor changes within the large-scale flow driving the core
convection. Our results could shed some light on this
global convection. The present study was limited to the
Y component in European observatories as it was spe-
cially easy to handle and allowed a safe cross-checking.
Analysis needs to be extended to other components and
other observatories to assess the worldwide character of
the events. A better estimate of the date of the events
all over the Earth must be obtained to study a possible
propagation of the events and understand its origin.
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