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Chapter 8

Plant Identification: Experts vs. Machines in the
Era of Deep Learning

Deep learning techniques challenge flora experts

Pierre Bonnet, Hervé Gogau, Siang Thye Hang, Mario Lasseck, Milan Sulc, Valéry
Malécot, Philippe Jauzein, Jean-Claude Melet, Christian You, and Alexis Joly

Abstract Automated identification of plants and animals have improved consider-
ably in the last few years, in particular thanks to the recent advances in deep learn-
ing. The next big question is how far such automated systems are from the human
expertise. Indeed, even the best experts are sometimes confused and/or disagree be-
tween each others when validating visual or audio observations of living organism.
A picture or a sound actually contains only a partial information that is usually not
sufficient to determine the right species with certainty. Quantifying this uncertainty
and comparing it to the performance of automated systems is of high interest for
both computer scientists and expert naturalists. This chapter reports an experimen-
tal study following this idea in the plant domain. In total, 9 deep-learning systems
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implemented by 3 different research teams were evaluated with regard to 9 expert
botanists of the French flora. Therefore, we created a small set of plant observations
that were identified in the field and revised by experts in order to have a near-perfect
golden standard. The main outcome of this work is that the performance of state-
of-the-art deep learning models is now close to the most advanced human expertise.
This shows that automated plant identification systems are now mature enough for
several routine tasks, and can offer very promising tools for autonomous ecological
surveillance systems.

8.1 Introduction

Automated species identification was presented 15 years ago as a challenging but
very promising solution for the development of new research activities in Taxon-
omy, Biology or Ecology [17]. With the development of an increasing number of
web and mobile applications based on visual data analysis, the civil society was
able in the recent years to evaluate the progress in this domain, and to provide new
data for the development of large-scale systems. To evaluate the performance of
automated plant identification technologies in a sustainable and repeatable way, a
dedicated system-oriented benchmark was setup in 2011 in the context of the CLEF
evaluation forum [21]. A challenge called PlantCLEF was organized in this context
using datasets co-produced with actors of the civil society (such as educators, nature
lovers, hikers). Years after years, the complexity and size of this testbed was increas-
ing and allowed dozens of research teams to evaluate the progress and limits of the
machine learning systems they developed. In 2017, the PlantCLEF challenge was
organized on a dataset covering 10,000 plant species. This was the first evaluation
at this scale in the world, and results were promising and impressive with accura-
cies reaching 90% of correct identification for the best system. This amazingly high
performance raises the question of how far automated systems are from the human
expertise and of whether there is a upper bound that can not be exceeded. A picture
(or a set of pictures) actually contains only a partial information about the observed
plant and it is often not sufficient to determine the right species with certainty. For
instance, a decisive organ such as the flower or the fruit, might be not visible at the
time the plant was observed. Or some of the discriminant patterns might be very
hard or unlikely to be observed in a picture such as the presence of hairs or latex, or
the morphology of the underground parts. As a consequence, even the best experts
can be confused and/or disagree between each others when attempting to identify a
plant from a set of pictures. Estimating this intrinsic data uncertainty according to
human experts and comparing it to the performance of the best automated systems
is of high interest for both computer scientists and expert naturalists.

A first step in that direction had been taken in 2014 through a first Man vs. Ma-
chine experiment conducted by some of the authors of this chapter [1]. At that time,
it was concluded that machines were still far from performing as well as expert
botanists. The best methods were only able to outperform the participants that de-
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clared themselves as amateurs of botany. Computer vision has made great progress
since that time, in particular thanks to the advances in deep learning. Thus, this
chapter presents an upgraded Human vs. Machine experiment in the continuity of
the previous study but using state-of-the-art deep learning systems. For a fair com-
parison, we also extended the evaluation dataset to more challenging species and we
involved expert botanists with a much higher expertise on the targeted flora. In total,
9 deep-learning systems implemented by 3 different research teams were evaluated
with regard to 9 expert botanists among the most renowned in Europe. The rest of
this chapter is organized as follows. In section 8.2, we first return to the process
of identifying a plant by an expert in order to fully understand its mechanisms and
issues. Then, in section 8.3, we give an overview of the state-of-the-art in automated
plant identification by synthesizing the results of the international evaluation cam-
paign LifeCLEF 2017 co-organized by some of the authors of this chapter. Finally,
in section 8.4.2, we report the results and analysis of our new experts vs. machines
experiment.

8.2 Understanding the plant identification process by botanists

For a botanist, identifying a plant means associating a scientific name to an indi-
vidual plant. More precisely, that means assigning that individual plant to a group,
called a taxon. Such taxon had a name selected according to a set of rules. The
delimitation of taxa and the scientific names applying to them are the result of a
process called taxonomy (or systematics). This process is in the hands of a rela-
tively low number of scientists. During that process, hundreds of herbarium sheets
(i.e. dry plants collected during the past centuries and mounted on a large piece
of paper together with annotations such as date, place, collector name) and usu-
ally a lower number of living plants are compared. Such comparison may be based
on macromorphological, micromorphological or molecular data, manually or com-
putationally analyzed. This comparison allows delimiting groups on the basis of
certain features. This is a step where the taxonomist should tell apart variability in
the morphology of the various parts of the individuals assigned to a peculiar taxa
and features shared by all the specimens assigned to that taxa. The obtained groups
are hierarchically organized, in a classification. The most common rank in such
classifications is the species, but other ranks are used such as genus, family. Thus,
identifying a plant is commonly treated as giving the scientific name at the specific
rank. To do this, botanists relies on various methods involving memory and obser-
vation. As the result of a more or less long learning, botanist may have an implicit
knowledge of the appearance and the variability of a species. Botanists may also rely
on diagnostic characters, i.e. features (morphological) that tell apart individual of a
peculiar species from any other species in an area. For example, any fan-like leaf,
with a median sinus, collected on a tree, may be assigned to Ginkgo biloba (among
living plants). Diagnostic characters may also correspond to some higher ranked
taxa, for example, umbel-like inflorescences of Apiaceae. Additionally, botanists
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may also use identification keys. Such tools consist in a set of alternatives, usually
a pair of morphological characters (for example “leaf less than 10 cm long” ver-
sus “leaf equal or more than 10 cm long™). At each set of alternatives the botanist
should select the morphological character best applying to his sample. This drives
him toward another set of alternative or to the name of his material. Production of
identification keys is a complex process, and, when allowing the identification of
the plants of an area or a large taxonomic group (such as a family or a genus), are
assembled in books called Floras or Monographs. Such published paper material
is generally used by professional botanists, students, land managers or nature ob-
servers in general.

In the field, expert botanists may apply more or less simultaneously the three
above-listed methods, i.e. implicit knowledge, diagnostic characters and keys. Fur-
ther elements may also be involved in the identification process.

1. According to the period of the year, the location, the altitude, and the local en-
vironment (such as the level of sun exposure, the distance to a river stream or a
disturbed area, the soil quality, etc.), the botanist will have in mind a selection of
potential plant species that occur in the prospected area. The size and the qual-
ity of this potential species list will be directly related to his/her expertise and
experience on this flora.

2. When a botanist sees one or several specimens of the same species to be identi-
fied, he/she will first selects the one(s) that appear(s) to be the most informative,
e.g. the most healthy, the one with the higher number of reproductive organs
(flowers and fruits), or vegetative parts (stems, leaves). Due to this selection,
he/she will access to the plant that will have the most higher volume of informa-
tion, and that gives the best chances to lead to a correct identification.

3. Whether or not he/she uses a key, he/she may look attentively at several parts of
the plants. The habit, i.e the shape of the whole plant, will then usually be the first
morphological attribute analyzed by the botanist, simply because it can be seen
the farthest. The flowers and the fruits, if present, are also very regularly observed,
as they are the most informative parts of the plant. Several attributes will be
analyzed such as their position and insertion on the plants, their number, density,
size, shape, structure, etc. Unfortunately, most plants are in flowers and fruits
only a small fraction of the year (from few days to few weeks). In such situation,
it is often necessary to analyze dry or dead flowers or fruits, if present. Regarding
vegetative parts, most of the time, leaves are the first part to be analyzed. The
botanist may examine their position and distribution along the stem, their shape,
color, vein network, pubescence, etc. He/she will also try to observe uncommon
particularities on the plant such as the presence of spines, of swollen parts, if
some latex is flowing from the stem, or if the plant has a specific smell, etc.

4. The number of observed attributes is very variable from one plant to another. It
depends on its growing stage, on the number of its morphological similar rela-
tives for the considered flora, and of the expertise of the botanist. For example, in
Europe, if a botanist identifies a specimen as belonging to the Moraceae family
(based on the analysis of the leaf, fruit, and latex), he already knows that the num-
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ber of potential species if very small. He/she doesn’t have to look to many more
characters for its species identification. On the other hand, if he/she identifies a
specimen as a representative of the Poaceae family (based on the analysis of the
fruits), he will have to look to many different characters as this family is one of
the most rich in temperate regions (with hundreds or thousands of species).

5. If using a key, the botanist will look more precisely on the features considered at
each set of alternatives, following the order used in the key (thus going from one
part to another and back to the first for example). If he news and recognize on
his sample diagnostic features applying to a group of species (genus, family for
example), he may goes directly to the part of the key dealing with that group. If
he had implicit knowledge of the plant at hand, he may use the key in a reverse
way. In such situation he will goes to the set of alternatives that ends with the
species’ name he had in mind, and look at the characters that are used in the few
previous set of alternatives. Whatever the botanist select himself the characters
to look at or follows the order imposed by the key, for the same character (for
example number of petals) the botanist will look at several relevant parts of the
plant (in the example, several flowers), or even to several individuals, in order to
prevent him looking at an anomaly.

6. During the whole identification process, botanists often use micro-lens. This al-
lows them observing very small plant parts such as the inner parts of the flowers,
or the hair shape on the leaf surface.

7. They may bring back to their offices specimens who are not easily identifiable in
the field either because of lack of some characters or because of the size of such
characters. They may also bring back specimen which are the most interesting for
their research subject for further comparison with previously identified material.

The identification process in the field allows to better understand the assets and
limits of an image-based identification. A picture (or a set of pictures) only pro-
vides a partial view of all the attributes that can be observed in the field. Indeed,
the degree of informativeness of an observation is itself highly dependent on the
botanical expertise of the photographer. Observations made by novices might for
instance be restricted to the habit view which makes the identification impossible in
some cases. Furthermore, the image-based identification process cannot be as iter-
ative and dynamic as in the field. If the botanist realizes that an attribute is missing
when following a dichotomous key, he cannot return to the observation of the plant.

8.3 State-of-the-art of automated plant identification

To evaluate the performance of automated plant identification technologies in a sus-
tainable and repeatable way, a dedicated system-oriented benchmark was setup in
2011 in the context of ImageCLEF'. Between 2011 and 2017, about 10 research
groups participated yearly to this large collaborative evaluation by benchmarking

! www.imageclef.org
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their image-based plant identification systems (see [21, 19, 20, 13, 12, 18, 10] for
more details). The last edition, in 2017, was an important milestone towards build-
ing systems working at the scale of a continental flora [10]. To overcome the scarcity
of expert training data for many species, the objective was to study to what extent a
huge but very noisy training set collected through the Web is competitive compared
to a relatively smaller but trusted training set checked by experts. As a motivation, a
previous study conducted by Krause et al. [11] concluded that training deep neural
networks on noisy data was very effective for fine-grained recognition tasks. The
PlantCLEF 2017 challenge completed their work in two main points: (i) it extended
it to the plant domain and (ii), it scaled the comparison between clean and noisy
training data to 10K of species. In the following subsections, we synthesize the
methodology and main outcomes of this study. A more detailed description and a
deeper analysis of the results can be found in [10].

8.3.1 Dataset and evaluation protocol

Two large training data sets both based on the same list of 10.000 plant species (liv-
ing mainly in Europe and North America) were provided:

Trusted Training Set EoL10K: a trusted training set based on the online collab-
orative Encyclopedia Of Life (EoL)?. The 10K species were selected as the most
populated species in EoL data after a curation pipeline (taxonomic alignment, du-
plicates removal, herbarium sheets removal, etc.).

Noisy Training Set WebI0K: a noisy training set built through Web crawlers
(Google and Bing image search engines) and containing 1.1M images.

The main idea of providing both datasets was to evaluate to what extent machine
learning and computer vision techniques can learn from noisy data compared to
trusted data (as usually done in supervised classification). Pictures of EoL are them-
selves coming from several public databases (such as Wikimedia, Flickr, iNaturalist)
or from some institutions or less formal websites dedicated to botany. All that pic-
tures can be potentially revised and rated on the EoL website. On the other side,
the noisy set contained more images for a lot of species, but with several types and
levels of noise which are basically impossible to automatically filter: a picture can
be associated to the wrong species but the correct genus or family, a picture can be
a portrait of a botanist working on the species, the pictures can be associated to the
correct species but be a drawing or an herbarium sheet of a dry specimen, etc.

Mobile search test set: the test data to be analyzed was a large sample of the

2 http://eol.org/
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query images submitted by the users of the mobile application Pl@ntNet (iPhone?
& Android*). It contained a large number of wild plant species mostly coming from
the Western Europe Flora and the North American Flora, but also species used all
around the world as cultivated or ornamental plants.

8.3.2 Evaluated systems

Eight research groups participated to the evaluation. Details of the methods and
systems they used are synthesized in the overview of the task [10] and further de-
veloped in the individual working notes of the participants (CMP [2], FHDO BCSG
[3], KDE TUT [4], Mario MNB [5], Sabanci Gebze[6], UM [7] and UPB HES SO
[8]). Participants were allowed to run up to 4 systems or 4 different configurations
of their system. In total, 29 systems were evaluated. We give hereafter more details
of the techniques and methods used by the 3 participants who developed the best
performing systems:

Mario TSA Berlin, Germany, 4 runs, [5]: this participant used ensembles of
fine-tuned CNNs pre-trained on ImageNet based on 3 architectures (GoogLeNet,
ResNet-152 and ResNeXT) each trained with bagging techniques. Intensive data
augmentation was used to train the models with random cropping, horizontal flip-
ping, variations of saturation, lightness and rotation. Test images were also aug-
mented and the resulting predictions averaged. MarioTsaBerlin Run I results from
the combination of the 3 architectures trained on the trusted datasets only (EOL and
PlantCLEF2016). Run 2 exploited both the trusted and the noisy dataset to train
four GoogLeNet’s, one ResNet-152 and one ResNeXT. In Run 3, two additional
GooglLeNet’s and one ResNeXT were trained using a filtered version of the web
dataset and images of the test set that received a probability higher than 0.98 in Run
1. The last and “winning” run MarioTsaBerlin Run 4 finally combined all the 12
trained models.

KDE TUT, Japan, 4 runs, [4]: this participant introduced a modified version of the
ResNet-50 model. Three of the intermediate convolutional layers used for down-
sampling were modified by changing the stride value from 2 to 1 and preceding it
by max-pooling with a stride of 2, to optimize the coverage of the inputs. Addition-
ally, they switched the downsampling operation with the convolution for delaying
the downsampling operation. This has been shown to improve performance by the
authors of the ResNet architecture themselves. During the training they used data
augmentation based on random crops, rotations and optional horizontal flipping.
Test images were also augmented through a single flip operation and the result-
ing predictions averaged. Since the original ResNet-50 architecture was modified,

3 https://itunes.apple.com/fr/app/plantnet/id600547573 mt=8
4 https://play.google.com/store/apps/details?id=org.plantnet
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no fine-tuning was used and the weights were learned from scratch starting with
a big learning rate value of 0.1. The learning rates were multiplied by 0.1 twice,
throughout the training process, over 100 epochs according to a schedule ratio 4:2:1
indicating the number of iterations using the same learning rate (limited to a total
number of 350 000 iterations in the case of the big noisy dataset due to technical lim-
itations). Run 1, 2, 3 were trained respectively on the trusted dataset, noisy dataset,
and both datasets. The final run 4 is a combination of the the outputs of the 3 runs.

CMP, Czech Republic, 4 runs, [2]: this participant based his work on the Inception-
ResNet-v2 architecture [29] which introduces inception modules with residual con-
nections. An additional maxout fully-connected layer with batch normalization was
added on top of the network, before the classification fully-connected layer. Hard
bootstrapping was used for training with noisy labels. A total of 17 models were
trained using different training strategies such as: with or without maxout, with or
without pre-training on ImageNet, with or without bootstrapping, with and with-
out filtering of the noisy web dataset. CMP Run 1 is the combination of all the 17
networks by averaging their results. CMP Run 3 is the combination of the 8 net-
works that were trained on the trusted EOL data solely. CMP Run2 and CMP Run
4 are post-processings of CMP Runl and CMP Run 3 aimed at compensating the
asymmetry of class distributions between the test set and the training sets.

8.3.3 Results

We report in Figure 8.1 the performance achieved by the 29 evaluated systems. The
used evaluation metric is the Mean Reciprocal Rank (MRR), i.e. the mean of the
inverse of the rank of the correct species in the predictions returned by the evaluated
system.

The first main outcome of that experiment was that the identification perfor-
mance of state-of-the-art machine learning systems is impressive (with a median
MRR around 0.8 and a maximal MRR of 0.92 for the best evaluated system Mario
MNB Run 4). A second important conclusion was that the best results were obtained
by the systems that were trained on both the trusted and the noisy dataset. Never-
theless, the systems that were trained exclusively on the noisy data (KDE TUT Run
2 and UM Run 2) performed better than the ones using the trusted data solely. This
demonstrates that crawling the web without any filtering is a very effective way of
creating large-scale training sets of plant observations. It opens the door to the possi-
bility of building even larger systems working at the scale of the world’s flora (or at
least on 100K species). Regarding the machine learning methods used by the partic-
ipants, it is noticeable that all evaluated systems were based on Convolutional Neu-
ral Networks (CNN) confirming definitively the supremacy of this kind of approach
over previous methods. A wide variety of popular architectures were trained from
scratch or fine-tuned from pre-trained weights on the popular ImageNet dataset:
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Fig. 8.1 Performance achieved by the 29 systems evaluated within the plant identification chal-
lenge of LifeCLEF 2017

GoogleNet[30] and its improved inception v2[16] and v4 [29] versions, inception-
resnet-v2[29], ResNet-50 and ResNet-152 [22], ResNeXT[22], VGGNet[28] and
even the older AlexNet[7]. Another noticeable conclusion was that the best results
were obtained with ensemble classifiers. The best system Mario MNB Run 4, for
instance, was based on the aggregation of 12 CNNs (7 GoogLeNet, 2 ResNet-152,
3 ResNeXT). The CMP team combined also numerous models, a total of 17 mod-
els for instance for the CMP Run 1 with various sub-training datasets and bagging
strategies, but all with the same inception-resnet-v2 architecture. Another key for
succeeding the task was the use of data augmentation with usual transformations
such as random cropping, horizontal flipping, rotation, for increasing the number
of training samples and helping the CNNs to generalize better. Mario MNB team
added two more interesting transformations, color saturation and lightness.

8.4 Human vs. Machine experiment

The amazingly high performance of machine learning techniques measured within
the LifeCLEF 2017 challenge raises several questions regarding automated species
identification: Is there still a margin of progression ? Are machine learning algo-
rithms becoming as effective as human experts ? What is the maximum reachable
performance when using only images as the main source of information ? As dis-
cussed above, a picture actually contains only a partial information about the ob-
served plant and it is often not sufficient to determine the right species with certainty.
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Estimating this intrinsic uncertainty, thanks to human experts, is thus of crucial in-
terest to answer the question of whether the problem is solved from a computer
science perspective. Therefore, we conducted two experiments described in the two
following subsections. The first one (section 8.4.1) extends the results of the pre-
vious Human vs. Machine experiment that we conducted in 2014. It aims at mea-
suring the progress that were made by automated identification systems since that
time. The second experiment is based on a new testbed involving more challenging
species and a panel of botanists with a much higher expertise on the targeted flora.
It aims at answering the main questions asked in this paper. In the aim to start to
response to these answers, we conducted several experiments with the some of the
most state-of-the-art automated plant identification methods.

8.4.1 Progress made since 2014

As discussed above, a first human vs. machine experiment [1] was conducted in
2014 based on 100 botanical observations that were identified by a panel of peo-
ple with various expertise as well as by the systems evaluated within the LifeCLEF
2014 challenge. The 100 plants were selected at random from the whole set of obser-
vations of the PlantCLEF 2014 dataset [13]. This reduced test set was then shared
with a large audience of potential volunteers composed of four target groups: ex-
pert of the Flora (highly skilled people such as taxonomists, expert botanists of
the considered flora), expert (skilled people like botanists, naturalists, teachers, but
not necessarily specialized on the considered Flora), amateur (people interested by
plants in parallel of their professional activity and having a knowledge at different
expertise levels), and novice (inexperienced users). The identification propositions
were collected through a user interface presenting the 100 observations one by one
(with one or several pictures of the different organs) and allowing the user to select
up to three species for each observation thanks to a drop-down menu covering the
500 species of the PlantCLEF 2014 dataset. The most popular common names were
also displayed in addition to the scientific name of the taxon to facilitate the partic-
ipation of amateurs and novices. If the user didn’t provide any species proposition
for a given observation, the rank of the correct species was considered as infinite in
the evaluation metric. We restricted the evaluation to the knowledge-based identi-
fication of plants, without any additional information or tools during the test. Con-
cretely, the participants were not allowed to use external resources like field guides
or Flora books. Among all contacted people, 20 of them finally accepted to par-
ticipate: 1 expert of the French flora, 7 from the expert group, 7 from the amateur
group, 5 from the novice group.

The performance of the 27 systems evaluated within LifeCLEF 2014 were computed
on the same 100 observations than the ones identified by the human participants. To
allow a fair comparison with human-powered identifications, the number of propo-
sitions was also limited to 3 (i.e. to the 3 species with the highest score for each test
observation). To measure the progress since 2014, we did propose to the research
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groups who participated to the 2017-th edition of LifeCLEF to run their system on
the same testbed. The three research groups who developed the best performing sys-
tems accepted to do so but only two of them (CMP and KDE TUT) were eligible for
that experiment (the systems of Mario MNB were actually trained on a dataset that
contained the 100 observations of the test set). Figure 8.2 reports the Mean Recipro-
cal Rank scores obtained by all human participants and all automated identification
systems (machines”). The description of the systems that were evaluated in 2014
("Machine 2014”) can be found in [13]). The description of the systems that were
evaluated in 2017 ("Machine 2017”’) can be found in section 8.3.2.

The main outcome of Figure 8.2 is the impressive progress that was made by ma-
chines between 2014 and 2017. This progress is mostly due to the use of recent deep
convolutional neural network architectures but also to the use of a much larger train-
ing data. Actually, the systems experimented in 2014 were trained on 60.962 images,
while the systems experimented in 2017 were trained on respectively 256,287 pic-
tures (EOL data) for CMP Run3 and CMP Run4, KDE TUT Runl, and on 1.1M pic-
tures (EOL + Web) for the other ones. Interestingly, the fact that the 2017 systems
were trained on 10K species rather than 500 species did not affect their performance
to much (this might even have increased their performance).

To conclude this first experiment with regard to our central question, one can no-
tice that the quality of the identifications made by the best evaluated system is very
close to the one of the only highly skilled botanist (qualified as "Expert of the flora”
in Figure 8.2). All other participants, including the botanists who were not directly
specialists of the targeted flora, were outperformed by the five systems experimented
in 2017.
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Fig. 8.2 Identification performance of automated systems and humans of various expertise on the
2014-th test set
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8.4.2 Experts vs. Machines experiment (2017)

In the aim to evaluate more precisely the capacities of state-of-the-art plant identi-
fication systems compared to human expertise, we did set up a new evaluation with
(i) a more difficult test set and (ii), a group of highly skilled experts composed of
the most renowned botanists of the considered flora.

8.4.2.1 Test set description

The new test set was created according to the following procedure. First, 125 plants
were photographed between May and June 2017, a suitable period for the observa-
tion of flowers in Europe, in a botanical garden called the “’Parc floral de Paris”, and
in a natural area located in the north of Montpellier city (southern part of France,
close to the Mediterranean sea). The photos have been done with two smartphone
models, an iPhone 5 and a Samsung S5 G930F, by a botanist and an amateur under
his supervision. The selection of the species has been motivated by several crite-
ria including (i) their membership to a difficult plant group (i.e. a group known as
being the source of many confusions), (ii) the availability of well developed speci-
mens with well visible organs on the spot and (iii), the diversity of the selected set of
species in terms of taxonomy and morphology. About fifteen pictures of each speci-
men were acquired in order to cover all the informative parts of the plant. However,
all pictures were not included in the final test set in order to deliberately hide a part
of the information and increase the difficulty of the identification. Therefore, a ran-
dom selection of only 1 to 5 pictures was operated for each specimen. In the end,
a subset of 75 plants illustrated by a total of 216 images related to 33 families and
58 genera was selected. This test set is available online > under an open data license
(CCO) in order to foster further evaluations by other research teams.

8.4.2.2 Experiment description

The test set was sent to 20 expert botanists, working part-time or full-time as
taxonomist, botanist, or research scientist specialist of the considered flora. Few
of them were recognized as non-professional expert botanists. Most of them are
or were involved (i) in the conception of renowned books or tools dedicated to
the French flora (ii) or in the study of large plant groups such as: Mediterranean
flora[31]; Flora of ile-de-France[25]; Flora of cultivated fields[24]; author of the
French national reference checklist[16]; author of the study of traits of Mediter-
ranean species[27], publication on FloreNum®, etc. In addition to the test set, we
provided to the experts an exhaustive list of 2,567 possible species, which is basi-
cally the subpart of the 10.000 species used in PlantCLEF2017 related to the French

3 http://otmedia.lirmm.fr/LifeCLEF/mvsm2017/
S http://www.florenum. fr/
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flora exclusively. Regarding the difficulty of the task and contrary to the previous
human vs. machine experiment done in 2014, each participant was allowed to use
any external resource (book, herbarium material, computational tool, web app, etc.),
excepted automated plant identification tools such as Pl@ntNet. For each plant, the
experts were allowed to propose up to 3 species names ranked by decreasing con-
fidence. Among the 20 contacted experts, 9 of them finally completed the task on
time and returned their propositions.

In parallel, we did propose to the research groups who participated to the 2017-th
edition of LifeCLEF to run their system on the same testbed than the one sent to the
experts. The three research groups who developed the best performing systems ac-
cepted to do so and provided a total of 9 run files containing the species predictions
of their systems with different configurations (see section 8.3.2 for more details).

8.4.2.3 Results

Figure 8.3 displays the top-1 identification accuracy achieved by both the experts
and the automated systems. Table 8.1 reports additional evaluation metrics namely
the Mean Reciprocal Rank score (MRR), the top-2 accuracy and the top-3 accuracy.
As a first noticeable outcome, none of the botanist correctly identified all observa-
tions. The top-1 accuracy of the experts is in the range 0.613 — 0.96. with a median
value of 0.8. This illustrates the high difficulty of the task, especially when remind-
ing that the experts were authorized to use any external resource to complete the
task, Flora books in particular. It shows that a large part of the observations in the
test set do not contain enough information to be surely identified when using clas-
sical identification keys. Only the four experts with an exceptional field expertise
were able to correctly identify more than 80% of the observations.

Besides, Figure 8.3 shows that the top-1 accuracy of the evaluated systems is in
the range 0.56-0.733 with a median value of 0.66. This is globally lower than the
experts but it is noticeable that the best systems were able to perform similarly or
slightly better than three of the highly skilled participating experts. Moreover, if we
look at the top-3 accuracy values provided in Table 8.1, we can see that the best
evaluated system returned the correct species within its top-3 predictions for more
than 89% of the test observations. Only the two best experts obtained a higher top-3
accuracy. This illustrates one of the strength of the automated identification systems.
They can return an exhaustive ranked list of the most probable predictions over all
species whereas this is a very difficult and painful task for human experts. Figure
8.5 displays the further top-K accuracy values as a function of K for all the eval-
uated systems. It shows that the performance of all systems continues to increase
significantly for values of K higher than 3 and then becomes more stable for values
of K in the range [20-50]. Interestingly, the best system reaches a top-11 accuracy
0of 0.973%, i.e. the same value of the top-1 accuracy of the best expert, and a 100%
top-K accuracy for K = 39. In view of the thousands of species in the whole check
list, it is likely that such a system would be very useful even for the experts them-
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selves. By providing an exhaustive short list of all the possible species, it would help
them to not exclude any candidate species that they might have missed otherwise.

Run RunType MRR Topl Top2 Top3
Expert 1 human 0.967 0.96 0.973 0.973
Expert 2 human 0.947 0.933 0.96 0.96
Expert 3 human 0.88 0.88 0.88 0.88
Expert 4 human 0.864 0.84 0.88 0.893
Expert 5 human 0.8 08 0.8 08
Expert 6 human 0.78 0.773 0.787 0.787

Mario TSA Berlin - Noisy machine 0.819 0.733 0.827 0.893
Mario TSA Berlin - Average machine 0.805 0.733 0.813 0.853
Expert 7 human 0.74 0.72 0.76 0.76

KDE TUT Mixed machine 0.786 0.707 0.8 0.827
Mario TSA Berlin - Filtered machine 0.751 0.693 0.747 0.787
KDE TUT Average machine 0.753 0.667 0.76 0.787

Expert 8 human 0.64 0.64 0.64 0.64
KDE TUT - Noisy machine 0.75 0.64 0.8 0.813
Expert 9 human 0.62 0.613 0.627 0.627
CMP machine 0.679 0.6 0.667 0.72

KDE TUT - Trusted machine 0.656 0.573 0.613 0.72
Mario TSA Berlin - Trusted machine 0.646 0.56 0.64 0.68

Table 8.1 Results of the human vs. machine 2017 experiments ordered by the top 1 accuracy
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Fig. 8.3 Identification performance achieved by machines and human experts for the human vs.
machine 2017 experiments
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To further understand the limitations and the margin of progress of the evaluated
identification systems, we did analyze more deeper which of the 75 test observations
were correctly identified or missed compared to the expert’s propositions. The main
outcome of that analysis is that the automated systems perform as well as experts
for about 86% of the observations, i.e. for 65 of the 75 test observations, the best
evaluated system ranked the right species at a lower or equal rank than the best ex-
pert. Among the 10 remaining observations, 6 were correctly identified in the top-3
predictions of the best system and 9 in the top-5. Figure 8.4 displays 3 of the most
difficult observations for the machines, i.e. the ones that were not identified by any
system within the top-3 predictions. It is likely that the cause of the identification
failure differs from an observation to another one. For the observation n74, for in-
stance, it is likely that the main cause of failure is a mismatch between the training
data and the test sample. Actually, the training samples of that species usually con-
tain visible flowers whereas only the leaves are visible in the test sample. For the
observation n29, it is more likely that the failure is due to the intrinsic difficulty of
the Carex genus within which many species are very similar visually. Most of the
proposals in machine runs are nevertheless under the Carex genus. For observation
n43, the fact that most of images were not focused on a single leaf but dedicated to
the illustration of the whole plant, which has a common aspect of a tuft of leaves,
is probably at the origin of the misidentification. The small size of the discriminant
organs and the cluttered background in the test sample makes the identification even
more difficult.

Id Species
Lathyrus
74 vernus (L.)
Bernh

Carex distans
29 L.

Apium
43 | graveolens L.

Fig. 8.4 Examples of observations well identified by experts but missed by the automated identi-
fication systems
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Fig. 8.5 Top-K accuracy of the evaluated system as a function of K

8.5 Conclusion and perspectives

The goal of this paper was to answer the question of whether automated plant identi-
fication systems still have a margin of progression or if they already perform as well
as experts for identifying plants in images. Our study first shows that identifying
plants from images solely is a difficult task, even for some of the highly skilled spe-
cialists who accepted to participate to the experiment. This confirms that pictures of
plants only contain partial information and that it is often not sufficient to determine
the right species with certainty. Regarding the performance of the machine learning
algorithms, our study shows that there is still a margin of progression but that it is
becoming tighter and tighter. Indeed, the evaluated systems were able to correctly
identify as many plants as three of the experts whereas all of them were special-
ists of the considered flora. The best system was able to correctly classify 73.3%
of the test samples including some belonging to very difficult taxonomic groups.
This performance is still far from the best expert who correctly identified 96.7%
of the test samples, however, as shown in our study, a strength of the automated
systems is that they can return instantaneously an exhaustive list of all the possible
species whereas this is a very difficult task for humans. We believe that this already
makes them highly powerful tools for modern botany. Indeed, classical field guides
or identification keys are much more difficult to handle and they require much more
time to achieve a similar result. Furthermore, the performance of automated sys-
tems will continue to improve in the following years thanks to the quick progress
of deep learning technologies. It is likely that systems capable of identifying the
entire world’s flora will appear in the next few years. The real question now is how
to integrate them in pedagogical tools that could be used in teaching programs ef-
fectively and in a sustainable way. They have the potential to become essential tools
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for teachers and students, but they should not replace an in-depth understanding of
botany.
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