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Abstract 

Aims: We tested the hypothesis that a machine learning (ML) algorithm utilizing both complex 

echocardiographic data and clinical parameters could be used to phenogroup a heart failure (HF) 

cohort and identify patients with beneficial response to cardiac resynchronization therapy (CRT).  

Methods and Results: We studied 1106 HF patients from The Multicenter Automatic Defibrillator 

Implantation Trial with Cardiac Resynchronization Therapy (MADIT-CRT) (LVEF≤30%,  QRS≥130  

ms, NYHA  class  ≤II) randomized to CRT with a defibrillator (CRT-D, n=677) or an implantable 

cardioverter defibrillator (ICD, n=429). An unsupervised ML algorithm (Multiple Kernel Learning 

and K-means clustering) was used to categorize subjects by similarities in clinical parameters, and LV 

volume and deformation traces at baseline into mutually exclusive groups. The treatment effect of 

CRT-D on the primary outcome (all-cause death or HF event) and on volume response was compared 

among these groups. Our analysis identified four phenogroups, significantly different in the majority 

of baseline clinical characteristics, biomarker values, measures of LV and RV structure and function 

and the primary outcome occurrence. Two phenogroups included a higher proportion of known 

clinical characteristics predictive of CRT response, and were associated with a substantially better 

treatment effect of CRT-D on the primary outcome (HR 0.35; 95% CI 0.19-0.64; P=0.0005 and HR 

0.36; 95% CI 0.19-0.68; P=0.001) than observed in the other groups (interaction P=0.02).  

Conclusions: Our results serve as a proof-of-concept that, by integrating clinical parameters and full 

heart cycle imaging data, unsupervised ML can provide a clinically meaningful classification of a 

phenotypically heterogeneous HF cohort and might aid in optimizing the rate of responders to specific 

therapies.  

 

Keywords: Machine learning, Heart failure, Personalised medicine, Echocardiography, Cardiac 

resynchronisation therapy 
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Introduction 

The goal of personalized medicine is to optimize the tailoring of treatments to specific patients in 

order to maximise the treatment response, which, as a prerequisite, requires accurate patient 

phenogrouping. The syndrome of heart failure (HF) comprises particularly heterogeneous patient 

groups, burdened by limited success of some treatment options. Machine learning approaches have 

been applied in the diagnosis, classification, assessment of readmissions and medication adherence of 

HF patients 1, as well as to identify distinct phenogroups in several disorders, including HF with 

preserved ejection fraction (HFpEF) 2, 3, and to predict mortality in patients with suspected coronary 

artery disease 4. Supervised machine learning involves using iterative  algorithms  that  “learn”  from a 

large accurately labelled training dataset 5; while often diagnostically “accurate”,  it  is  generally  

impossible  to  infer  the  “diagnostic  reasoning”  employed  in  these algorithms. Unsupervised 

approaches,  however,  do  not  attempt  to  identify  a  diagnostic  or  prognostic  “truth”  but  instead  group  

(or cluster) patients together based on multiple characteristics, which could be demographic, 

historical, or measured. By grouping similar patients together in multiple dimensions, it is then 

possible to analyse the characteristics of similarly grouped individuals and relate them to outcomes or 

therapeutic responses. We have previously shown that unsupervised multiple kernel learning (MKL) 

can be applied to find similarities among patients, based on a wide range of heterogeneous data, such 

as complex imaging-based  descriptors  of  ventricular  structure  and  function,  in  an  “agnostic”  manner  2. 

One such area where more accurate phenogrouping could improve selection of patients is cardiac 

resynchronization therapy (CRT) which, despite clear guidelines for which patients should be treated, 

a substantial proportion of patients do not respond to this therapy 6–9   We hypothesized that novel 

approaches based on machine learning (ML), integrating clinical parameters with complex 

echocardiographic data on myocardial deformation and LV volume changes measured over the entire 

cardiac cycle might be able to overcome some of the limitations of traditional approaches to patient 

selection for CRT, and provide an example of how machine learning can be utilized to better 

phenogroup patients with HF with respect to both outcomes and response to therapy. We therefore 

utilized data from Multicenter Automatic Defibrillator Implantation Trial with Cardiac 
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Resynchronization Therapy (MADIT-CRT), a large randomized clinical trial of 1820 patients with 

NYHA  functional  class  ≤II  symptoms,  LVEF≤30%  and  QRS≥130  ms10,to determine whether 

unsupervised ML could aid in the identification of patients likely to respond to CRT.  

 

Methods 

Study population  

The design and results of MADIT-CRT have been published previously 10,11. In brief, the MADIT-

CRT trial enrolled 1820 patients from December 2004, through April 2008, at 110 centres in the 

United States, Canada, and Europe. These were mildly symptomatic patients with ischaemic heart 

disease (in New York Heart Association (NYHA) class I or II) or patients with nonischaemic heart 

disease  (in  NYHA  class  II)  in  sinus  rhythm  with  an  LVEF  ≤30%,  and  a  QRS  duration  ≥130  ms, who 

were randomly assigned in a 3:2 ratio to receive a CRT-D or an ICD alone. All recruited subjects met 

guideline indications for ICD therapy 12. The main objective was to determine whether CRT-D 

reduces the risk of death or HF events compared with ICD. The average follow-up period was 2.4 

years. The protocol was approved by the institutional review board at each of the participating 

centres, and each subject gave written informed consent.  

Echocardiography 

Two-dimensional (2D) echocardiography was performed before device implantation (baseline) and 

at 1-year follow-up, following a study-specific protocol 13. The echocardiographic core laboratory at 

Brigham  and  Women’s Hospital performed the screening of the echocardiograms for quality, and the 

echocardiographic measurements relevant to the study. Left ventricular and atrial volumes were 

assessed by the biplane Simpson’s method. LVEFs were calculated according to standard methods 13. 

Reproducibility of the primary volumetric measurements has been previously demonstrated 14. 
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The echocardiographic images of 1106 patients in this MADIT-CRT analysis (CRT-D, n=677; 

ICD-only, n=429) were analysed using the TomTec Arena software (v1.0, TomTec Imaging Systems, 

Unterschleissheim, Germany). Endocardial borders were traced in the end-systolic frame of the apical 

4- and 2-chamber views, and automatically propagated over the course of 2 cardiac cycles. We stored 

49 segmental LV longitudinal strain and 1 volume curves for a posteriori ML analysis. Previous 

studies report excellent reproducibility of the estimated LV myocardial deformation 15. The reasons to 

exclude patients from the analysis included: images in non-DICOM format, frame rate <30 Hz, 

missing of 4- or 2-chamber images, unacceptable 2D image quality, use of echocardiographic contrast 

agent, presence of endocardial dropout, or out-of-plane images.  

Outcome measures 

The primary endpoint of the trial was death from any cause or a non-fatal HF event, whichever 

came first 10. The adjudication of the endpoints was carried out by an independent endpoint 

committee, unaware of patient randomization status 10. In addition to determining the treatment effect 

on the primary outcome over an average follow-up of 2.3 years, we have also assessed the benefit on 

echocardiographic response at 1 year follow-up.  

Baseline characteristics, data preprocessing and unsupervised machine learning  

Seventy-seven baseline variables, consisting of clinical and echocardiographic parameters with 

<20 % missing data were identified. After filtering correlated variables using a cut-off  Pearson’s  

coefficient > 0.8, fifty variables including demographic and laboratory data, ECG and 

echocardiography measurements, data on medication use and recruitment centre were selected at 

baseline and were used as input for the ML algorithm (Table 1). These variables included both 

categorical and continuous data, with the continuous variables converted to ordinal by dividing their 

range into 10 uniform bins 16. Missing data for input variables ranged from 0% to 15.6% in the case of 

right ventricular fractional area change. They were imputed using the imputeFAMD function within 
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the missMDA package in R 17, which allows imputing mixed datasets (with continuous and 

categorical variables) using a principal component method adapted for mixed data.   

In addition to these common baseline characteristics, baseline LV strain and volume traces 

throughout the entire cardiac cycle as well as a temporal deformation vector (used to keep the relative 

changes in duration of the cardiac phases, relevant for improved HF characterization 2) were included 

in the further processing by the ML algorithm. In order to retain the wealth of data on LV geometry 

and deformation over a cardiac cycle contained in the traces, each one of them was defined and 

inputted to the algorithm as a set of data points (specifically, 102 variables per trace), instead of e.g. 

only a peak value (such as end-diastolic and end-systolic volume or peak systolic strain). Prior to 

analysis, these traces need to be referenced to a common temporal framework 18 (see online-only Data 

Supplement). The 49 segmental strain traces available from the 2ch and 4ch views were converted 

into 2 basal, 2 mid-LV and 2 apical segments, by isolating and averaging groups of 8 consecutive 

traces. The most apical trace was discarded.  

The final input to the algorithm is shown in Figure 1 (left panel). For the 2ch and the 4ch views of 

every patient, a total of 8 echocardiographic descriptors (traces) were analysed per view (Figure 1, left 

panel): 1 volume trace, 6 strain traces, and 1 temporal deformation vector, which results from the 

temporal alignment step. Fifty clinical parameters inputted to the algorithm are listed in Table 1. 

These echocardiographic descriptors (full traces) and baseline clinical parameters provided a total of 

1682 input variables: each echocardiographic trace contains 102 data points, making a total of 1632 

echocardiographic trace data points (8 traces x 2 views x 102 time instants) to which 50 clinical 

parameters were added. We then used unsupervised MKL (Figure 1, right panel), an ML algorithm 

already validated and extensively tested to combine cardiac motion data 2, to convert the input dataset 

consisting of 1682 variables into a compact representation space where subjects are positioned 

according to their similarity, while  blinded  to  the  patient’s  outcome  status  with  respect  to  both  clinical  

events and volume response.  

Once positioned in the compact representation space, subjects were clustered with the K-means 

algorithm (Figure 1, right panel) to identify phenotypically-distinct categories of CRT candidates. We 
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ran the clustering algorithm with increasing number of predefined groups (from 3 to 8), however, the 

clinical interpretation of the clusters remained stable; ultimately, we chose the configuration that 

maximizes the statistical significance (minimizing P value for trend, adjusted for multiple testing) of 

the treatment effect on the primary outcome among clusters (henceforth referred as phenogroups).   

Further details about our unsupervised ML method can be found in the online-only Data 

Supplement. 

Comparison of Clinical and Echocardiographic Characteristics; Survival and Treatment 

effect on Primary Outcome and LV Reverse Remodelling  

Categorical variables are expressed as counts and percentages, and differences among 

phenogroups were assessed using the chi-square test. Continuous variables are presented as mean  

standard deviation, and inter-group differences were calculated using ANOVA. A p-value of less than 

0.05 was considered statistically significant. The previous comparison was complemented with a 

physiologic interpretation of the found phenogroups in the form of a variability analysis of strain and 

volume patterns in the 2ch and 4ch views, using advanced regression techniques 19. Kaplan–Meier 

estimates for HF or death in each phenogroup were determined and statistically compared with the 

log-rank test. Cox proportional hazards regression analyses were performed on each phenogroup to 

estimate the treatment effect on the primary endpoint. The treatment effect on volumetric response 

was expressed for every phenogroup as the difference between treated and untreated patients in 

LVEDVi percent change (from baseline to 1 year follow-up).   

Stability and Internal Validation of the Unsupervised Machine Learning Model 

We evaluated the generalizability of our dimensionality reduction solution assessing the 

correlation among low-dimensional space distributions obtained by analysing populations with an 

increasing number of subjects in common. We also checked the consistency among the K-means 

clustering configurations by computing the membership agreement when increasingly partitioning the 

space, from 3 to 8 clusters.  
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We assessed the stability of these results through internal validation, which involved running our 

ML algorithm in a randomly-selected portion of the database (75% = training set) to create clusters, 

finding the corresponding cluster for the remaining subjects (25% = validation set), and comparing 

both the training and the validation clustering solutions in terms of clinical characteristics and 

outcome. Further details on both the stability experiments and the internal validation can be found in 

the online-only Data Supplement. 

The ML algorithm as well as the regression technique used to analyse the variability of 

echocardiographic patterns among phenogroups were implemented using MATLAB (R2016b, The 

MathWorks Inc., Natick, MA, 2016). Survival and treatment effect analyses were performed in Stata 

version 13 (StataCorp, College Station, TX, USA).  

 

Results 

Results of Machine Learning  

The MKL algorithm reduced the dimensionality of the input data to equal the number of input 

subjects minus 1. However, only the first 2 dimensions of the output (low-dimensional) space were 

considered for clustering, as they encoded the most salient characteristics of these data 2. Furthermore, 

they presented the highest standard deviations on the coordinates of subjects (with further dimensions 

showing a linear decay up to the 6th dimension, from which the standard deviation is >98% smaller 

than the first dimension), and thus contributed to a higher extent to the cluster assignment computed 

by the K-means algorithm.  

Baseline Characteristics of Patients by Phenogroups  

Baseline characteristics of the patients included in this analysis were comparable to the remainder 

of the MADIT-CRT study, as reported previously 15. 
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The most statistically-significant clustering solution categorized the overall patient population into 

four clusters, i.e. phenogroups (Figure 1, right panel) with distinct clinical and echocardiographic 

characteristics (Table 1, Figure 2, Supplementary Figure S6). This solution was better at identifying 

CRT responders than those obtained by independently analysing clinical parameters or complex 

echocardiographic descriptors alone (see Supplemental Material). Phenogroups 1 and 3 were 

associated with the highest proportion of clinical characteristics known to be predictive of volumetric 

response to CRT 14: Phenogroups 1 and 3 comprised the highest proportion of patients with non-

ischaemic cardiomyopathy (54.8% and 57.4%, respectively) and LBBB (86.0% and 80.8%, 

respectively), the QRS duration was the longest in Phenogroup 1, which was also the Phenogroup 

with the lowest median age, while Phenogroup 3 consisted of the largest proportion of female 

patients. Conversely, Phenogroups 2 and 4 were associated with the highest proportion of male 

patients and ischaemic origin of HF, as well as the lowest proportion of patients with LBBB 

morphology on ECG.   

The values of systolic blood pressure were the lowest and the heart rate was the highest in 

Phenogroup 1; this was also the phenogroup with the highest proportion of patients receiving diuretics 

and aldosterone antagonists. There was no significant difference in the proportion of patients 

receiving beta blockers or ACE inhibitors / angiotensin receptor blockers among the four 

phenogroups.   

Furthermore, echocardiography measurements revealed that the patients in Phenogroup 1 had the 

most remodelled LVs at baseline (the largest LV end-diastolic and end-systolic volume index, LV 

mass index and LAVi) and the lowest LVEF and 12-segment global longitudinal strain (GLS), while 

the same was observed for the RV size and function in this phenogroup (largest RV diameter and 

lowest fractional area change (FAC)), with Phenogroup 4 having similarly remodelled RVs. 

Conversely, these measurements of LA and LV structure demonstrated the lowest severity of 

remodelling in Phenogroup 2. RV size was the smallest and FAC and LVEF were the highest in 

Phenogroups 2 and 3 (group P values for all mentioned echo parameters <0.001).  
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In addition to the clinical and echocardiographic characteristics of the studied patients, the MKL 

algorithm also included data on LV volume traces and longitudinal strain traces. Representative 

“fingerprints”  of  such  traces  are  shown  for each phenogroup in Figure 3. In Phenogroup 1, the LV 

strain curves show late systolic stretch of the apical septal segment and a mirrored contraction of the 

apical lateral wall – a feature described as a part of the LBBB-related Septal Flash pattern. The 

volume trace shows a delayed peak, i.e. tardily achieved end-systolic volume. These patients had the 

largest end-diastolic LV volumes and the lowest LVEF values. The strain curves in Phenogroup 2 

show nearly absent deformation only in the apical anterolateral region, with a normal shape of the 

strain trace and lower peak values in the septal and inferior regions. Along with Phenogroup 3, these 

were the least dilated ventricles with the highest LVEF values. In Phenogroup 3, there is early 

deformation of the apical septum while some early stretch is present in the lateral traces, mirroring an 

early deformation of the apical septum. Phenogroup 4 exhibits nearly absent deformation in the basal 

inferoseptum with very low deformation in all apical regions and somewhat preserved deformation in 

the basal anterolateral wall – this pattern is indicative of large apical infarcts extending to the 

inferoseptum. Although the volume curve in Phenogroup 4 peaks early, these patients also have 

markedly remodelled LVs.  

Comparison of Survival among Phenogroups 

The natural course of disease, as assessed in the ICD-only subgroup of patients, varied among the 

phenogroups (Figure 4 left panel, and Supplementary Figure S8): the Kaplan-Meier estimate of the 

probability of survival free of HF revealed a less severe disease course in Phenogroup 2 in which the 

primary event occurred in 15.4% of the patients in the ICD-only subgroup (2.1% of the patients died, 

9.8% were hospitalized for HF and the remaining 3.5% had an out-of-hospital HF event). Conversely, 

the untreated patients in Phenogroup 1 had the highest incidence of the primary event, occurring in 

38% of patients (1.4% had an all-cause death, 33.8% were hospitalized for HF and 2.8% had a HF 

event not requiring hospitalization). Overall, the primary outcome occurred in 220 patients from the 

current analysis, and differed significantly among phenogroups: it occurred most frequently in 

Phenogroups 1 and 4 (41 patients (26.1%) and 79 patients (27.4%), respectively) and was least 
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represented in Phenogroups 2 and 3 (55 patients (14.9%) and 45 patients (15.5%), respectively) 

(Figure 4 left panel). All-cause death did not differ significantly among the phenogroups; the 

difference in the primary endpoint was mainly driven by a significant difference in the occurrence of 

HF requiring hospitalization, occurring most often in Phenogroups 1 and 4 (21.0% and 20.5% of 

patients, respectively) and least frequently in Phenogroups 2 and 3 (10.3% and 11.3% of patients, 

respectively).  

Effect of Treatment on Primary Outcome and LV Reverse Remodelling  

The effect of CRT-D treatment, compared to ICD-only, on the primary outcome of death or HF 

event assessed among the four phenogroups by Cox proportional hazard analysis is depicted on Figure 

4 (right panel): patients categorized to Phenogroups 1 and 3 exhibited an 64% and 65% reduction in 

the risk of HF or death, respectively (HR, 0.36; 95% CI, 0.19 to 0.68; P=0.001 and HR, 0.35; 95% CI, 

0.19 to 0.64; P=0.0005, respectively), which was a substantially higher treatment benefit than 

observed in the other groups (interaction P=0.02). Phenogroups 2 and 4 benefited from CRT-D 

therapy to a lesser extent compared to the overall cohort; however, the nonresponse did not reach 

statistical significance.  

A significant treatment effect on LV reverse remodelling, defined as LVEDVi percent change, was 

noted in all phenogroups (Figure 4, right panel). However, Phenogroup 3, characterized by a lower 

severity of ventricular remodelling at baseline, was identified to be associated with a substantially 

better volume response: in this phenogroup CRT-D treatment was associated with an average 18.8 % 

decrease in LVEDVi, when corrected for ICD-only treatment (95% CI, -21.2 to -16.4; P<0.0001). A 

marked volume response was also detected in Phenogroup 1 with an average 18.2% decrease in 

LVEDVi (95% CI, -21.9 to -14.6; P<0.0001), while patients in Phenogroups 2 (HR -13.6; 95% CI, -

15.8 to -11.5; P<0.0001) and 4 (HR -14.2; 95% CI, -16.8 to -11.5; P<0.0001) showed the lowest 

amount of LVEDVi percent change within 12 months.  

Stability and Internal Validation 
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The similarity among low-dimensional space distributions increased with the number of subjects 

in common at the input of the machine learning analysis, resulting in excellent correlation when the 

subjects in common were above 500 (Pearson correlation coefficient > 0.90). We also observed a high 

degree of consistency across clustering configurations from 3 to 8 clusters. Lastly, similar trends were 

observed in the clinical parameters and the treatment effect when comparing the training and 

validation clustering configurations, emphasizing the capacity of our model to predict outcomes for 

new, unseen data. All these results are detailed in the online-only Data Supplement. 

 

Discussion  

In this analysis we have shown that unsupervised ML allows for a novel integration of entire 

cycle-wide LV volume and deformation traces from echocardiography, rather than only single data 

points, which can be combined with extensive clinical and medication parameters to phenotype 

patients with complex diseases such as HF. We have also demonstrated the added value of combining 

both sets of descriptors to find subjects that are more likely to respond to CRT, compared to the 

results obtained by independently analysing clinical parameters or complex echocardiographic 

descriptors alone. Our results serve as a proof-of-concept that unsupervised machine-learning based 

approaches can be used to combine both standard clinical parameters and complex echocardiographic 

data to provide a clinically interpretable and meaningful classification of a phenotypically 

heterogeneous HF cohort and to identify patients most likely to respond to specific therapies.  

Integrating echocardiographic tracings to address the heterogeneity of a heart failure 

population  

HF is a multifaceted syndrome and response to therapies is based on multiple clinical and imaging 

parameters as well as biomarkers. Traditional methods to define phenotypes and predict outcomes 

within groups of individuals with HF rely on the elucidation of individual phenotypic subgroups that 

focus on isolated characteristics (i.e., aetiology of HF, QRS morphology, presence or absence of 
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specific comorbidities, cardiac structure and function, etc.). Furthermore, while assessment of cardiac 

structure and function using current echocardiographic analysis tools can identify subgroups of HF 

patients at higher risk for adverse outcomes 20, standard approaches ascribe risk to a limited amount of 

individual measurements in a unidimensional fashion. Namely, data on cardiac structure and function 

provided by echocardiography contain a plethora of information representing multiple time points in a 

cardiac cycle (the number of data points correspond to the frame rate of the acquired images), but are 

typically under-exploited in standard quantitative data analyses and replaced by single measurements, 

thus failing to summarize the complexity of events over the cardiac cycle. Unlike previous studies that 

aimed, but failed, at finding a single echocardiographic measure of dyssynchrony to improve patient 

selection for CRT beyond current guidelines 21, we integrated echocardiographic imaging in a more 

comprehensive and novel manner by integrating entire LV volume and strain patterns throughout the 

cardiac cycle rather than utilizing single measures such as LV end-diastolic and systolic volume or 

global longitudinal strain. By integrating over 1600 data points per cardiac cycle, this method also is 

able to incorporate complex patterns of regional cardiac function that are impossible to describe 

parametrically. These algorithms thus combine a detailed analysis of cardiac dynamics over an entire 

cardiac cycle with an extensive set of clinical parameters.  

 It is often emphasized that the management of HF patients requires improved integration of 

clinical data with echocardiography- the most widely used and accessible diagnostic tool for a 

comprehensive assessment of cardiac structure and function. Indeed, ML allows for the integration of 

very large amounts of continuous and discrete variables pertinent to clinical characteristics, laboratory 

values, ECG parameters and commonly analysed echocardiographic variables, as has been applied in 

HF and other cardiovascular diseases. Unsupervised ML techniques, such as the MKL version that we 

have utilized in this study, offer the advantage of exploiting these full acquired datasets to compare 

similarities amongst patients without assumptions on which single measurements (data points) are 

most relevant for the studied patient population. In addition to tissue Doppler trace analysis in HFpEF 

patients 22, the analysis of LV strain traces has previously been performed in a study of 60 patients 

with acute myocardial infarction by applying principal component analysis 23. Furthermore, the 
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prediction of CRT response was also attempted in a smaller cohort of 34 CRT candidates 24. The 

strengths of our analysis as compared to both of these studies is in the use of a non-linear (more 

adequate to process cardiac motion patterns, compared to principal component analysis 2) and 

unsupervised analysis technique (compared to supervised MKL24), thus better suited to agnostically 

partition a population into homogeneous groups. Importantly, the richness of the analysed data 

obtained by integrating entire volume/strain traces provides enough information to enable 

identification of phenogroups (which have been “agnostically”  defined by the K-means algorithm) of 

patients with similar (but not identical) properties without prior assumptions on outcomes. The 

performed dimensionality reduction aids in extracting the relevant clinical characteristics of the 

phenogroups, providing (patho)physiologically relevant and interpretable results. Indeed, ML has 

previously been successfully employed in the diagnosis, classification and prognostication of HF 

cohorts 1,25. In addition to the achieved advancements and ongoing efforts in the field 26, we believe 

that the approach proposed in this analysis contributes to this growing field by providing novelty and 

strengthening the integration of detailed imaging data with standardly utilised clinical variables in an 

ML analysis dedicated to providing clinically interpretable results. Namely, our analysis was superior 

at identifying CRT responders compared to independently analysing clinical parameters or complex 

echocardiographic descriptors alone, which did not provide phenogroups with statistically significant 

differences in the treatment effect (see Supplemental Material). 

Positioning unsupervised learning in the spectrum of machine learning approaches and 

the utility of interpretability 

The current data analysis trend is towards powerful approaches such as deep learning, which uses 

neural networks to solve complex pattern recognition problems 27 such as object 28 and speech 29 

recognition, but requires immense collections of data (often lacking in clinical medicine) to make 

reliable predictions 27. Furthermore,  the  “black-box”  nature  of  this  methodology  often  provides  results 

difficult to interpret 27. Human interpretability is increasingly recognized as a highly relevant feature 

of ML methodologies, crucial in efforts towards data-driven precision medicine, based on informed 
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and auditable decisions. Thus, we opted for  a  “simpler”  and less data-demanding analysis approach, 

for which we reinforce aspects of interpretability (Figure 5). This approach was specifically designed 

to combine heterogeneous data in an unsupervised way, which ultimately allows finding groups of 

patients with similar characteristics and therapy response. Our unsupervised analysis approach, rather 

than classifying based on a priori knowledge as done in a recent study targeting the same clinical 

problem 30, allows for natural clustering of patients, and results in the identification of patient 

subgroups with defined treatment effects. Unlike the work by Kalscheur et al. 30, where the authors 

used a Random Forest regression model to predict outcome, we emphasized the interpretability of our 

model, which allows exploring the computed data  “universe”,  and highlights the data features that are 

relevant to the clinical hypothesis under study. This provides for a more meaningful description and 

distinction of specific patient groups within the cohort. Specifically, Phenogroups 1 and 3 showed 

marked response to CRT (both in primary outcome and volume response) and shared similar clinical 

attributes known to be predictive of (volume) response to CRT while the LV strain traces revealed an 

LBBB-related strain pattern. In contrast, Phenogroups 2 and 4 represented the non-responder groups, 

characterised by a low proportion of LBBB, high proportion of ischemic heart disease and LV strain 

patterns consistent with ischaemia/scar. Phenogroup 2 consisted of patients with the least severe 

course of disease – those with the lowest NYHA class, lowest diuretic use and the least remodelled 

LVs. We postulate that, in conjunction with a different HF substrate (predominantly ischaemic heart 

disease and other comorbidities) this lead to a lack of response to CRT. Conversely, those in 

Phenogroup 4 exhibited a larger amount of biventricular remodelling and extensive scarring on the 

LV strain traces with a high primary outcome rate in the ICD-only subgroup, possibly inferring a 

more advanced stage of ischaemic heart disease, too advanced to respond to CRT (Figure 2). In 

summary, a combination of beneficial clinical parameters and strain patterns (some known to be 

typically associated to LBBB and describing LV mechanics in CRT responders) appear to predict a 

beneficial treatment effect of CRT, superior to echocardiographic and clinical parameters alone. 

Contrasting clinical features and strain patterns revealing more non-deforming regions suggest less 

successful treatment by CRT. 
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In  the  current  manuscript,  we  did  not  aim  to  set  out  a  specific  “model”  or  scoring  system  for  the  

prediction of response to CRT, which we believe requires further tool development as well as external 

validation. Rather, we aimed to ascertain the potential of unsupervised learning approaches in novel 

phenogrouping of a HF cohort, extended by its application in the prediction of response to a specific 

therapy, and to demonstrate the benefit of integrating complex imaging data and clinical parameters to 

accomplish robust phenogrouping. We believe that the novelty predominantly lies in the described 

methodology, and perhaps less so in the features detected to be associated with CRT response: while 

this agnostic approach identified features that were previously shown to predict response to CRT 14,21, 

we were able to accomplish this in a multivariable manner using both clinical and imaging based data, 

rather than by comparison of unidimensional subgroups. Our study is timely, since our echo-based 

analyses could be relatively easily programmed into echocardiographic post-processing equipment 

that already does extract the kind of deformation descriptors that we have used.  

 

Limitations 

Several limitations of this study should be acknowledged. The results are confined to a selected 

population of patients with mild HF enrolled in a clinical trial with robust inclusion and exclusion 

criteria, which have thus determined the input data to the algorithm. A longer follow up time than the 

average of 2.3 years available in our cohort may have been beneficial. Furthermore, an inherent 

limitation of echocardiographic studies applies to our study as well: the quality of data relies on 

acquired images and their quality, which was however minimized by excluding echo studies with 

unacceptable 2D image quality. Although our analysis approach is unsupervised, some human 

intervention in the form of specification of the most meaningful clustering configuration was required. 

We demonstrated the overall stability of our results with different database sizes and different sets of 

descriptors; however, as with all statistical modelling, the results are dependent on the input data, and 

careful interpretation is needed to guarantee the generalizability of the results. Due to the overlapping 

between  phenogroups,  our  findings  lose  power  in  areas  close  to  the  frontier  between  clusters  (“grey  
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zone”).  However,  if  more  subjects  and  clinical  descriptors  were  available,  our  implementation  would  

allow a more detailed phenotyping, enabling a more patient-specific approach. In such scenario, for 

every new case the algorithm could suggest similar subjects from its records and provide statistics on 

the likeliness that a certain subject may develop a disease (diagnosis) or may evolve in a determined 

way with time or therapy (prognosis). Finally, while external validation would be optimal, a 

comparable dataset is difficult to obtain, particularly in view of the detailed baseline characteristics 

and outcomes of the cohort, as well as in respect to the completeness of the dataset. However, we 

have assessed the stability of our data through internal validation (online-only Data Supplement).  

Conclusion 

In conclusion, this analysis confirms the utility of unsupervised ML for a novel approach to the 

integration of complex echocardiographic data (data on LV volume and deformation throughout the 

cardiac cycle instead of single data points) with clinical parameters to phenotype patients with HF 

with reduced ejection fraction. Our results serve as a proof-of-concept that fully unsupervised ML 

approaches can provide an interpretable and clinically meaningful classification of a heterogeneous 

cohort of HF patients, creating a basis of a data-driven platform that might aid in identifying patient 

subgroups most likely to respond to specific therapies. The feasibility and novelty of the proposed 

model for patient phenogrouping in heart failure and its added value in clinical decision making 

should be evaluated in a prospective controlled trial. 
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Figure legends:  

Figure 1. Overview of the proposed analysis. Input data consist of both complex descriptors from 

echocardiography and clinical parameters (left panel), which are used by the unsupervised machine 

learning algorithm to position subjects according to their similarity through dimensionality reduction, 

and eventually propose coherent subgroups of subjects using clustering (right panel).  

 

Figure 2. Typical clinical characteristics, features of LV deformation patterns and outcome rates of 

the four Phenogroups. The green circles represent the Phenogroups more likely to respond to CRT, as 

opposed to the red circles. The image summarizes the clinical interpretability of the results obtained 

by the utilised unsupervised machine learning algorithm.  

 

Figure 3. Volume and strain traces corresponding to the representative patient of each phenogroup, 

i.e.,  those  located  at  the  barycenter  of  the  phenogroup’s  distribution. 

 

Figure 4. Kaplan-Meier estimates of the probability of survival free of heart failure according to 

treatment arm in each of the phenogroups. The table shows the incidence rates for the primary 

outcome by phenogroup (left panel). The combined effect of CRT-D treatment on the primary 

outcome of death or heart failure event (x-axis) and ICD-only corrected percent change in LV end-

diastolic volume index (y-axis) assessed among the four phenogroups (lower panel). P=0.02 and 

P=0.005 for interaction of primary outcome and volume response, respectively (right panel).  

 

Figure 5. The comparison of current clinical practice and machine learning (ML) in the approach to 

diagnosis and clinical decision making. Both approaches utilise similar "input" sources, and 

depending on clinical experience or ML approach chosen, can use more or less complex data. Also, 
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both approaches can be based on either interpretable reasoning or black box reasoning. While 

outcome data for a specific patient are known only a posteriori in clinical practice, most ML 

approaches integrate these data a priori. The proposed phenotyping approach based on dimensionality 

reduction of complex patterns and unsupervised grouping is agnostic to outcomes, allowing for 

phenogroup interpretation based on the integration of outcomes data a posteriori (dashed line). 
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Table 1. Baseline Characteristics of the Studied Patients by Phenogroups.  

 
Overall 

average 

Phenogroup 1 

(N=157) 

Phenogroup 2 

(N=370) 

Phenogroup 3 

(N=291) 

Phenogroup 4 

(N=288) 

Group 

P value 

Age, years 64 ± 11 62 ± 11 64 ± 11 67 ± 11 63 ± 11 <0.001 

Female 274 (25%) 35 (22.3%) 30 (8.1%) 195 (67.0%) 14 (4.9%) <0.001 

Race, white 1006 (91%) 151 (96%) 324 (88%) 274 (94%) 257 (89%) 0.002 

Ischaemic CMP 622 (56%) 71 (45.2%) 264 (71.4%) 124 (42.6%) 163 (56.6%) <0.001 

NYHA class II 934 (84%) 141 (89.8%) 287 (77.6%) 261 (89.7%) 245 (85.1%) <0.001 

Hypertension 687 (62%) 77 (49.0%) 254 (68.7%) 174 (59.8%) 182 (63.2%) <0.001 

Diabetes 311 (28%) 36 (22.9%) 118 (31.9%) 62 (21.3%) 95 (33.0%) 0.002 

Smoking 134 (12%) 27 (17.2%) 44 (11.9%) 30 (10.3%) 33 (11.5%) 0.18 

Prior CABG 312 (28%) 39 (24.8%) 129 (34.9%) 53 (18.2%) 91 (31.6%) <0.001 

Prior non-CABG 

revascularization  
314 (28%) 30 (19.1%) 146 (39.5%) 60 (20.6%) 78 (27.1%) <0.001 

Prior MI 497 (45%) 52 (33.1%) 215 (58.1%) 101 (34.7%) 129 (44.8%) <0.001 

Prior CVA  66 (6%) 9 (5.7%) 33 (8.9%) 9 (3.1%) 15 (5.2%) 0.016 

Prior HF 

hospitalization 
409 (37%) 56 (35.7%) 108 (29.2%) 125 (43.0%) 120 (41.7%) <0.001 

Number of hospitalisations prior to enrolment   0.73 

None 590 (53%) 88 (56%) 195 (53%) 160 (55%) 147 (51%)  

One 374 (34%) 48 (31%) 130 (35%) 96 (33%) 100 (35%)  

Two 97 (9%) 18 (12%) 29 (8%) 24 (8%) 26 (9%)  

Three or more 45 (4%) 3 (2%) 16 (4%) 11 (4%) 15 (5%)  

Prior ventricular 

arrhythmias 
71 (6%) 17 (10.8%) 23 (6.2%) 14 (4.8%) 17 (5.9%) 0.09 

Prior atrial 

arrhythmias 
115 (10%) 15 (9.6%) 44 (11.9%) 19 (6.5%) 37 (12.9%) 0.06 

SBP, mmHg 123 ± 18 117 ± 16 125 ± 18 123 ± 18 123 ± 17 <0.001 

DBP, mmHg 72 ± 10 71 ± 11 73 ± 10 71 ± 10 72 ± 11 0.07 

Heart rate, bpm 63 ± 11 66 ± 11 62 ± 11 64 ± 11 64 ± 12 <0.001 

Height, cm 173 ± 9.6 171 ± 8 177 ± 7 163 ± 8 178 ± 7 <0.001 

BMI, kg/m2 28.3 ± 5.0 27.4 ± 4.0 29.6 ± 4.7 25.5 ± 4.7 29.8 ± 5.0 <0.001 
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BSA, m2 2.01 ±0.24 1.95 ± 0.20 2.13 ± 0.17 1.75 ± 0.15 2.14 ± 0.19 <0.001 

QRS duration, ms 157 ± 19 172 ± 22  152 ± 16 154 ± 16 159 ± 20 <0.001 

LBBB 782 (71%) 135 (86%) 204 (55.1%) 235 (80.8%) 208 (72.2%) <0.001 

RBBB 133 (12%) 7 (4.5%) 80 (21.6%) 18 (6.2%) 28 (9.7%) <0.001 

Interventricular 

conduction delay 
184 (17%) 14 (8.9%) 86 (23.2%) 33 (11.3%) 51 (17.7%) <0.001 

Six-minute walk 

distance, m 
363 ± 103 378 ± 100 367 ± 106 346 ± 102 366 ± 99 0.006 

Blood urea 

nitrogen, mg/dL 
22 ± 9 22 ± 9 22 ± 10 21 ± 8 23 ± 9 0.014 

Creatinine, 

mg/dL 
1.2 ± 0.3 1.1 ± 0.3 1.2 ± 0.3 1,1 ± 0.3 1.3 ± 0.3 <0.001 

ACE 

inhibitor/ARB 
1055 (95%) 151 (96.2%) 348 (94.1%) 284 (97.6%) 272 (94.4%) 0.14 

Beta blocker 1031 (93%) 145 (92.4%) 343 (92.7%) 276 (94.9%) 267 (92.7%) 0.64 

Diuretic 814 (74%) 132 (84.1%) 242 (65.4%) 215 (73.9%) 225 (78.1%) <0.001 

Aldosterone 

antagonist 
326 (30%) 56 (35.7%) 98 (26.5%) 76 (26.1%) 96 (33.3%) 0.04 

Calcium channel 

blocker 
88 (8%) 6 (3.8%) 46 (12.4%) 16 (5.5%) 20 (6.9%) <0.001 

Amiodarone 74 (7%) 13 (8.3%) 20 (5.4%) 11 (3. 8%) 30 (10.4%) 0.007 

Digitalis 282 (26%) 56 (35.7%) 77 (20.8%) 83 (28.5%) 66 (22.9%) 0.002 

Statin 743 (67%) 88 (56.1%) 292 (78.9%) 166 (57.1%) 197 (68.4%) <0.001 

Antiarrhythmic 

medication 
7 (1%) 1 (0.6%) 4 (1.1%) 0 (0%) 2 (0.7%) 0.38 

LVEDVi, ml/m2 124 ± 28 172 ± 31 105 ± 12 119 ± 16 128 ± 14 <0.001 

LVESVi, mL/m2 88 ± 23 128 ± 26 72 ± 9 83 ± 12 93 ± 10 <0.001 

Regional wall 

thickness 
0.25 ± 0.03 0.22 ± 0.03 0.26 ± 0.02 0.26 ± 0.02 0.25 ± 0.02 <0.001 

LV mass, g 211 ± 38 249 ± 43 197 ± 25 186 ± 22 233 ± 32 <0.001 

LVMi, g/m2 106 ± 18 128 ± 18 93 ± 12 107 ± 14 109 ± 14 <0.001 

LA width, cm 4.0 ± 0.2 4.2 ± 0.2 3.9 ± 0.1 3.8 ± 0.1 4.1 ± 0.1 <0.001 
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LAVi, ml/m2 46 ± 10 59 ± 11 39 ± 6 44 ± 8 50 ± 8 <0.001 

LVEF, % 29 ± 3 26 ± 3 31 ± 3 31 ± 3 28 ± 3 <0.001 

12-segment GLS, 

% 
-9.8 ± 2.8 -7.8 ± 2.4 -10.8 ± 2.8 -10.4 ± 2.7 -9.0 ± 2.4 <0.001 

RV diameter, mm 28.3 ± 2.3 30.4 ± 1.9 27.7 ± 1.7 26.7 ± 1.7 29.8 ± 1.6 <0.001 

RV FAC, % 43 ± 6 39 ± 5 44 ± 5 44 ± 6 40 ± 4 <0.001 

 

CMP – cardiomyopathy; NYHA – New York Heart Association; CABG – coronary artery bypass grafting; MI – myocardial 

infarction; CVA - cerebrovascular accident; HF – heart failure; SBP – systolic blood pressure; DBP – diastolic blood 

pressure; BMI – body mass index;  BSA – body surface area; LBBB – left bundle branch block; RBBB – left bundle branch 

block; ACE – angiotensin converting enzyme; ARB – angiotensin receptor blocker;  LVEDVi – left ventricular end-diastolic 

volume index; LVESVi – left ventricular end-sysstolic volume index; LV – left ventricular; LVMi – left ventricular mass 

index; LA – left atrial; LAVI – left atrial volume index; LVEF – left ventricular ejection fraction, RV – right ventricle;  FAC 

– fractional area change, GLS – global longitudinal strain. 

 

Preprint version accepted to appear in European Journal of Heart Failure.
Final version of this paper available at https://onlinelibrary.wiley.com/doi/full/10.1002/ejhf.1333
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