S. S. Abby, E. Tannier, M. Gouy, and V. Daubin, Lateral gene transfer as a support for the tree of life, Proc Natl Acad Sci U S A, vol.109, issue.13, pp.4962-4967, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00752055

M. Ashburner, Gene ontology: tool for the unification of biology, Nat Genet, vol.25, issue.1, pp.25-29, 2000.

F. Aujoulat, Multilocus sequence-based analysis delineates a clonal population of Agrobacterium (Rhizobium) radiobacter (Agrobacterium tumefaciens) of human origin, J Bacteriol, vol.193, issue.10, pp.2608-2618, 2011.

J. Baude, Coordinated regulation of species-specific hydroxycinnamic acid degradation and siderophore biosynthesis pathways in Agrobacterium fabrum, Appl Environ Microbiol, vol.82, issue.12, pp.3515-3524, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01910930

T. Bigot, V. Daubin, F. Lassalle, P. , and G. , TPMS: a set of utilities for querying collections of gene trees, BMC Bioinformatics, vol.14, p.109, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00972257

T. Campillo, Analysis of hydroxycinnamic acid degradation in Agrobacterium fabrum reveals a coenzyme A-dependent, betaoxidative deacetylation pathway, Appl Environ Microbiol, vol.80, issue.11, pp.3341-3349, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02001304

F. M. Cohan and A. F. Koeppel, The origins of ecological diversity in prokaryotes, Curr Biol, vol.18, issue.21, pp.1024-1034, 2008.

D. Costechareyre, Rapid and efficient identification of Agrobacterium species by recA allele analysis: Agrobacterium recA diversity, Microb Ecol, vol.60, issue.4, pp.862-872, 2010.

M. Cs}-urö-s, Ancestral reconstruction by asymmetric wagner parsimony over continuous characters and squared parsimony over distributions, pp.72-86, 2008.

Y. Cui, Epidemic clones, oceanic gene pools, and eco-LD in the free living marine pathogen Vibrio parahaemolyticus, Mol Biol Evol, vol.32, issue.6, pp.1396-1410, 2015.

V. Daubin, E. Lerat, P. , and G. , The source of laterally transferred genes in bacterial genomes, Genome Biol, vol.4, issue.9, p.57, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00427389

L. A. David and E. J. Alm, Rapid evolutionary innovation during an Archaean genetic expansion, Nature, vol.469, issue.7328, pp.93-96, 2011.

G. C. Dicenzo, Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti, Nat Commun, vol.7, p.12219, 2016.

E. C. Dimmer, The UniProt-GO annotation database in 2011, Nucleic Acids Res, vol.40, pp.565-570, 2012.

A. Dilthey and M. J. Lercher, Horizontally transferred genes cluster spatially and metabolically, Biol Direct, vol.10, p.72, 2015.

W. F. Doolittle, Is junk DNA bunk? A critique of ENCODE, Proc Natl Acad Sci U S A, vol.110, issue.14, pp.5294-5300, 2013.

J. Doyon, V. Ranwez, V. Daubin, and V. Berry, Models, algorithms and programs for phylogeny reconciliation, Brief Bioinform, vol.12, issue.5, pp.392-400, 2011.
URL : https://hal.archives-ouvertes.fr/lirmm-00825041

B. Epstein, Population Genomics of the Facultatively Mutualistic Bacteria Sinorhizobium meliloti and S. medicae, PLoS Genet, vol.8, issue.8, p.1002868, 2012.

J. Felsenstein, PHYLIP (Phylogeny Inference Package) version 3.5c, 1993.

G. F. Gause, Experimental studies on the struggle for existence. I. Mixed population of two species of yeast, J Exp Biol, vol.9, pp.389-402, 1932.

B. Goodner, Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58, Science, vol.294, issue.5550, pp.2323-2328, 2001.

S. Guindon, O. Gascuel, and B. Rannala, A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood, Syst Biol, vol.52, issue.5, pp.696-704, 2003.

X. Hao, Genome sequence and mutational analysis of plantgrowth-promoting bacterium Agrobacterium tumefaciens CCNWGS0286 isolated from a zinc-lead mine tailing, Appl Environ Microbiol, vol.78, issue.15, pp.5384-5394, 2012.

X. Hao and Y. Lin, Genome sequence of the arsenite-oxidizing strain Agrobacterium tumefaciens 5A, J Bacteriol, vol.194, issue.4, p.903, 2012.

P. W. Harrison, R. Lower, N. Kim, and J. Young, Introducing the bacterial 'chromid': not a chromosome, Trends Microbiol, vol.18, issue.4, pp.141-148, 2010.

K. Homma, S. Fukuchi, Y. Nakamura, T. Gojobori, and K. Nishikawa, Gene cluster analysis method identifies horizontally transferred genes with high reliability and indicates that they provide the main mechanism of operon gain in 8 species of gamma-proteobacteria, Mol Biol Evol, vol.24, issue.3, pp.805-813, 2007.

N. Kashtan, Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus, Science, vol.344, issue.6182, pp.416-420, 2014.

G. C. Kettler, Patterns and implications of gene gain and loss in the evolution of Prochlorococcus, PLoS Genet, vol.3, issue.12, p.231, 2007.

S. Kopac, Genomic heterogeneity and ecological speciation within one subspecies of Bacillus subtilis, Appl Environ Microbiol, vol.80, issue.16, pp.4842-4853, 2014.

D. M. Kristensen, Computational Methods for Gene Orthology Inference. Brief Bioinform, vol.12, issue.5, pp.379-391, 2011.

N. Kumar, Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum, Open Biol, vol.5, issue.1, p.140133, 2015.

C. Kuo, N. A. Moran, and H. Ochman, The consequences of genetic drift for bacterial genome complexity, Genome Res, vol.19, issue.8, pp.1450-1454, 2009.

S. Kurtz, Versatile and open software for comparing large genomes, Genome Biol, vol.5, issue.2, p.12, 2004.

M. Land, Insights from 20 years of bacterial genome sequencing, Funct Integr Genomics, vol.15, issue.2, pp.141-161, 2015.

F. Lassalle, Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens, Genome Biol Evol, vol.3, pp.762-781, 2011.
URL : https://hal.archives-ouvertes.fr/halsde-00723400

F. Lassalle, D. Muller, and X. Nesme, Ecological speciation in bacteria: reverse ecology approaches reveal the adaptive part of bacterial cladogenesis, Res Microbiol, vol.166, issue.10, pp.729-741, 2015.

J. G. Lawrence and H. Ochman, Amelioration of bacterial genomes: rates of change and exchange, J Mol Evol, vol.44, issue.4, pp.383-397, 1997.

J. G. Lawrence and J. R. Roth, Selfish operons: horizontal transfer may drive the evolution of gene clusters, Genetics, vol.143, issue.4, pp.1843-1860, 1996.

A. Li, Genome sequence of Agrobacterium tumefaciens strain F2, a bioflocculant-producing bacterium, J. Bacteriol, vol.193, pp.5531-5531, 2011.

K. Makarova, Comparative genomics of the lactic acid bacteria, Proc Natl Acad Sci U S A, vol.103, issue.42, pp.15611-15616, 2006.

V. Miele, High-quality sequence clustering guided by network topology and multiple alignment likelihood, Bioinformatics, 2012.
DOI : 10.1093/bioinformatics/bts098

URL : https://hal.archives-ouvertes.fr/hal-00965711

S. A. Mousavi, A. Willems, X. Nesme, P. De-lajudie, L. et al., Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations, Syst Appl Microbiol, vol.38, issue.2, pp.84-90, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01222893

E. Orme~-no-orrillo, Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics, Syst Appl Microbiol, vol.38, issue.4, pp.287-291, 2015.

S. Penel, Databases of homologous gene families for comparative genomics, BMC Bioinformatics, vol.10, issue.6, p.3, 2009.
URL : https://hal.archives-ouvertes.fr/lirmm-00400099

C. Pesquita, D. Faria, A. O. Falc~-ao, P. Lord, and F. M. Couto, Semantic similarity in biomedical ontologies, PLoS Comput Biol, vol.5, issue.7, p.1000443, 2009.
DOI : 10.1371/journal.pcbi.1000443

URL : https://doi.org/10.1371/journal.pcbi.1000443

P. Portier, Identification of genomic species in Agrobacterium biovar 1 by AFLP genomic markers, Appl Environ Microbiol, vol.72, issue.11, pp.7123-7131, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00428025

M. H. Ram-irez-bahena, Single acquisition of protelomerase gave rise to speciation of a large and diverse clade within the, 2014.

, Agrobacterium/Rhizobium supercluster characterized by the presence of a linear chromid, Mol Phylogenet Evol, vol.73, pp.202-207

E. Rocha, The organization of the bacterial genome, Annu Rev Genet, vol.42, pp.211-233, 2008.

M. J. Rosen, M. Davison, D. Bhaya, and D. S. Fisher, Fine-scale diversity and extensive recombination in a quasisexual bacterial population occupying a broad niche, Science, vol.348, pp.1019-1023, 2015.

A. M. Ruffing, M. Castro-melchor, W. Hu, and R. R. Chen, Genome sequence of the curdlan-producing Agrobacterium sp. strain ATCC 31749, J Bacteriol, vol.193, issue.16, pp.4294-4295, 2011.

A. Schlicker, F. S. Domingues, J. Rahnenfü-hrer, and T. Lengauer, A new measure for functional similarity of gene products based on Gene Ontology, BMC Bioinformatics, vol.7, p.302, 2006.

C. Scornavacca, Representing a set of reconciliations in a compact way, J Bioinform Comput Biol, vol.11, issue.2, p.1250025, 2012.
URL : https://hal.archives-ouvertes.fr/lirmm-00818801

S. K. Sheppard, Progressive genome-wide introgression in agricultural Campylobacter coli, Mol Ecol, vol.22, issue.4, pp.1051-1064, 2013.

S. Slater, Reconciliation of sequence data and updated annotation of the genome of Agrobacterium tumefaciens C58, and distribution of a linear chromosome in the genus Agrobacterium, Appl Environ Microbiol, vol.79, issue.4, pp.1414-1417, 2013.

S. C. Slater, Genome sequences of three Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria, J Bacteriol, vol.191, issue.8, pp.2501-2511, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00400283

A. Stamatakis, RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models, Bioinformatics, vol.22, issue.21, pp.2688-2690, 2006.

M. Suyama, D. Torrents, and P. Bork, PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments, Nucleic Acids Res, vol.34, pp.609-612, 2006.

G. J. Szö-ll}-osi, B. Boussau, S. S. Abby, E. Tannier, and V. Daubin, Phylogenetic modelling of lateral gene transfer reconstructs the pattern and relative timing of speciations, Proc Natl Acad Sci U S A, vol.109, issue.43, pp.17513-17518, 2012.

M. Touchon, Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths, PLoS Genet, vol.5, issue.1, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00390293

D. Vallenet, MicroScope: a platform for microbial genome annotation and comparative genomics, Database, issue.0, p.21, 2009.

D. Vallenet, MicroScope: an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data, Nucleic Acids Res, vol.41, pp.636-647, 2013.

N. Vizca-ino, A. Cloeckaert, M. S. Zygmunt, and L. Fern-andez-lago, Characterization of a Brucella species 25-kilobase DNA fragment deleted from Brucella abortus reveals a large gene cluster related to the synthesis of a polysaccharide, Infect Immun, vol.69, issue.11, pp.6738-6748, 2001.

J. Vogel, P. Normand, J. Thioulouse, X. Nesme, and G. L. Grundmann, Relationship between spatial and genetic distance in Agrobacterium spp. in 1 cubic centimeter of soil, Appl Environ Microbiol, vol.69, issue.3, pp.1482-1487, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00427492

D. Wibberg, Complete genome sequencing of Agrobacterium sp. H13-3, the former Rhizobium lupini H13-3, reveals a tripartite genome consisting of a circular and a linear chromosome and an accessory plasmid but lacking a tumor-inducing Ti-plasmid, J Biotechnol, vol.155, issue.1, pp.50-62, 2011.

D. Williams, J. P. Gogarten, and R. T. Papke, Quantifying homologous replacement of loci between haloarchaeal species, Genome Biol Evol, vol.4, issue.12, pp.1223-1244, 2012.

D. W. Wood, The genome of the natural genetic engineer Agrobacterium tumefaciens C58, Science, vol.294, issue.5550, pp.2317-2323, 2001.

J. Young, The genome of Rhizobium leguminosarum has recognizable core and accessory components, Genome Biol, vol.7, issue.4, 2006.