C. Agrup, M. Gleeson, and P. Rudge, The inner ear and the neurologist, J Neurol Neurosurg Psychiatry, vol.78, p.17229743, 2007.
DOI : 10.1136/jnnp.2006.092064

URL : http://europepmc.org/articles/pmc2077664?pdf=render

J. M. Appler and L. V. Goodrich, Connecting the ear to the brain: molecular mechanisms of auditory circuit assembly, Prog Neurobiol, vol.93, p.21232575, 2011.

M. W. Kelley, Regulation of cell fate in the sensory epithelia of the inner ear, Nat Rev Neurosci, vol.7, pp.837-849, 2006.

I. Jahan, N. Pan, K. L. Elliott, and B. Fritzsch, The quest for restoring hearing: Understanding ear development more completely, Bioessays, vol.37, p.26208302, 2015.

J. Corwin and D. Cotanche, Regeneration of sensory hair cells after acoustic trauma, Science, vol.240, p.3381100, 1988.

B. M. Ryals and E. W. Rubel, Hair cell regeneration after acoustic trauma in adult Coturnix quail, Science, vol.240, pp.774-1776, 1998.

J. V. Brigande and S. Heller, Quo vadis, hair cell regeneration?, Nat Neurosci, vol.12, p.19471265, 2009.

A. Zine, H. Lowenheim, and B. Fritzsch, Toward translating molecular ear development to generate hair cells from stem cells. 2 nd ed. Adult Stem Cells, pp.111-161, 2014.

H. Li, G. Roblin, H. Liu, and S. Heller, Generation of hair cells by stepwise differentiation of embryonic stem cells, Proc Natl Acad Sci USA, vol.100, p.14593207, 2003.

K. Oshima, K. Shin, M. Diensthuber, A. W. Peng, A. J. Ricci et al., Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells, Cell, vol.141, p.20478259, 2010.

Y. Ouji, S. Ishizaka, F. Nakamura-uchiyama, and M. Yoshikawa, In vitro differentiation of mouse embryonic stem cells into inner ear hair cell-like cells using stromal cell conditioned medium, Cell Death Dis, vol.314, p.22622133, 2012.

K. R. Koehler, A. M. Mikosz, A. I. Molosh, D. Patel, and E. Hashino, Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture, Nature, vol.500, p.23842490, 2013.

L. Costa-a-sanchez-guardado, S. Juniat, J. E. Gale, N. Daudet, and D. Henrique, Generation of sensory hair cells by genetic programming with a combination of transcription factors, Development, vol.142, p.26015538, 2015.

N. Abboud, A. Fontbonne, I. Watabe, A. Tonetto, J. M. Brezun et al., Culture conditions impact the maturation of traceable, transplantable mouse embryonic stem cell-derived otic progenitor cells, J Tissue Eng Regen Med, vol.11, pp.1132-1140, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01478887

X. P. Liu, K. R. Koehler, A. M. Mikosz, E. Hashino, and J. R. Holt, Functional development of mechanosensitive hair cells in stem cell-derived organoids parallels native vestibular hair cells, Nat Commun, vol.7, p.27215798, 2016.

F. Shi, C. E. Corrales, M. C. Liberman, and A. S. Edge, BMP4 induction of sensory neurons from human embryonic stem cells and reinnervation of sensory epithelium, Eur J Neurosci, vol.26, p.18005071, 2007.

W. Chen, N. Jongkamonwiwat, L. Abbas, S. J. Eshtan, S. L. Johnson et al., Restoration of auditory evoked responses by human ES-cell-derived otic progenitors, Nature, vol.490, p.22972191, 2012.

M. Ronaghi, M. Nasr, M. Ealy, R. Durruthy-durruthy, J. Waldhaus et al., Inner ear hair cell-like cells from human embryonic stem cells, Stem Cells Dev, vol.23, p.24512547, 2014.

M. Ealy, D. C. Ellwange, N. Kosaric, A. P. Stapper, and S. Heller, Single-cell analysis delineates a trajectory toward the human early otic lineage, Proc Natl Acad Sci USA, vol.113, p.27402757, 2016.

K. R. Koehler, J. Nie, E. Longworth-mills, X. P. Liu, J. Lee et al., Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells, Nat Biotechnol, vol.735, pp.583-589, 2017.

J. A. Thomson, J. Itskovitz-eldor, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall et al., Embryonic stem cell lines derived from human blastocysts, Science, vol.282, p.9804556, 1998.

K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, vol.131, p.18035408, 2007.

A. Zine, . Van-de, T. R. Water, and F. De-ribaupierre, Notch signaling regulates the pattern of auditory hair cell differentiation in mammals, Development, vol.127, p.10887092, 2000.

A. Zine, Molecular mechanisms that regulate auditory hair-cell differentiation in the mammalian cochlea, Mol Neurobiol, vol.27, pp.223-238, 2003.

C. S. Jayasena, T. Ohyama, N. Segil, and A. K. Groves, Notch signaling augments the canonical Wnt pathway to specify the size of the otic placode, Development, vol.135, p.18495817, 2008.

A. Kiernan, Notch signaling during cell fate determination in the inner ear, Seminars in Cell & Developmental Biology, vol.24, pp.470-479, 2013.

N. Daudet, L. Ariza-mcnaughton, and J. Lewis, Notch signalling is needed to maintain, but not to initiate, the formation of prosensory patches in the chick inner ear, Development, vol.134, p.17537801, 2007.

M. L. Basch, R. M. Brown, H. I. Jen, F. Semerci, F. Depreux et al., Fine-tuning of Notch signaling sets the boundary of the organ of Corti and establishes sensory cell fates, eLife, vol.14, p.19921, 2016.

S. J. Jeon, L. Fujioka, S. C. Kim, and A. S. Edge, Notch signaling alters sensory or neuronal cell fate specification of inner ear stem cells, J Neurosci, vol.31, p.21653840, 2011.

K. Mizutari, M. Fujioka, M. Hosoya, N. Bramhall, H. J. Okano et al., Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma, Neuron, vol.77, p.23312516, 2013.

S. Artavanis-tsakonas, M. D. Rand, and R. J. Lake, Notch signaling: Cell fate control and signal integration in development, Science, vol.284, p.10221902, 1999.

U. Koch, R. Lehal, and F. Radtke, Stem cells living with a Notch, Development, vol.140, p.23362343, 2013.
DOI : 10.1242/dev.080614

URL : http://dev.biologists.org/content/140/4/689.full.pdf

A. M. Rossi and C. Desplan, Asymmetric Notch amplification to secure stem cell identity, Dev Cell, vol.40, p.28350981, 2017.

M. Ulvestad, P. Nordell, A. Asplund, M. Rehnström, S. Jacobsson et al., Drug metabolizing enzyme and transporter protein profiles of hepatocytes derived from human embryonic and induced pluripotent stem cells, Biochem Pharmacol, vol.86, p.23856292, 2013.

. Spurgeon, R. C. Jones, and R. Ramakrishnan, High throughput gene expression measurement with real time PCR in a microfluidic dynamic array, PLoS One, vol.3, p.18301740, 2008.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method, Methods, vol.25, p.11846609, 2001.

J. Chen and A. Streit, Induction of the inner ear: Stepwise specification of otic fate from multipotent progenitors, Hear Res, vol.297, p.23194992, 2013.

L. Lleras-forero and A. Streit, Development of the sensory nervous system in the vertebrate head: The importance of being on time, Curr Opin Genet Dev, vol.22, p.22726669, 2012.

M. Bouchard, D. De-caprona, M. Busslinger, P. Xu, and B. Fritzsch, Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation, BMC Dev Biol, vol.20, p.20727173, 2010.

N. A. Christophorou, M. Mende, L. Lleras-forero, T. Grocott, and A. Streit, Pax2 coordinates epithelial morphogenesis and cell fate in the inner ear, Dev Biol, vol.345, p.20643116, 2010.

A. Dabdoub, C. Puligilla, J. M. Jones, B. Fritzsch, and K. S. Cheah, Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea, Proc Natl Acad Sci USA, vol.25, pp.18396-18401, 2008.

L. Vallier, T. Touboul, S. Brown, C. Cho, B. Bilican et al., Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells, Stem Cells, vol.27, p.19688839, 2009.

A. Pattyn, X. Morin, H. Cremer, C. Goridis, and J. F. Brunet, The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives, Nature, vol.399, p.10360575, 1999.

R. Romand, P. Dollé, and E. Hashino, Retinoid signaling in inner ear development, J Neurobiol, vol.66, pp.687-704, 2005.
DOI : 10.1002/neu.20244

URL : https://hal.archives-ouvertes.fr/hal-00188125

S. Hans and M. Westerfield, Changes in retinoic acid signaling alter otic patterning, Development, vol.134, p.17522161, 2007.
DOI : 10.1242/dev.000448

URL : http://dev.biologists.org/content/134/13/2449.full.pdf

A. Zine and F. De-ribaupierre, Replacement of mammalian auditory hair cells, Neuroreport, vol.9, p.9507966, 1998.

A. Doetzlhofer, P. M. White, J. Johnson, N. Segil, and A. K. Groves, In vitro growth and differentiation of mammalian sensory hair cell progenitors: a requirement for EGF and periotic mesenchyme, Dev Biol, vol.272, p.15282159, 2004.

A. Zine, A. Aubert, J. Qiu, S. Therianos, F. Guillemot et al., Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear, J Neurosci, vol.21, p.11425898, 2001.

T. Tateya, I. Imayoshi, I. Tateya, J. Ito, and R. Kageyama, Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development, Dev Biol, vol.352, p.21300049, 2011.

Y. Abdolazimi, Z. Stojanova, and N. Segil, Selection of cell fate in the organ of Corti involves the integration of Hes/Hey signaling at the Atoh1 promoter, Development, vol.143, pp.5841-5850, 2016.

T. Schimmang, Expression and functions of FGF ligands during early otic development, Int J Dev Biol, vol.51, p.17891710, 2007.
DOI : 10.1387/ijdb.072334ts

URL : https://digital.csic.es/bitstream/10261/71662/1/Expression%20and%20functions%20of%20FGF.pdf

R. K. Ladher, P. O'neill, and J. Begbie, From shared lineage to distinct functions: the development of the inner ear and epibranchial placodes, Development, vol.137, p.20460364, 2010.

Y. Alvarez, M. T. Alonso, V. Vendrell, L. C. Zelarayan, P. Chamero et al., Requirements for FGF3 and FGF10 during inner ear formation, Development, vol.130, p.14623822, 2003.
DOI : 10.1242/dev.00881

URL : http://dev.biologists.org/content/130/25/6329.full.pdf

M. N. Mccarroll, Z. R. Lewis, M. D. Culbertson, B. L. Martin, D. Kimelman et al., Graded levels of Pax2a and Pax8 regulate cell differentiation during sensory placode formation, Development, vol.139, p.22745314, 2012.

M. S. Padanad and B. B. Riley, Pax2/8 proteins coordinate sequential induction of otic and epibranchial placodes through differential regulation of foxi1, sox3 and fgf24, Dev Biol, vol.351, p.21215261, 2011.

A. P. Van-winkle, I. D. Gates, and M. S. Kallos, Mass transfer limitations in embryoid bodies during human embryonic stem cell differentiation. Cells, tissues, organs, vol.196, p.22249133, 2012.

K. Kenji, H. Ying, K. Samantha, K. Padmapriya, N. Baoming et al., Development and Characterization of a Human and Mouse Intestinal Epithelial Cell Monolayer Platform, Stem Cell Reports, vol.9, p.29153987, 2017.

J. Mulvaney and A. Dabdoub, Atoh1, an essential transcription factor in neurogenesis and intestinal and inner ear development: function, regulation, and context dependency, J Assoc Res Otolaryngol, vol.13, p.22370966, 2012.

C. Woods, M. Montcouquiol, and M. K. Kelley, Math1 regulates development of the sensory epithelium in the mammalian cochlea, Nat Neurosci, vol.7, p.15543141, 2004.

E. Savary, J. C. Sabourin, J. Santo, J. P. Hugnot, C. Chabbert et al., Cochlear stem/progenitor cells from a postnatal cochlea respond to Jagged1 and demonstrate that notch signaling promotes sphere formation and sensory potential, Mech Dev, vol.125, p.18571907, 2008.
DOI : 10.1016/j.mod.2008.05.001

URL : https://hal.archives-ouvertes.fr/inserm-00349478

R. A. Rana and R. S. Haltiwanger, Fringe benefits: functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors, Current Opinion in Structural Biology, vol.21, p.21924891, 2011.