A. Matsunaga, A. Thompson, R. J. Figueiredo, C. C. Germain-aubrey, M. Collins et al., A computational-and storage-cloud for integration of biodiversity collections, IEEE 9th International Conference on, pp.78-87, 2013.
DOI : 10.1109/escience.2013.48

L. M. Page, B. J. Macfadden, J. A. Fortes, P. S. Soltis, and G. Riccardi, Digitization of biodiversity collections reveals biggest data on biodiversity, vol.65, pp.841-842, 2015.
DOI : 10.1093/biosci/biv104

URL : https://academic.oup.com/bioscience/article-pdf/65/9/841/5874763/biv104.pdf

E. Mata-montero and J. Carranza-rojas, Automated Plant Species Identification: Challenges and Opportunities, pp.26-36, 2016.
DOI : 10.1007/978-3-319-44447-5_3

URL : https://hal.archives-ouvertes.fr/hal-01429753

J. Carranza-rojas, H. Goeau, P. Bonnet, E. Mata-montero, and A. Joly, Going deeper in the automated identification of herbarium specimens, BMC Evolutionary Biology, vol.17, issue.1, p.181, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01580070

D. P. Bebber, M. A. Carine, J. R. Wood, A. H. Wortley, D. J. Harris et al., Herbaria are a major frontier for species discovery, Proceedings of the National Academy of Sciences, vol.107, issue.51, pp.22-169, 2010.
DOI : 10.1073/pnas.1011841108

URL : http://www.pnas.org/content/107/51/22169.full.pdf

A. Joly, H. Goëau, H. Glotin, C. Spampinato, P. Bonnet et al., LifeCLEF 2016: Multimedia Life Species Identification Challenges, pp.286-310, 2016.
DOI : 10.1007/978-3-319-44564-9_26

URL : https://hal.archives-ouvertes.fr/hal-01373781

N. Kumar, P. N. Belhumeur, A. Biswas, D. W. Jacobs, W. J. Kress et al., Leafsnap: A computer vision system for automatic plant species identification, Computer Vision-ECCV 2012, pp.502-516, 2012.
DOI : 10.1007/978-3-642-33709-3_36

A. Joly, P. Bonnet, H. Goëau, J. Barbe, S. Selmi et al., A look inside the pl@ntnet experience, Multimedia Systems, vol.22, issue.6, pp.751-766, 2016.
DOI : 10.1007/s00530-015-0462-9

URL : https://hal.archives-ouvertes.fr/hal-01182775

C. N. Silla and A. A. Freitas, A survey of hierarchical classification across different application domains, Data Min Knowl Disc, vol.22, pp.31-72, 2011.
DOI : 10.1007/s10618-010-0175-9

F. Wu, J. Zhang, and V. Honavar, Learning classifiers using hierarchically structured class taxonomies, Proceedings of the 6th International Conference on Abstraction, Reformulation and Approximation, ser. SARA'05, pp.313-320, 2005.
DOI : 10.1007/11527862_24

URL : http://www.cs.iastate.edu/~honavar/Papers/FeihongSARA05.pdf

B. Shahbaba and R. M. Neal, Improving classification when a class hierarchy is available using a hierarchy-based prior, Bayesian Anal, vol.2, issue.1, pp.221-237, 2007.
DOI : 10.1214/07-ba209

URL : https://doi.org/10.1214/07-ba209


Z. Yan, H. Zhang, R. Piramuthu, V. Jagadeesh, D. Decoste et al., Hd-cnn: Hierarchical deep convolutional neural network for large scale visual recognition, ICCV'15: Proc. IEEE 15th International Conf. on Computer Vision, 2015.

J. Carranza-rojas, A. A. Joly, P. Bonnet, H. H. Goau, and E. Mata-montero, Automated herbarium specimen identification using deep learning, Biodiversity Information Science and Standards, vol.1, p.20302, 2017.
DOI : 10.3897/tdwgproceedings.1.20302

URL : https://hal.archives-ouvertes.fr/hal-01629142

H. Goëau, P. Bonnet, and A. Joly, LifeCLEF Plant Identification Task, CLEF: Conference and Labs of the Evaluation forum, ser. CLEF2015 Working notes, CEUR-WS, vol.1391, 2015.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh et al., ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision (IJCV), vol.115, issue.3, pp.211-252, 2015.
DOI : 10.1007/s11263-015-0816-y

URL : http://dspace.mit.edu/bitstream/1721.1/104944/1/11263_2015_Article_816.pdf

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, CoRR, 2015.

S. Dieleman, J. Schlter, C. Raffel, E. Olson, S. K. Snderby et al., Lasagne: First release, 2015.

T. Development-team, Theano: A Python framework for fast computation of mathematical expressions, 2016.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed et al., Going deeper with convolutions, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1-9, 2015.
DOI : 10.1109/cvpr.2015.7298594

URL : http://arxiv.org/pdf/1409.4842

I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet, Multi-digit number recognition from street view imagery using deep convolutional neural networks, 2014.