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ABSTRACT

Scale-free dynamics commonly appear in individual components of

multivariate data. Yet, while the behavior of cross-components is

crucial in modeling real-world multivariate data, their examination

often suggests departures from exact multivariate self-similarity

(also termed fractal connectivity). The present paper introduces

a multivariate Gaussian stochastic process with Hadamard (i.e.,

entry-wise) self-similar scale-free dynamics, controlled by a matrix

Hurst parameter H , that allows departures from fractal connectiv-

ity. The properties of its wavelet coefficients and wavelet spectrum

are studied, enabling the estimation of H and of the fractal con-

nectivity parameter. Furthermore, it permits the computation of

closed-form confidence intervals for the estimates based on approx-

imate (wavelet) covariances. Finally, these developments enable us

to devise a test for fractal connectivity. Monte Carlo simulations are

used to assess the accuracy of the proposed approximate confidence

intervals and the performance of the fractal connectivity test.

Index Terms— Multivariate self-similarity, Fractal connectiv-

ity, Wavelet spectrum, Hypothesis testing

1. INTRODUCTION

Context: univariate scale-free dynamics. The paradigm of

scale-free dynamics has been ubiquitous in many real-world appli-

cations which are very different in nature, ranging from biomedi-

cal [1], to physics [2] to finance [3] and to Internet [4], to name but

a few. Scale invariance implies that the dynamics of a time series

X(t) are driven by a wide continuum of time scales instead of only

a few characteristic scales. Fractional Brownian motion (fBm), the

only Gaussian self-similar process with stationary increments [5, 6],

is among the most prominent and widely used scale invariance

models for univariate time series. Its scale invariance properties

are completely determined by a single parameter H , termed the

Hurst or self-similarity parameter. The reference analysis tool is the

wavelet transform. Given a univariate time series X(t), it enables

the estimation of H as the exponent controlling the power law be-

havior across scales a of the empirical second-order moments of its

(L1-normalized, cf., (9)) wavelet coefficients dX(a, t) [7–9], i.e.,

1

T

∑

t

d2X(a, t) ≃ Caα, α = 2H, (1)

where T is the number of terms in the sum.

Related works: multivariate scale-free dynamics. However, in

many recent applications, data are collected by a large number m of
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sensors that jointly and simultaneously monitor one same system un-

der study. Multivariate data, X(t) =
(

Xq(t)
)m

q=1
, hence naturally

call for multivariate scale-free dynamics models. To date, there has

been a single reference model for multivariate scale-free dynamics,

the so-called operator fractional Brownian motion (ofBm). The latter

is a multivariate self-similar Gaussian process with stationary incre-

ments, and was recently introduced in [10, 11]. In the present study,

the focus is on a specific instance of ofBm, referred to as entry-wise

scaling ofBm, denoted es-ofBm, in which each individual compo-

nent Xq(t) has scaling properties, as in (1) with scaling exponent

αqq = 2Hq , q = 1, . . . ,m.

The estimation of the parameter vector
(

Hq
)m

q=1
has been theo-

retically studied in various settings [11, 12]. It can again be formu-

lated in the wavelet domain, as in (1):

1

T

∑

t

d2Xq
(a, t) ≃ Cqqa

αqq , (2)

Related works: fractal connectivity. By construction, es-ofBm

further implies that, like auto-components, cross-components are

also characterized by scale-free dynamics, which in wavelet repre-

sentation translates into:

1

T

∑

t

dXi
(a, t)dXl

(a, t) ≃ Cila
αil . (3)

However, the cross-scaling exponents αil are, by definition, imposed

by the auto-components, αil = (αii + αqq)/2, a property referred

to as fractal connectivity, after [13, 14].

Although used in applications as a way of improving the esti-

mation of the auto-component scaling exponents αqq [13], fractal

connectivity actually constitutes a severe practical limitation in the

modeling of real-world data. Indeed, it restrictively implies that the

only relevant information in the cross-term analysis of data is given

by the correlation coefficient, a static property, hidden in the con-

stant Cil. In other words, by contrast with the auto-terms, there is

no relevant information conveyed by scale-free temporal dynamics

of cross-terms.

However, there is no reason a priori to assume that fractal con-

nectivity holds in real-world data. To the contrary, there is a num-

ber of examples where scaling exponents empirically estimated on

cross-terms significantly depart from the constraint αil = (αii +
αqq)/2, and where such departures are actually regarded as crucial

information (cf. e.g., [1] in neurosciences). In short, es-ofBm is

too restrictive a model as it rules out the possibility that additional

information on temporal dynamics may be obtained from the joint

examination of pairs of components.

Goals, contributions and outline. Hence, there is a crucial need

for practical procedures for testing departures from fractal connec-



tivity (in the spirit of the preliminary attempt [14]) and for multi-

variate scale-free processes permitting to model such departures for

real-world data. To address these limitations, the following original

contributions are proposed. First, the Hadamard fractional Brow-

nian motion (HfBm) is introduced, a multivariate process that en-

ables pairwise departures from fractal connectivity (cf. Section 2).

Second, the estimation of the auto- and cross-component scaling ex-

ponents of HfBm in a wavelet framework is defined and assessed

(cf. Section 3). Third, an original procedure is devised that enables

the approximate computation of the variances and covariances of the

scaling exponent estimates from a single realization of a multivari-

ate time series (cf. Section 4). Fourth, a practical test for fractal

connectivity is devised, assessed and compared against a heuristic

test proposed in [14] (cf. Section 5). The accuracy of the approx-

imation and the performance of the proposed test are quantified by

Monte Carlo simulations, conducted on synthetic copies of HfBm.

Results indicate that the proposed theoretical developments are rele-

vant and operational, and that the test for fractal connectivity signif-

icantly outperforms previous formulations.

2. HADAMARD SELF-SIMILAR PROCESS

Definition. Elaborating on univariate fBm [5, 6] and multivariate

ofBm [10, 11], we propose to define Hadamard fractional Brownian

motion (HfBm) BH = {BH(t)}t∈R ∈ R
m as a proper Gaussian

process, with second moment given by:

{E[BH(s)BH(t)∗]}s,t∈R =
{

∫

R

(eisx − 1

ix

)(e−itx − 1

−ix
)

fX(x)dx
}

s,t∈R

, (4)

where the entries of the matrix of spectral densities fX read:

fX(x)il =
(

ρil|x|−(αil−1)
)

gil(x), i, l = 1, . . . ,m (5)

In (5), ∀i, l = 1, . . . ,m, 0 < αil < 2,
(

ρil
)m

i,l=1
is a symmetric and

positive definite point-covariance matrix, and the function g acts as

a regularizing high-frequency (fine scale) cutoff that is necessary for

the existence of HfBm. Indeed, the definition of multivariate spectral

densities requires that [15]: |fil(x)| ≤
√

fii(x)
√

fll(x) dx-a.e..
Preliminary analyses indicate that the simple choice gii(x) ≡ 1 and

gil(x) ≡ exp (−x2) when i 6= l guarantees the existence of the

process in general, both with and without fractal connectivity [16].

Scale-free dynamics. HfBm is characterized by multivariate

asymptotic (large-scale) scale-free dynamics in the sense that

(E[BH(as)BH(at)∗])il ≃ a2hil(E[BH(s)BH(t)∗])il (6)

for ∀a≫ 1, with matrix exponent H =
(

hil
)m

i,l=1
satisfying

0 < hil = αil/2 < 1, i, l = 1, . . . ,m. (7)

Since the function gil is a fine scale regularization, it does not im-

pact coarse scale asymptotic scale-free dynamics. This intuition is

confirmed by numerical simulations and will be formalized in [16].

Fractal connectivity. We also define the fractal connectivity pa-

rameter matrix, whose entries read:

δil , (αii + αll)/2− αil, 1 ≤ i ≤ l ≤ m. (8)

The ultimate goal of this work is to test whether δil = 0, i.e., whether

the components i and l are fractally connected, cf., Section 5. An

HfBm with αil = (αii + αll)/2 (i.e., satisfying fractal connectivity

for all components), with gil(x) ≡ 1 ∀x, ∀(i, l) is an es-ofBm with

parameters (h11, . . . , hmm), as defined in [10, 11, 17].

3. SCALING EXPONENT WAVELET BASED ESTIMATION

Following seminal contributions on Hurst parameter estimation for

univariate fBm [7,18,19] and bivariate ofBm [12], we make use of a

wavelet framework for the estimation of the scaling parameters.

Discrete wavelet transform (DWT). A mother wavelet ψ(t) ∈
L2 is a reference pattern with narrow time and frequency supports

that is additionally characterized by its number of vanishing mo-

ments Nψ ,
∫

R
tpψ(t)dt = 0 for 0 ≤ p < Nψ and

∫

R
tpψ(t)dt 6= 0

for p ≥ Nψ . Let j ∈ N and k ∈ Z denote the scale and a shift

parameters, respectively. The (L1-normalized) vector-valued DWT

coefficients of X = {X(t)}t∈R ∈ R
m are defined by [9]

D(j, k) =
(

dq(j, k)
)m

q=1
,

∫

R

2−jψ(2−jt− k)X(t)dt. (9)

Scale-free dynamics. Combining (6) and (9) permits translating

HfBm scale-free dynamics into wavelet representations, ∀ j ≫ 0:

(E[D(j, k)D(j, k)∗])il ≃ Cil2
j2hil E[D(0, k)D(0, k)∗])il. (10)

Scaling exponent estimation procedure. The matrix S(j) of em-

pirical second-order moments of D(j, k) reproduces the scaling re-

lation in (10) for coarse scales a = 2j , as

(S(j))il , (
1

nj

nj
∑

k=1

D(j, k)D(j, k)∗)il ≃ 2j2hil(S(0))il. (11)

Following classical univariate procedures, the scaling exponents
(

αil
)m

i,l=1
can then be estimated by means of linear regressions:

α̂il =
∑j2

j=j1
wj log2 |Sil(j)|, 1 ≤ i ≤ l ≤ m, (12)

where wj is a suitable linear regression weight [7, 8,11,20, 21]. The

resulting fractal connectivity parameter estimator is:

δ̂il = (α̂ii + α̂ll)/2− α̂il, i 6= l. (13)

Estimation performance assessment. The estimation perfor-

mance is assessed by means of Monte Carlo simulations, performed

over 1000 independent realizations of bivariate (m = 2) HfBm

for several (from small to large) sample sizes n, both under fractal

connectivity (δil = 0) and for departure from fractal connectivity

(δil 6= 0). HfBm synthesis is done by means of our own toolbox

described in [22] and made available at http://hermir.org. It

can be shown theoretically and validated numerically that estimates

α̂il and δ̂il are asymptotically unbiased and have negligible finite

sample size biases in practice. They are also asymptotically normal

and their finite sample variances and covariances decrease as 1/n.

In essence, the performance replicates that achieved in the univari-

ate setting, as well-documented and studied in, e.g., [19]. For space

reasons, these theoretical results will be detailed in [16]. Instead,

here we choose to put the emphasis on illustrating the asymptotic

normality of the fractal connectivity parameter estimate δ̂il, which

is explicitly needed for the design of the fractal connectivity test

in Section 5. Fig. 1 reports quantile-quantile plots of the empirical

distribution of δ̂il against the standard Normal distribution. It shows

that, while δ̂il can significantly depart from Gaussian for small sam-

ple sizes, it becomes practically indistinguishable from Gaussian

for large sample sizes, both under fractal connectivity and under

significant departures from that constraint.



-2 0 2

-2

0

2
n=2

10
FC

-2 0 2

-2

0

2
n=2

14
FC

-2 0 2

-2

0

2
n=2

18
FC

-2 0 2

-2

0

2
n=2

10
noFC

-2 0 2

-2

0

2
n=2

14
noFC

-2 0 2

-2

0

2
n=2

18
noFC

Fig. 1. Asymptotic normality of δ̂il. Quantile plots of δ̂12 for sam-

ple sizes n = {210, 214, 218} (left to right column, respectively) for

bivariate HfBm that are (top row) and are not (bottom row) fractally

connected.

4. APPROXIMATE CLOSED-FORM EXPRESSIONS FOR

THE COVARIANCES OF THE ESTIMATES

The next goal is to obtain reliable estimates of the covariances of the

scaling and fractal connectivity parameters, which will allow apply-

ing the fractal connectivity test developed in Section 5.

Closed form analytical approximations for the (co)variances of

α̂il and δ̂il. To this end, approximate but closed-form analytical

relations for these covariances are first obtained. The covariances of

scaling exponent estimates are theoretically given by

Cov[α̂is, α̂lt]=

j2
∑

j,j′=j1

wjwj′Cov[log2 Sis(j), log2 Slt(j
′)]. (14)

Relying on a Taylor expansion with Lagrange remainders for

f(X) = log2 |X|, the following approximation can be computed:

Cov[α̂is, α̂lt]

(log2 e)
2

≈
j2
∑

j,j′=j1

wjwj′
Cov[Sis(j), Slt(j

′)]

E[Sis(j)]E[Slt(j′)]

≈
j2
∑

j,j′=j1

wjwj′

(

E[Sis(j)Slt(j
′)]

E[Sis(j)]E[Slt(j′)]
− 1

)

≈
j2
∑

j,j′=j1

wjwj′

njnj′

nj−1
∑

k=0

nj′−1
∑

k′=0

ril(j, k; j
′, k′)rst(j, k; j

′, k′)

ris(j, 0; j, 0)rlt(j′, 0; j′, 0)

+
rit(j, k; j

′, k′)rsl(j, k; j
′, k′)

ris(j, 0; j, 0)rlt(j′, 0; j′, 0)
. (15)

In (15),

ril(j, k; j
′, k′) =

E[di(j, k)dl(j
′, k′)]

√

E[d2i (j, k)]E[d
2
l (j

′, k′)]

= r
0
il

Ωhil
(j, k; j′, k′)

√

Ωhii
(j, k; j, k)Ωhll

(j′, k′; j′, k′)
, (16)

where r
0
il , ρil/

√
ρiiρll denotes the correlation coefficients

amongst data components and Ωhil(j, k; j
′, k′) the correlation be-

tween the wavelet coefficient of component i at scale 2j and location

2jk, and that of component l at scale 2j
′

and location 2j
′

k′.

√

Varapprox/VarMC Var[α11] Var[α12] Cov[α11, α22] Var[δ12]
n = 210 0.98 0.93 0.99 0.88
n = 212 0.97 0.92 0.92 0.87
n = 214 0.96 1.00 0.97 0.98
n = 216 0.98 1.00 1.05 0.97

Table 1. Estimation of Var[α(·)]. Square roots of ratios of aver-

age of (co-)variances computed using (15) and (17) and of Monte

Carlo (co-)variances (1000 independent realizations, r
0
12 = 0.6,

[α11, α22, α12] = [0.2, 0.6, 0.4]).

The variances of the fractal connectivity parameters further read

Var[δ̂il] = Var[α̂il] + (Var[α̂ii] + Var[α̂ll]) /4

+ Cov[α̂ii, α̂ll]/2− Cov[α̂ii, α̂il]− Cov[α̂ll, α̂il]. (17)

Practical computation of Ωhil
(j, k; j′, k′). Let hj(k) and

gj(k) denote the coefficients of the high and low pass filters associ-

ated to the practical iterative decomposition, at scale 2j , of the DWT

associated with the mother wavelet ψ [9]. Tedious but straightfor-

ward calculations show that Ωhil
(j, k; j′, k′) can be made explicit

as the convolution of the correlation of the process (cf. (6)) with that

of the wavelets at scale 2j :

Ωhil
(j, k; j′, k′)=((gj ∗ ǧj′)∗ ηil)(k′− k), ηil(τ)= |τ |αil (18)

where ǧj(k) , gj(L− k), k = 1, . . . , L.

Empirical estimates of the covariances of the estimates. In or-

der to further enable the actual evaluation of (15) and (17) given a

single realization of a multivariate time series X , the unknown pa-

rameters r0il and αil in (18) are simply replaced by their estimates.

Assessment of the quality of the approximation. Monte Carlo

simulations as described above are used to assess the overall quality

of the estimates for the covariances of the estimates of the scaling

exponents and variances for the estimates of the fractal connectivity

parameters. Table 1 reports the assessment of the quality of such esti-

mates in terms of the ratios of the (co)variance values obtained from

the proposed approximations (15) and (17) to those obtained as av-

erages over Monte Carlo estimates (1000 independent realizations).

The results indicate that (15) and (17) yield reasonable (i.e., ratio

close to 1) (co)variance estimates for small sample size (n ≤ 212)

and excellent estimates as the sample size increases (n ≥ 214). This

is a remarkable result, keeping in mind that the proposed estimates

gather a number of assumptions: normality of the scaling exponent

estimates, validity of the Taylor expansion, replacement of the theo-

retical values for r0il and αil with their estimates.

It is also important to note that the absolute values in (12)

were dropped for the analytical calculations detailed in the present

section, which obviously only matters for cross-components. In-

tuitively, these absolute values play a minor role as soon as the

correlations amongst data components become large. Conversely,

when correlation between components is low, fractal connectivity

parameters become irrelevant. It is thus a very satisfactory outcome

that Monte Carlo simulations that incorporate these absolute values

validate the proposed approximations that neglect them, both under

fractal connectivity and under departures from that constraint. This

issue, related to the validity of the Taylor expansion, will receive

further theoretical investigations, that will be detailed in [16].



5. TESTING FRACTAL CONNECTIVITY

The analytical and empirical results of the previous sections are now

used to address the final goal of the present work: practically testing

fractal connectivity for a single finite length observation of data.

Test formulation. The null hypothesis of the test for a given pair of

components reads:

H0 : δil = (αii + αll)/2− αil = 0, i 6= l.

Under H0, assuming that r0il 6= 0, the results of Section 3 lead us to

conjecture that, asymptotically, δ̂il is a zero mean Gaussian random

variable, i.e., δ̂il
A∼ N

(

0,Var[δ̂il]
)

. Moreover, Var[δ̂il] can be es-

timated by (15–17). A two-sided test with significance level s can

thus be defined as

ds =

{

1 if |δ̂il| > Var[δ̂il]
1/2Φ−1(1− s/2)

0 otherwise,
(19)

where Φ−1(·) is the inverse cumulative distribution function of the

standard normal distribution.

Test performance assessment. We assess the performance of the

test by applying it to 1000 independent realizations each of bivari-

ate (m = 2) HfBm with exponents [α11, α22] = [0.2, 0.6], δ12 =
{0; 0.05, 0.1, 0.15, 0.2} and correlation level r012 = 0.7 for sample

sizes n = {210, 212, 214, 216}. A Daubechies wavelet with Nψ = 3
vanishing moments is used, and scales for linear regressions are set

to j1 = 2 and j2 the largest available scale. For each realization, the

test decision (19) is evaluated using (17) with approximation (15).

Estimates of the expected values of the test decisions, denoted by d̂s,
are then obtained as the averages over realizations of test decisions

(19). The significance is set to s = 0.1. The proposed test, denoted

by HFBM, is compared to the test described in [14], denoted by

WCF, which relies on the intuition that the wavelet coherence func-

tion of two components of a multivariate Gaussian scale invariant

random process behaves approximately as

Γil(j) = S(il)
nj

(j)/

√

S
(ii)
nj

(j)S
(ll)
nj

(j) ≃ r
0
il2

j(α12−
α11+α22

2
).

Instead of the rigorous statistical framework developed above, WCF

is formulated using the observation that Γil(j) corresponds to the

Pearson Product-Moment correlation coefficient of di(j, ·) and

dl(j, ·). The Fisher’s z statistics of Γil(j) are hence approximately

Gaussian, with known variances and, under H0, with equal means

across scales, and the test for H0 is formulated as a test for the

equality of means of Gaussian random variables, cf. [14] for details.

Performance under H0. The results obtained under fractal con-

nectivity, i.e., (α11 + α22)/2 = α12 = 0.4, are reported in Table 2

(third row, δ12 = 0) for the proposed test (top) and for the test in [14]

(bottom). Note that under H0, the average test decisions d̂s should

equal the preset significance s. For the proposed test HFBM, the dif-

ferences between d̂s and s are overall small, attaining only 4% for

small sample size n = 210 and further decreasing with increasing

sample size, as expected. This is consistent with the results reported

in Table 1, where a small but systematic underestimation of Var[δ̂12]
for small sample sizes is observed. In contrast, the empirical signifi-

cances d̂s of WCF are considerably larger than the preset value s, in

particular for large sample sizes.

Test power. The power of the tests is assessed as the average test

decisions under the alternative hypothesesH1 : δ12 = α12−(α11+

H0 : δ12 = 0 H1 : δ12 6= 0
δ12 0 0.05 0.1 0.15 0.2

H
F

B
M

n = 210 14.0 25.4 43.5 66.1 84.5
n = 212 10.9 63.6 96.8 99.8 100.0
n = 214 11.2 99.2 100.0 100.0 100.0
n = 216 10.9 100.0 100.0 100.0 100.0

W
C

F

n = 210 15.3 14.1 21.7 36.9 52.9
n = 212 16.0 34.7 78.9 95.8 99.4
n = 214 18.6 89.9 100.0 100.0 100.0
n = 216 22.5 100.0 100.0 100.0 100.0

Table 2. Test performance. Average (over 1000 realizations) test

decisions d̂s (in %) obtained with HFBM and WCF for different

sample sizes n. Left column: under H0 : δ12 = 0, with preset

significance s = 10%. Right columns: under H1 : δ12 6= 0,

δ12 = {0.05, 0.1, 0.15, 0.2}, with significance s adjusted such that

the rejection rate would equal 10% under H0.

α22)/2 6= 0 with δ12 = {0.05, 0.1, 0.15, 0.2}. A direct compari-

son of the power of HFBM and WCF is, however, only meaningful

for identical rejection probabilities underH0. Since the performance

of HFBM and WCF under H0 differ, as discussed above, we adjust,

for each sample size, the prescribed significance s to values s̃ for

which the average rejection rates under H0 equal the target value,

d̂s̃ = 0.1. The power of the tests is then estimated as the average test

decisions ds̃ when H1 is true. Results are reported in Table 2 (four

columns on the right) and yield the following conclusions. First, the

powers of both tests increase with sample size n and deviation from

δ12 = 0, as intuitively expected. Yet, HFBM is systematically and

significantly more powerful than WCF and enables the detection a

non-zero value for δ12 up to two times as often as WCF.

Overall, these results confirm that the proposed developments

are operational and can be relevantly applied in the investigation of

scale-free dynamics and testing of fractal connectivity in multivari-

ate time series.

6. CONCLUSIONS

In this contribution, a flexible and versatile multivariate self-similar

process has been introduced, the Hadamard fractional Brownian

(HfBm) motion. It enables the relevant modeling of the joint scale-

free dynamics of multivariate time series, allowing situations where

cross-components are not fractally connected. The analysis of

the auto and cross-component scaling exponents was conducted

by means of a wavelet-based estimation procedure. Moreover, an

original procedure for obtaining estimates of the variances and co-

variances of the scaling exponents was also devised and studied.

Finally, based on these developments, a test for fractal connectivity

of pairs of time series components was put forward. Monte Carlo

simulations, relying on synthetic copies of HfBm, using a proce-

dure designed by ourselves, confirm the relevance of the proposed

developments and indicate the superior performance of the fractal

connectivity test as compared to previous formulations. Future work

will include further theoretical studies of HfBm properties, as well

as of formal issues in the derivation of the approximations proposed

here. These will be reported in [16]. Estimation and test procedures

will also be used in several applications, notably in neurosciences,

elaborating on work completed in [23] .
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