Evidence Type Classification in Randomized Controlled Trials

Tobias Mayer Elena Cabrio 1 Serena Villata 1
1 WIMMICS - Web-Instrumented Man-Machine Interactions, Communities and Semantics
CRISAM - Inria Sophia Antipolis - Méditerranée , Laboratoire I3S - SPARKS - Scalable and Pervasive softwARe and Knowledge Systems
Abstract : Randomized Controlled Trials (RCT) are a common type of experimental studies in the medical domain for evidence-based decision making. The ability to automatically extract the arguments proposed therein can be of valuable support for clinicians and practitioners in their daily evidence-based decision making activities. Given the peculiarity of the medical domain and the required level of detail, standard approaches to argument component detection in argument(ation) mining are not fine-grained enough to support such activities. In this paper, we introduce a new sub-task of the argument component identification task: evidence type classification. To address it, we propose a supervised approach and we test it on a set of RCT abstracts on different medical topics.
Type de document :
Communication dans un congrès
5th ArgMining@EMNLP 2018, Oct 2018, Brussels, Belgium
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

Contributeur : Tobias Mayer <>
Soumis le : lundi 5 novembre 2018 - 11:07:38
Dernière modification le : mardi 6 novembre 2018 - 01:16:11


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01912157, version 1



Tobias Mayer, Elena Cabrio, Serena Villata. Evidence Type Classification in Randomized Controlled Trials. 5th ArgMining@EMNLP 2018, Oct 2018, Brussels, Belgium. 〈hal-01912157〉