B. M. Ábrego, M. Cetina, S. Fernández-merchant, J. Leaños, and G. Salazar, On k-edges, crossings, and halving lines of geometric drawings of K n, Discrete Comput. Geom, vol.48, issue.1, pp.192-215, 2012.

B. M. Ábrego and S. Fernández-merchant, A lower bound for the rectilinear crossing number, Graphs Combin, vol.21, issue.3, pp.293-300, 2005.

B. M. Ábrego, S. Fernández-merchant, J. Leaños, and G. Salazar, A central approach to bound the number of crossings in a generalized configuration, The IV Latin-American Algorithms, Graphs, and Optimization Symposium, vol.30, pp.273-278, 2008.

B. M. Ábrego, S. Fernández-merchant, and G. Salazar, The rectilinear crossing number of K n : closing in (or are we?). In Thirty essays on geometric graph theory, pp.5-18, 2013.

O. Aichholzer, F. Aurenhammer, and H. Krasser, Enumerating Order Types for Small Point Sets with Applications, Proc. 17 th Ann. ACM Symp. Computational Geometry, pp.11-18, 2001.

O. Aichholzer, J. García, D. Orden, and P. Ramos, New lower bounds for the number of ( k)-edges and the rectilinear crossing number of K n, Discrete Comput. Geom, vol.38, issue.1, pp.1-14, 2007.

G. Aloupis, J. Iacono, S. Langerman, O. Özkan, and S. Wuhrer, The complexity of order type isomorphism, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '14, pp.405-415, 2014.

F. Ardila, F. Rincón, and L. Williams, Positively oriented matroids are realizable, J. Eur. Math. Soc. (JEMS), vol.19, issue.3, pp.815-833, 2017.

J. Balogh, B. Lidický, and G. Salazar, Closing in on Hill's conjecture. ArXiv e-prints, 2017.

B. Borchers, CSDP, A C library for semidefinite programming, Optimization Methods and Software, vol.11, issue.1-4, pp.613-623, 1999.

P. Brass, W. Moser, and J. Pach, Research Problems in Discrete Geometry, 2005.

S. Brazitikos, A. Giannopoulos, P. Valettas, and B. Vritsiou, Geometry of isotropic convex bodies, Mathematical Surveys and Monographs, vol.196, 2014.

R. De-joannis-de-verclos, Applications of limits of combinatorial structures in graph theory and in geometry, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01916063

M. G. Dobbins, A. Holmsen, and A. Hubard, Realization spaces of arrangements of convex bodies, Discrete Comput. Geom, vol.58, issue.1, pp.1-29, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01203785

F. Duque, R. Fabila-monroy, and C. Hidalgo-toscano, Point sets with small integer coordinates and no large convex polygons, Discrete Computational Geometry, vol.59, 2018.

P. Erd?s, Some remarks on the theory of graphs, Bull. Amer. Math. Soc, vol.53, pp.292-294, 1947.

P. Erd?s, Some old and new problems in combinatorial geometry, Convexity and graph theory, vol.87, pp.129-136, 1981.

P. Erd?s and R. K. Guy, Crossing number problems, Amer. Math. Monthly, vol.80, pp.52-58, 1973.

P. Erd?s and G. Szekeres, A combinatorial problem in geometry, Compositio Math, vol.2, pp.463-470, 1935.

R. Fabila-monroy and J. López, Computational search of small point sets with small rectilinear crossing number, Journal of Graph Algorithms and Applications, vol.18, issue.3, pp.393-399, 2014.

S. Janson, Standard representation of multivariate functions on a general probability space, Electron. Commun. Probab, vol.14, pp.343-346, 2009.

S. Janson, Graphons, cut norm and distance, couplings and rearrangements, New York Journal of Mathematics. NYJM Monographs, vol.4, 2013.

J. D. Kalbfleisch, J. G. Kalbfleisch, and R. G. Stanton, A combinatorial problem on convex n-gons, Proc. Louisiana Conf. on Combinatorics, Graph Theory and Computing, pp.180-188, 1970.

E. Katz and S. Payne, Realization spaces for tropical fans, Combinatorial aspects of commutative algebra and algebraic geometry, vol.6, pp.73-88, 2011.

L. Lovász, Large networks and graph limits, vol.60, 2012.

L. Lovász and B. Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B, vol.96, issue.6, pp.933-957, 2006.

L. Lovász, K. Vesztergombi, U. Wagner, and E. Welzl, Convex quadrilaterals and k-sets, Towards a theory of geometric graphs, vol.342, pp.139-148, 2004.

O. Nikodym, Sur une généralisation des intégrales de, M. J. Radon. Fundamenta Mathematicae, vol.15, pp.131-179, 1930.

J. Radon, Theorie und anwendungen der absolut additiven mengenfunktionen, Sitzungsber. Acad. Wissen. Wien, vol.122, pp.1295-1438, 1913.

A. A. Razborov, Flag algebras, J. Symbolic Logic, vol.72, issue.4, pp.1239-1282, 2007.

L. A. Santaló, Introduction to integral geometry, vol.1198, 1953.

E. R. Scheinerman and H. S. Wilf, The rectilinear crossing number of a complete graph and Sylvester's "four point problem" of geometric probability, Amer. Math. Monthly, vol.101, issue.10, pp.939-943, 1994.

P. W. Shor, Stretchability of pseudolines is NP-hard, of Applied geometry and discrete mathematics, vol.4, pp.531-554, 1991.

R. Sikorski, Funkcje rzeczywiste, 1958.

W. A. Stein, Sage Mathematics Software (Version 6.1). The Sage Development Team, 2013.

E. Steinitz, Bedingt konvergente Reihen und konvexe Systeme. i-ii-iii, J. Reine Angew. Math, vol.143, pp.1-52, 1913.

A. Suk, On the Erd?s-Szekeres convex polygon problem, J. Amer. Math. Soc, vol.30, pp.1047-1053, 2017.

G. Szekeres and L. Peters, Computer solution to the 17-point Erd?s-Szekeres problem, ANZIAM J, vol.48, issue.2, pp.151-164, 2006.

P. Valtr, Probability that n random points are in convex position, Discrete & Computational Geometry, vol.13, issue.1, pp.637-643, 1995.

A. Lemma,

, To see this, we fix a sequence (? n ) n?N of positive numbers tending to 0. Next, we define an increasing sequence of sets (C n ) n?N satisfying µ(C n ) y for every n ? N as follows. Set C 0 = ? and observe that by the definition of ?, for each i 1 there exists a measurable set C i such that C i?1 ? C i ? B and µ(C i ) ?(C i?1 , B, y) ? ? i, ? J are measurable sets satisfying µ(B 1 ) y µ(B 2 ), we define ?

C. , B. , ). , and B. , Since x µ(A) < ?, we thus know that there exists a measurable set C 1 ? A such that µ(C 1 ) = ?(C 1 , A, x) x. Further, as µ(A) ? x µ(A \ C 1 ) < ?, we also know that there exists a measurable set C 2 ? A \ C 1 such that µ(C 2 ) = ?(C 2 , A \ C 1 , µ(A) ? x) µ(A) ? x. As it turns out, the set S = A \ (C 1 ? C 2 ) is an atom unless it has measure 0, This upper bound on the supremum ?(C, B, y) is in particular reached by C, so µ(C) = ?

. Consequently, + µ(C 1 ? T ) while on the other hand A is the disjoint union of