A Comparison of Genetic Regulatory Network Dynamics and Encoding

Abstract : Genetic Regulatory Networks (GRNs) implementations have a high degree of variability in their details. Parameters, encoding methods, and dynamics formulas all differ in the literature, and some GRN implementations have a high degree of model complexity. In this paper, we present a comparative study of different implementations of a GRN and introduce new variants for comparison. We use a modified Genetic Algorithm (GA) to evaluate GRN performance on a number of common benchmark tasks, with a focus on real-time control problems. We propose an encoding scheme and set of dynamics equations that simplifies implementation and evaluate the evolutionary fitness of this proposed method. Lastly, we use the comparative modifications study to demonstrate overall enhancements for GRN models.
Type de document :
Communication dans un congrès
Genetic and Evolutionary Computation COnference (GECCO 2017), Jul 2017, Berlin, Germany. GECCO '17 Proceedings of the Genetic and Evolutionary Computation Conference, pp. 91-98, 2017
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01912802
Contributeur : Open Archive Toulouse Archive Ouverte (oatao) <>
Soumis le : lundi 5 novembre 2018 - 16:49:02
Dernière modification le : vendredi 9 novembre 2018 - 01:10:23
Document(s) archivé(s) le : mercredi 6 février 2019 - 15:52:06

Fichier

disset_19093.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01912802, version 1
  • OATAO : 19093

Collections

Citation

Jean Disset, Dennis Wilson, Sylvain Cussat-Blanc, Stéphane Sanchez, Hervé Luga, et al.. A Comparison of Genetic Regulatory Network Dynamics and Encoding. Genetic and Evolutionary Computation COnference (GECCO 2017), Jul 2017, Berlin, Germany. GECCO '17 Proceedings of the Genetic and Evolutionary Computation Conference, pp. 91-98, 2017. 〈hal-01912802〉

Partager

Métriques

Consultations de la notice

11

Téléchargements de fichiers

7