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Abstract. A multiobjective branch and bound method is presented and applied to the bi-objective 

combinatorial optimization of a safety transformer. New criteria are proposed for the branching and 

discarding. They are based on the Pareto dominance and contribution metric. The comparison with 

exhaustive enumeration and non-dominated sorting genetic algorithm confirms the solutions. It appears that 

exact and approximate methods are both very sensitive to their control parameters. 

Keywords: Benchmark, Branch and bound, Multiobjective optimization, Pareto-optimality, Safety 

transformer. 

INTRODUCTION 

The design of electromagnetic devices is mainly expressed in the literature in term of problem with 

continuous parameters. However, these problems are in the second part of the design process and often limited to 

the fine tuning of some parameters corresponding to the structure selected in the first part. Despite recent progress 

in topological [1] and combinatorial [2]-[4] optimizations, there is a lack of decision tools for the choice of the 

structure and materials when dealing with conflicting goals. At this stage, the parameters are mainly discrete and 

not sorted. 

Moreover, the production in very small series practiced by some small and medium firms is supported by 

standards. It is thus a question of choosing among a great but finite number of solutions rather than to optimize 

some dimensions finely. 

Optimization with discrete variables requires different concept than the conventional continuous one. The 

computation time of combinatorial optimization is also far more expensive. This is worsening in the design of 

electromagnetic devices because models are non-linear and time-consuming. Heuristic, Tabu search [5], and 

Branch and Bound algorithm [2]-[4] can solve combinatorial problems. The formers compute approximate 

solutions in an affordable time while the latter find exact solutions with higher computing cost. 

The first part of the paper is devoted to introduce the context of combinatorial optimization in electrical 

machines and the main issues for solving this kind of problems. In the second part, the mechanisms of BB 

algorithm are explained and new criteria for the branching and the initialization are proposed for multiobjective 

problems. The Pareto-based branch and bound algorithm is applied to the bi-objective optimization of a safety 

transformer. Results are compared to exhaustive enumeration and non-dominated sorting genetic algorithm. 

Finally, some conclusions and prospects are given. 

CONTEXT AND ISSUES 

Context 

In the design of electromagnetic devices and especially electrical machines, the variables in optimization 

problems are often discrete. The variables can be integer and sorted like the number of slots and the number of 

magnets. When dealing with manufacturing in small series, continuous variables like the diameter of wire and the 

dimensions of magnetic core may be changed to discrete variables with values taken in the manufacturers’ catalogs 

to take advantage of the price and availability. 

Other design variables are more difficult to handle in optimization. They are discrete and cannot be sorted. 

For instance, the topologies of a rotating electrical machine are inner rotor, outer rotor, and axial flux as shown in 

Figure 1. The materials are also impossible to sort. This is illustrated by the case of conducting materials. If we 

compare copper to aluminum, copper has less losses but aluminum is lighter. So they cannot be sorted if both 

criteria appear in the optimization problem. 

 



 

 

 
Figure 1. Topologies of a rotating electrical machine 

Issues 

Three of the main issues that arise with combinatorial optimization are detailed to highlight the difficulties 

encountered in solving such problems. The first one is called integrality gap and is illustrated in the mathematical 

example with two design variables, one objective to minimize and two inequality constraints. The optimization 

problem is expressed in Eq. (1). One simple idea is to search the solution of combinatorial problem in the 

neighborhood of the solution of the relaxed problem expressed in Eq. (2) that is the problem with all integer 

variables changed to continuous. This last is the blue disc, written 𝑋𝑐
∗ in Figure 2. Among the four integer solutions 

in its vicinity, the best one is the blue square 𝑋𝑑 . It can be seen that the distance with the integer optimum 𝑋𝑑
∗  at 

red square is significant. 

 

min
𝑥1,𝑥2

𝑓(𝑥1, 𝑥2) = (𝑥1 − 3)2 + (𝑥2 − 3)2  

with 𝑥1 ∈ {0.5, 1.0, 1.5, 2.0, 2.5} 

(1)   𝑥2 ∈ {0.5, 1.0, 1.5, 2.0, 2.5} 

s.t. 𝑔1(𝑥1, 𝑥2) = 10 𝑥1 + 9 𝑥2
3 − 17 ≤ 0 

𝑔2(𝑥1, 𝑥2) = 2 𝑥1 + 5 𝑥2 − 8.3 ≤ 0 

 

min
𝑥1,𝑥2

𝑓(𝑥1, 𝑥2)                      

with 0.5 ≤ 𝑥1 ≤ 2.5 

(2)   0.5 ≤ 𝑥2 ≤ 2.5 

s.t. 𝑔1(𝑥1, 𝑥2) ≤ 0 

𝑔2(𝑥1, 𝑥2) ≤ 0 

 

 
Figure 2. Mathematical example with two design variables (x1 is abscissa and x2 is ordinate) 



 

 

The second issue is that derivatives exist only with continuous variables. Therefore this information 

cannot be used to define a search direction to guide the optimization. As a consequence, the number of evaluations 

required for combinatorial optimization is very high. 

For multiobjective optimization, scalarization techniques cannot be applied to find the complete set of 

solutions. It is proved that the weighted sum of objectives fails to find it [6] and the authors’ experience is that 

epsilon-constraint is inefficient and unable to find the complete set of non-dominated solutions. 

BRANCH AND BOUND ALGORITHM 

The principle of branch and bound algorithm is to divide the search domain into subdomains with lower 

dimensionality. The separation is made according to hyperplanes orthogonal to the variables axis. A tree spanning 

all combinations is erected (Figure 3). Given n, the number of integer design variables, there are n levels in the 

tree and one root at ground level. At the root node, all integer variables are relaxed, i.e. transformed to continuous 

variables. At the next levels, the evaluation of partial solutions at the nodes is an optimization with some integer 

variables relaxed and others being constant. Considering level k, the first k integer variables are fixed to constant 

values and the n-k lasts are relaxed. Therefore, the dimensionality of the optimization problem for the evaluation 

of partial solutions is decreasing while the level number increases. The leaves are at the last level with all integer 

variables set to constant value. 

 

 
Figure 3. Spanning tree of combinations used in BB algorithm 

The mechanisms used in BB algorithm are bounding, branching, and pruning as detailed below. 

Branching scheme 

Branching is the mechanism used to explore the tree in order to find all the solutions in a reduced 

computing time and memory requirement. The branching schemes available for BB are depth-first, best-first, and 

hybrid. 

The former scheme is used here. This way, the tree is explored recursively by following the branch leading 

to the most promising node among all branches connected to the current node. The descent is continued until a 

leaf is reached. In order to reduce the amount of memory used, the tree is not described entirely during the 

initialization of algorithm but expanded progressively by adding a sub-tree after each branching. The depth-first 

scheme also offers the advantage to be the fastest to reach leaves and to enable the pruning of the tree. 

The definition of the most promising node is based on a criterion to compare nodes to each other. In BB 

algorithms, this criterion is the bound. 

Bounding method 

BB methods have proved to perform well on many combinatorial optimization problems on the condition 

to provide a good bounding function. The bound can be computed by using an optimization process on a sub-

problem with some discrete variables fixed to feasible values and others relaxed, i.e. transformed to continuous 

variables. This makes sense for discrete variables that can be sorted if the objective and constraint functions could 

be defined for any real value within the range bounded by the minimum and maximum discrete values. 

For the sake of simplicity, we consider first a single objective optimization as stated by the single axis in 

Figure 4. As the search sub-domain of nodes at the level k+1 is included in the domain at level k, the minimum of 

the problem for a node at level k+1 is higher or equal to the one for the node at level k to whom it is connected. 

Therefore, the partial solution at level k stands as a lower bound for all nodes at higher levels connected to it. 

Moreover, if no feasible solution is found at level k, no solution could be found at next levels. As a consequence, 

the most promising node is the partial solution with the lowest objective value and all constraints fulfilled. 



 

 

 

Figure 4. Branching and discarding in single-objective BB algorithm 

Elimination strategy 

One of the advantages of the branching scheme called depth-first if to be the fastest to reach the leaves. 

This is done by using ∑ 𝑣𝑖
𝑛−1
𝑖=1  partial evaluations, i.e. optimizations and 𝑣𝑛  evaluations while the number of 

combinations, i.e. leaves is ∏ 𝑣𝑖
𝑛
𝑖=1  where 𝑣𝑖 is the number of values allowed for the discrete variable 𝑥𝑖. The BB 

algorithm explores the tree iteratively by starting a descent each time that the leaf level is reached until no node 

remains. So, this is important to prune the tree as soon as possible to reduce the number of iterations and 

evaluations. 

It is reminded that the partial solution is a lower bound. Therefore, a node is discarded if the value of the 

objective function is above the one of the best leaf as illustrated in Figure 4. 

Example with two design variables 

In Figure 5 is the spanning tree for the example with two variables expressed in Eq. (1). At level 1, the 

domain is separated according to 𝑥1. The five partial solutions are found by solving optimization problems with 

𝑥1 constant and 𝑥2 continuous. 

During the first descent, i.e. iteration, the branching is made to the node number 4 with lowest objective 

value. At level 2, the subdomain corresponding to 𝑥1 = 2.0 is separated according to 𝑥2. All nodes are leaves that 

are evaluated by a computation of objective and constraints. Four leaves are infeasible. The first descent is 

completed and the objective value of the best leaf is 7.25. 

The second iteration starts with the elimination process. The node number 1 is discarded because its 

objective value (8.982) is higher than best leaf one. Three nodes remain and the descent starts from the node with 

the lowest objective value (6.014) whose number is 3. A new best leaf is found at leaf number 12 with an objective 

value of 6.25. 

All remaining nodes have higher objective value than the new best leaf and are discarded. The algorithm 

stops because no better solution can be found. For this reason, BB algorithm is called exact method. 

 

Figure 5. Spanning tree for the example with two design variables 



 

 

MULTIOBJECTIVE BRANCH AND BOUND ALGORITHM 

The branching scheme is kept unchanged for multi-objective optimization branch and bound (MOBB) 

algorithm and new criteria are proposed to define the most promising node such as the elimination strategy. 

Bounding method 

Various approaches can be considered to deal with multiple conflicting goals. On one hand, it is tempting 

to reduce the number of objective to a single one to ease the comparison of partial solutions as in mono-objective 

BB algorithm. Several methods have been reported in the literature for MOBB algorithms such as scalarization 

(weighted sum of objectives, etc.). 

On the other hand, the solutions of a multi-objective optimization problem are non-dominated solutions 

and referred as Pareto front when plotted in the objective space. Several metrics are proposed in the literature to 

assess the performances of multi-objective algorithms and to compare Pareto fronts [6]-[11]: 

- D-metric assess the convergence to a reference Pareto front, 

- -metric assess uniformity of points along the Pareto front, 

- -metric compare Pareto front in term of extent, 

- Coverage metric evaluates the dominated area given by a front, and 

- Contribution metric evaluates the proportion of Pareto solutions given by each front. 

Intermediate approaches in terms of computing time and precision are reported in literature, for instance 

by using the ideal point whose coordinates are minimum values of objectives minimized separately [4]. 

In this paper, partial solutions are compared by using the Pareto dominance and the bound is computed 

with the contribution metric [7]. Therefore, the bound is no more an absolute value but a relative measurement of 

a node contribution among all the nodes at the same level linked to the same node at the previous level. This 

bounding method is valid for the depth-first branching scheme only. The most promising node is the one with the 

highest contribution. 

As illustrated in Figure 6, among the solutions nodes at level k+1, nine are non-dominated. Four points 

belong to pink node and five to green node. As this last has the highest contribution, it is selected for branching. 

 

 

Figure 6. Branching and discarding in multi-objective BB algorithm 

Elimination strategy 

The set of non-dominated leaves allows defining a dominated region as shown in blue in Figure 6. It is 

reminded that the partial solution is a lower bound that dominates all solutions at the next levels. Therefore, if all 

solutions at one node are within the dominated region then the node is discarded. 

Initialization 

An initial approximation of the Pareto front can lead to reduce the number of evaluations required by the 

multi-objective branch and bound algorithm. This front may be found by metaheuristic methods but here, it is 

proposed to use the partial front at root node. 

In the left part of Figure 7, the solutions of partial front at root node are plotted in the objectives space 

and in the right part they are plotted in the design variables space. For each solution, the integer solutions in its 

vicinity are evaluated and kept if all constraints are fulfilled. The set of non-dominated initial leaves becomes the 

initial front. 



 

 

 

Figure 7. Initial front for multi-objective BB algorithm 

Mixed variables 

BB algorithms can solve mixed variables problems, i.e. problems with discrete, integer, and continuous 

variables. Continuous variable can take any real value within a range. Integer variables are sorted and assumed to 

be relaxable. This means that the objectives and constraints functions are defined for any real value between the 

minimum and the maximum discrete values and are smooth. This can be critical when using a finite element model 

and considering an integer variable like the number of slots. Discrete variables cannot be sorted and are not relaxed 

during the partial evaluations of BB algorithm. 

Therefore, a first spanning tree is raised with the discrete variables and its leaves become the roots of sub-

trees with integer and continuous variables. The leaves of the sub-trees are evaluated by an optimization where all 

the integer variables are set to constant value and the continuous variables are unchanged. 

COMBINATORIAL OPTIMIZATION OF SAFETY TRANSFORMER 

Device and models 

The electromagnetic device studied here is a safety isolating transformer [12] (Fig. 8). An analytical 

model is used to compute the objectives and constraints. This model accepts continuous parameters as inputs and 

can thus be used with relaxation techniques. 

 

Figure 8. Safety transformer variables 

Thermal and magnetic phenomena are both modeled by using 3D FEA on one eighth of the transformer 

due to the symmetries (Fig. 9). All magnetic and electric quantities are assumed sinusoidal. Full-load and no-load 

simulations are used to compute all the characteristics. The iron loss is computed with Steinmetz formula and the 

leakage inductances are calculated with the magnetic co-energy. The magneto-thermal coupling is weak and 

consistency loop requires 2 hours. 

To reduce the computing time, a lumped-mass model is preferred. The additional modeling hypotheses 

are uniform distribution of induction in the iron core, no voltage-drop due to the magnetizing current, and uniform 

temperatures in coils and lamination. The multiphysic coupling is strong and the computing time is 50 ms. 

 



 

 

 

Figure 9. Thermal and electromagnetic models of the safety transformer 

Optimization problem 

The problem contains 7 integer design variables that are shown in Fig. 8. There are three parameters (a, 

b, c) for the shape of the lamination, one for the frame (d), two for the section of enameled wires (S1, S2), and one 

for the number of primary turn n1. As the first four integer variables are linked, the problem becomes a mixed-

integer problem with one discrete variable for the combination of the firsts four and the three remaining integer 

variables. There are 24 types of lamination from catalogue r.bourgois®, 62 possible matches between the 

laminations EI and the frames from catalogue isolectra-martin®, and 62 types of enameled wires from invex®. 

The number of primary turn n1 is integer but only 1001 values are allowed, leading to 238,566,328 combinations. 

There are 7 inequality constraints in this problem. The copper and iron temperatures Tcond, Tiron 

respectively are less than 120°C and 100°C. The magnetizing current I10/I1 and drop voltage V2/V2 are less than 

10%, the filling factor of both coils f1, f2 is lower than 1, and the residue of coupled equations is less than 10-6. The 

objective is to minimize the total mass Mtot of iron and copper materials and to maximize the efficiency η: 
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Results 

A time consuming exhaustive enumeration of solutions is performed with distributed computing on 24 

cores and has found 749 non-dominated solutions with 238,566,328 evaluations of the model. 

For MOBB, the bound is computed at each node with the Pareto set of the sub-problem. This set is found 

with sequential quadratic programming (SQP), -constraint, and multi-start. Its precision is depending on the 

number of starting points and the number of Pareto points requested. With 20 Pareto points and one starting point, 

the whole set of solutions is found. Initialization of MOBB with integer solutions in the vicinity of relaxed ones 

slightly decreases the number of evaluations by 7% as detailed in Table 1. 

The number of evaluations and the size of the Pareto set found by MOBB are compared with NSGA-II 

[8]. An implementation of this algorithm is given by Song Lin in Matlab Central (NGPM v1.4, 2011). For NSGA-

II, the results depend on the population size and the number of generations. One thousand individuals and two 

hundred generations are sufficient to find the whole solutions with five times less evaluations than MOBB. 

Table 1. Comparison of algorithms 

algorithm population size or 

Pareto points 

generations or 

starting points 

number of 

evaluations 

size of Pareto set 

MOBB 10 1 592,784 732 



 

 

MOBB + initialization 10 1 549,243 732 

MOBB 10 10 7,326,511 732 

MOBB + initialization 10 10 7,089,802 732 

MOBB 20 1 957,042 749 

MOBB + initialization 20 1 888,433 749 

NSGA2 750 200 150,000 646 

NSGA2 750 300 225,000 671 

NSGA2 750 400 300,000 681 

NSGA2 1000 200 200,000 749 

 

On Figure 10 are two Pareto fronts. The Pareto front found by solving the relaxed problem at root node 

is in blue. It is continuous and contains one hundred points linked by lines. The solutions of the combinatorial 

problem are in red and the front is discontinuous. All the solutions of the combinatorial problem are dominated by 

those of the relaxed one, as expected. 

 

Figure 10. Pareto front found by of MOBB (discrete) and initial front (relaxed) 

Discussions 

The main weakness of MOBB is the computing burden to evaluate partial solutions while the main 

drawbacks of genetic algorithms that are the precision of the solution and especially the respect of constraints 

vanish in integer optimization. It could differ with a mixed-integer optimization problem because of the lack of 

precision of genetic algorithm for the continuous components of the solutions and the fulfillment of constraints 

when solutions are on the limit-state. 

One track to reduce the number of evaluations of MOBB is to lower the precision of bounds as their 

purpose is to compare the partial solutions among them and not to calculate the integer solutions. However, we 

shall remain cautious because Figure 10 shows that the partial front at root node is close to the integer solutions at 

leaves while they are situated at the opposite extrema of the spanning tree. It may also be possible to be less 

sensitive to the number of Pareto points by using a most accurate criterion than contribution metric to compare 

partial solutions. 

OSYCZKA AND KUNDU TEST FUNCTION 

Optimization problem 



 

 

The problem is given in Eq. (5) and (6) where all the variables are continuous within bounds [13]. It is 

changed to a combinatorial optimization problem by using a step of 0.25 for all variables. Obviously, one objective 

and one constraint are non-convex. As a consequence, SQP, -constraint, and multi-start may fail to find exact 

partial solutions of sub-problems. 
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On Figure 11 are two Pareto fronts. The Pareto front found by solving the relaxed problem is in blue. It 

is found by SQP and -constraint with 500 values of  and 500 starting points. The solutions of the combinatorial 

problem are in red. 

 

Figure 11. Pareto fronts for discrete and relaxed variables 

Results 

An exhaustive enumeration of solutions has found 73 non-dominated solutions with 497,954,225 

evaluations. In table 2, it can be seen that MOBB fails to find the complete set of solutions in an affordable number 

of evaluations while NSGA2 succeed. This test highlights that the proposed algorithm has poor performances with 

non-convex functions. 

Table 2. Comparison of algorithms 

algorithm population size or 

Pareto points 

generations or 

starting points 

number of 

evaluations 

size of Pareto set 

MOBB 100 10 37,576,081 47 

MOBB + initialization 100 10 17,356,443 47 

MOBB 200 10 85,519,229 60 

MOBB + initialization 200 10 35,677,027 57 

NSGA2 76 100 7,600 73 

 

CONCLUSIONS 

MOBB and NSGA-II succeed to find the complete Pareto set of the bi-objective safety transformer 

combinatorial problem with integer variables but NSGA-II is yet four to five times faster. The performances of 

both algorithms are sensitive to their control parameters. 



 

 

Three prospects are proposed to reduce the number of evaluations required by exact methods. The first 

one is to do a preliminary pruning of the spanning tree by evaluating explicit constraints on the filling factor of 

both coils. 

The main drawback of the algorithm proposed is the high number of evaluations required to compute the 

partial solutions at nodes. The second prospect is to lower the precision of bounds in order to reduce the 

computation burden and to use a new criterion to compare partial solutions. 

Branch and cut algorithms process is similar to BB but the separation is made according to cut plane 

defined by the constraints of the optimization problem. The third prospect is to test it to see if it is faster than BB 

for hard constrained problems. 

Osyczka and Kundu test function highlights that the proposed algorithm has poor performances with non-

convex objective and constraint. 
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