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DIMERS AND CIRCLE PATTERNS

RICHARD KENYON, WAI YEUNG LAM, SANJAY RAMASSAMY, MARIANNA RUSSKIKH

Abstract. We establish a correspondence between the dimer model on a bipartite
graph and a circle pattern with the combinatorics of that graph, which holds for
graphs that are either planar or embedded on the torus. The set of positive face
weights on the graph gives a set of global coordinates on the space of circle patterns
with embedded dual. Under this correspondence, which extends the previously known
isoradial case, the urban renewal (the local move for dimer models) is equivalent to
the Miquel move (the local move for circle patterns). As a consequence, we show
that Miquel dynamics on circle patterns is a discrete integrable system governed by
the octahedron recurrence. As special cases of these circle pattern embeddings, we
recover harmonic embeddings for resistor networks and s-embeddings for the Ising
model.

Résumé. Nous établissons une correspondance entre le modèle de dimères sur un
graphe biparti et un agencement de cercles avec la combinatoire de ce graphe, va-
lable pour des graphes plongés sur le plan ou sur le tore. Les poids positifs sur les
faces du graphe fournissent des coordonnées globales sur l’espace des agencements
de cercles dont le dual est plongé. Via cette correspondance, qui étend le cas iso-
radial découvert précédemment, le renouvellement urbain (mouvement local pour
les modèles de dimères) est équivalent au mouvement de Miquel (mouvement local
pour les agencements de cercles). Il en découle que la dynamique de Miquel sur les
agencements de cercles est un système intégrable discret gouverné par la récurrence
de l’octaèdre. Comme cas particuliers de ces plongements comme agencements de
cercles, on retrouve les plongements harmoniques pour les réseaux de résistances et
les s-plongements pour le modèle d’Ising.
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1. Introduction

The bipartite planar dimer model is the study of random perfect matchings (“dimer
coverings”) of a bipartite planar graph. The dimer model is a classical statistical me-
chanics model, and can be analyzed using determinantal methods: partition functions
and correlation kernels are computed by determinants of associated matrices defined
from the weighted graph [22]. Several other two-dimensional models of statistical me-
chanics, including the Ising model and the spanning tree model, can be regarded as
special cases of the dimer model by subdividing the underlying graph [13, 43, 11, 27].
Natural parameters for the dimer model, defining the underlying probability mea-
sure, are face weights, which are positive real parameters on the bounded faces of the
graph [18].

A circle pattern is a realization of a graph in C with cyclic faces, i.e. where all
vertices on a face lie on a circle. Circle patterns are central objects in discrete dif-
ferential geometry, related to (hyperbolic) polyhedra, Teichmüller space, and discrete
conformal geometry. For example, following original ideas of William Thurston, two
circle patterns with the same intersection angles are considered discretely conformally
equivalent, see e.g. [8].

In [23] a relation was found between a special subset of dimer models, called critical
dimer models, and isoradial circle patterns, i.e. circle patterns in which all the circles
have the same radius. The partition function and various probabilistic quantities were
related to the underlying 3D hyperbolic geometry. At that time there was no clear
relation between general dimer models and general circle patterns and this question
was raised again in [7] and [40].

The main purpose of this paper is to answer this question, establishing a corre-
spondence between face-weighted bipartite planar graphs and circle patterns, which
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generalizes the isoradial case. This correspondence is formulated for two classes of pla-
nar graphs, finite graphs and infinite bi-periodic graphs. Under this correspondence,
dimer face weights correspond to biratios of distances between circle centers. A ma-
jor feature of this correspondence is to identify the spider move (also known as urban
renewal, or cluster mutation), which is a local move for the dimer model, to an appli-
cation of Miquel’s six-circles theorem to the underlying circle pattern. This establishes
a new connection between circle patterns and cluster algebras.

The circle patterns arising under this correspondence are those with a bipartite graph
and with an embedded dual, where the dual graph is the graph of circle centers. Having
embedded dual does not imply that the primal pattern is embedded, although the set
of circle patterns with embedded dual includes all embedded circle patterns in which
each face contains its circumcenter. Centers of bipartite circle patterns arise in various
places. They coincide with the crease patterns of origami that are locally flat-foldable
[19]. In discrete differential geometry, they are called conical meshes [39, 36] and
related to discrete minimal surfaces [31]. Circle center embeddings are also considered
in [10] under the name of t-embeddings with an emphasis on the convergence of discrete
holomorphic functions to continuous ones in the small mesh size limit, i.e., when the
circle radii tend to 0.

This correspondence between dimer models of statistical mechanics and circle pat-
terns from discrete differential geometry should allow to transfer results from one field
to the other. As a first application of this correspondence, we show that Miquel dy-
namics, a discrete-time dynamical system for periodic circle patterns introduced in [40]
and also studied in [17], is a discrete integrable system governed by the octahedron
recurrence, answering a conjecture made in [40]. In the dimer model our natural pa-
rameters are the positive face weights, which correspond on the level of circle patterns
to embedded circle centers. However our results apply to general real face weights
and non-embedded circle centers as well; in particular Miquel dynamics is algebraic in
nature and the signs of the weights do not matter.

A central question in 2D statistical mechanics is to find embeddings of planar graphs
which are adapted to a model and at the same time universal, i.e. with a definition
valid for any planar graph, see e.g. [5]. While the definition of a statistical mechanics
model on a planar graph (e.g. random walk, dimer model, Ising model) does not
depend on the embedding of the graph, stating and proving scaling limit results to
conformally covariant objects such as Brownian motion or SLE curves requires one to
pick an appropriate embedding for the graph. Harmonic embeddings (also known as
Tutte embeddings) provide such adapted embeddings for resistor networks and random
walks (see e.g. [6]). The s-embeddings recently introduced by Chelkak [9] (see also [32])
are embeddings adapted to the Ising model.

Our main result is that circle center embeddings are the right universal framework to
study the planar bipartite dimer model. A first indication of this is the aforementioned
compatibility between the local moves for the dimer model and for circle patterns. A
second indication is that both resistor networks and the Ising model on planar graphs
can be seen as special cases of the bipartite dimer model [27, 11] and we show in this



4 RICHARD KENYON, WAI YEUNG LAM, SANJAY RAMASSAMY, MARIANNA RUSSKIKH

article that both harmonic embeddings and s-embeddings arise as special cases of circle
center embeddings.

There is an intriguing algebraic similarity between the dimer model and Teichmüller
theory: The face weights describing the dimer model [18] and the shear coordinates for
Teichmüller space [14] both behave like X-variables from cluster algebras. The rela-
tion between Teichmüller theory and circle patterns together with the correspondence
between dimers and circle patterns could help to shed light on this similarity.

During the completion of this work, a preprint by Affolter [2] appeared, which shows
how to go from circle patterns to dimers and observes that the Miquel move is governed
by the central relation. Affolter notes that there is some information missing to recover
the circle pattern from the X variables. We provide here a complete picture, both in
the planar and torus cases.

Organization of the paper. In Section 3, we introduce circle center embeddings
associated with bipartite graphs with positive face weights in the planar case. Section 4
is devoted to circle center embeddings in the torus case. In Section 5 we show the
equivalence between the spider move/urban renewal for the bipartite dimer model and
the central move coming from Miquel’s theorem for circle patterns. In particular this
gives a cluster algebra structure underlying Miquel dynamics. Section 6 is devoted to
translating into circle geometry the generalized Temperley bijection between resistor
networks and dimer models. In Section 7 we show that the s-embeddings for the Ising
model arise as a special case of circle center embeddings.

2. Background on dimers and the Kasteleyn matrix

For general background on the dimer model, see [24]. A dimer cover, or perfect
matching, of a graph G is a set of edges with the property that every vertex is con-
tained in exactly one edge of the set. We assume our graphs are finite, connected and
embeddable either on the plane or on the torus. A graph is nondegenerate (for the
dimer model) if it has dimer covers, and each edge occurs in some dimer cover.

If ν : E(G)→ R>0 is a positive weight function on edges of G , we associate a weight
ν(m) =

∏
e∈m ν(e) to a dimer cover which is the product of its edge weights. We

can also associate to this data a probability measure µ on the set M of dimer covers,
giving a dimer cover m a probability 1

Z
ν(m), where Z =

∑
m∈M ν(m) is a normalizing

constant, called the partition function.
Two weight functions ν1, ν2 are said to be gauge equivalent if there is a function

F : V (G)→ R such that for any edge vv′, ν1(vv′) = F (v)F (v′)ν2(vv′). Gauge equivalent
weights define the same probability measure µ. For a planar bipartite graph, two weight
functions are gauge equivalent if and only if their face weights are equal, where the
face weight of a face with vertices w1, b1, . . . , wk, bk is the “alternating product” of its
edge weights,

(1) X =
ν(w1b1) · · · ν(wkbk)

ν(b1w2) · · · ν(bkw1)
.

If G is a planar bipartite graph which has dimer covers, a Kasteleyn matrix is
a signed, weighted adjacency matrix, with rows indexed by the white vertices and
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Figure 1. Elementary transformations preserving the dimer measure µ.
Left: Replacing parallel edges with weights a, b by a single edge with
weight a + b; Center: contracting a degree 2 vertex whose edges have
equal weights; Right: the spider move, with weights transformed as
indicated.

columns indexed by the black vertices, with Kwb = 0 if w and b are not adjacent,
and Kwb = ±ν(wb) otherwise, where the signs are chosen so that the product of signs
around a face is (−1)k+1 for a face of degree 2k. Kasteleyn [21] showed that the
determinant of a Kasteleyn matrix is the weighted sum of dimer covers:

| detK| = Z =
∑
m∈M

ν(m).

Different choices of signs satisfying the Kasteleyn condition correspond to multiply-
ing K on the right and/or left by diagonal matrices with ±1 on the diagonals. Different
choices of gauge correspond to multiplying K on the right and left by diagonal matrices
with positive diagonal entries (see e.g. [18]). We call two matrices gauge equivalent
if they are related by these two operations: multiplication on the right and left by
diagonal matrices with real nonzero diagonal entries. Note that in terms of any (gauge
equivalent) Kasteleyn matrix we can recover the face weights via the formula

(2) X = (−1)k+1 Kw1b1Kw2b2 · · ·Kwkbk

Kw1bkKw2b1 · · ·Kwkbk−1

.

In some circumstances it is convenient to take complex signs eiθ in the Kasteleyn
matrix, rather than just ±1; in that case the required condition on the signs is that
the quantity X in (2) is positive, see [37]. This generalization will be used below.

Certain elementary transformations of G preserve the measure µ; see Figure 1.

3. Bipartite graphs and circle patterns

In this section, we establish a correspondence between planar bipartite graphs with
positive face weights and circle patterns with embedded dual. The construction can be



6 RICHARD KENYON, WAI YEUNG LAM, SANJAY RAMASSAMY, MARIANNA RUSSKIKH

extended to general real weights, but in general the dual will not be embedded unless
weights are positive (Theorem 2 below).

The correspondence holds for several different types of boundary conditions. Al-
though in the intermediate steps we discuss somewhat general boundary conditions,
for the final result (Theorem 2) we will need to consider only the (simplest) case of a
circle pattern with outer face of degree 4 (which is necessarily cyclic).

3.1. Centers of circle patterns. Let G be a finite connected embedded bipartite
planar graph. Let Ĝ be obtained from G by adding a vertex v∞ connected to all
vertices on G’s outer face. Let G∗ be the planar dual of Ĝ, where v∞ corresponds to
the outer face of G∗. We call the vertices of G∗ on its outer face the outer dual vertices.
There is one outer dual vertex for every edge on the outer face of G. We refer to G∗ as
the augmented dual of G to distinguish it from the usual dual.

Suppose c : V (G) → C is an embedding of G with cyclic faces (i.e. for all vertices
v of a single face f , all points c(v) lie on a single circle), except perhaps the outer
face, which we assume to be convex. Assume also that each bounded face contains its
circumcenter.

The circumcenters then form an embedding φ̃ : V (G∗)→ C of the graph G∗, except

for the outer dual vertices. For each outer dual vertex f of G∗ define φ̃(f) to be a
point on the perpendicular bisector of the corresponding edge of G, and external to the

convex hull of G. We can think of φ̃(f) as the center of a circle passing through the
two vertices of the corresponding outer edge of G.

Since each dual edge connects the centers of two circles with the corresponding primal
edge as a common chord, each dual edge is a perpendicular bisector of the primal edge.

Recalling that G is bipartite, note that the alternating sum of angles around every

non-outer vertex of φ̃(G∗) is zero. Moreover note that the faces of the augmented dual

graph φ̃(G∗) are convex: we have a convex embedding, that is, an embedding with
convex faces, of G∗.

The following proposition provides a partial converse to this construction.

Proposition 1. Suppose G is a bipartite planar graph and φ̃ : V (G∗)→ C is a convex

embedding of G∗. Then there exists a circle pattern c : V (G)→ C with φ̃ as centers if
and only if the alternating sum of angles around every non-outer dual vertex is zero.

Note that we do not conclude that c(V (G)) is an embedding, only a realization
with the property that vertices on each face lie on a circle. It seems difficult to give
conditions under which c(V (G)) will be an embedding, although the space of circle
pattern embeddings in which each face contains the circumcenter is an open subset of
our space of realizations. Furthermore, if a circle pattern exists, it is not unique. Indeed

there is a two-parameter family of circle patterns with φ̃ as centers, which depends on
the position of an initial vertex as shown in the proof.

Proof. It remains to show that given such an embedding φ̃, there is a circle pattern

with φ̃ as centers. We construct such a circle pattern c as follows. Pick a vertex vi and
assign the vertex to some arbitrary point c(vi) in the plane. We then define c(vj) for
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a neighboring vertex vj in such a way that c(vj) is the image of c(vi) under reflection
across the line connecting images of the neighboring dual vertices f and f ′. Because
of the angle condition, iteratively defining the c value around a face will return to the
initial value. Hence the map c is well defined and independent of the path chosen.

Note that |c(vi)φ̃(f)| = |c(vj)φ̃(f)| and |c(vi)φ̃(f ′)| = |c(vj)φ̃(f ′)|, therefore the faces

under the map c are cyclic with centers at φ̃. �

3.2. From circle patterns to face weights. Suppose G is a bipartite planar graph
and we have an embedded circle pattern c : V (G) → C, in which each bounded face

contains its circumcenter, with outer face convex but not necessarily cyclic. Let φ̃ :

V (G∗)→ C be the circle centers (defining φ̃ on outer dual vertices as above).

Now define a function ω(w, b) = φ̃(fl)−φ̃(fr) where fl, fr denote the left and the right
face of the edge wb oriented from w to b. Define a matrix K with rows indexing the
white vertices and columns indexing the black vertices by Kwb = ω(w, b). We claim that
K is a Kasteleyn matrix (with complex signs). To see this, suppose a bounded face

f with center u = φ̃(f) has vertices c(w1), c(b1), . . . , c(wk), c(bk) in counterclockwise
order. We denote the centers of the neighboring faces as u1, u2, . . . , u2k, where u1 is
the left face of w1bk and u2 is the right face of w1b1. Then

Kw1b1Kw2b2 · · ·Kwkbk

Kw1bkKw2b1 · · ·Kwkbk−1

=
(u− u2)(u− u4) · · · (u− u2k)

(u1 − u)(u3 − u) · · · (u2k−1 − u)
.

The angle condition is equivalent to saying that the face weight

(3) Xf = (−1)k+1 (u− u2)(u− u4) · · · (u− u2k)

(u1 − u)(u3 − u) · · · (u2k−1 − u)

is positive and K is a Kasteleyn matrix. This associates a positive-face-weighted bi-
partite planar graph to a circle pattern.

We claim, additionally, that if the outer face of c(G) is cyclic (which will be the case
if it has degree 4, see below) the graph G has dimer covers and is nondegenerate (each
edge is an element of at least one dimer cover). The existence of dimer covers follows
if we can find a fractional dimer cover (fractional matching), that is, an element of
[0, 1]E summing to 1 at each vertex: recall that the set of dimer covers of a graph is
the set of vertices of the polytope of fractional dimer covers [33]. To find a fractional
dimer cover, associate to each edge wb the quantity θwb

2π
where θwb is the angle at w

(or b, they are the same) of the quad (w, f, b, f ′) whose vertices are the vertices w, b
and the two dual vertices f, f ′ of that edge. In the case that one of these dual vertices
is an outer dual vertex, define the angle θwb at w instead as follows. Let ufo be the
circumcenter of the outer face, and u be the other dual vertex of the edge wb. Define
θwb = ∠uwb + ∠bwv where v is a point lying past w on the ray from ufo through w.
Note that the angle obtained at b by the analogous method will equal that at w. Since∑

b θwb = 2π =
∑

w θwb, this defines a fractional dimer cover. The nondegeneracy
follows from the fact that the fractional matching is nonzero on each edge.

3.3. Coulomb gauge for finite planar graphs with outer face of degree 4. In
this section let G be a face-weighted bipartite planar graph, which is nondegenerate,
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and has outer face of degree 4. Let Q be a convex quadrilateral. We construct a circle
pattern for G with G∗ embedded in Q. See Figure 2 for an example. Our inductive
construction will in principle work for graphs with outer face of higher degree, but the
initial step of the induction proof is more complicated and is not something we can
currently handle.

b2 b1

b3

b4

w2

w1

w4 w3

4
3

f21

f11f12

f22

b1b2

w1

w2

b3

b4
w4

w3

b2
b1

w2

w1

w4

w3b3

b4

Figure 2. The “cube” graph is on the left with all face weights 1
except the one indicated with weight 4/3. Its augmented dual graph G∗
is realized as circle centers having outer boundary a square Q (middle).
A circle pattern with these centers is shown on the right.

Let G have outer boundary vertices w1, b1, w2, b2. For each bounded face f , letXf > 0
be its face weight.

The graph G∗ has outer face of degree 4; denote the vertices of its outer face by f11,
f12, f21 and f22, where fij is adjacent to the edge (wibj)

∗.
We construct a convex embedding in Q of G∗, with the outer vertices of G∗ going to

the vertices of Q, satisfying the property that the vertices of G∗ go to the circle centers
of a circle pattern with the combinatorics of G (in the sense that the angles satisfy
Proposition 1), and moreover the face variables Xf of G give the “alternating product
of edge lengths” as in (1).

Let W1, B1,W2, B2 ∈ C be the edges of Q (summing to zero), oriented counterclock-
wise. Let K be a Kasteleyn matrix associated to G with face weights X. Let G(w)
and F (b) be functions on white and black vertices of G satisfying the properties that:
for all internal white vertices w, we have

(4)
∑
b

G(w)KwbF (b) = 0,

and for all internal black vertices b, we have

(5)
∑
w

G(w)KwbF (b) = 0,

and for i = 1, 2 ∑
w

G(w)KwbiF (bi) = Bi(6) ∑
b

G(wi)KwibF (b) = −Wi.(7)
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FunctionsG,F satisfying (4) and (5) are said to give a Coulomb gauge for G. The reason
for such a name is that the edge weights G(w)KwbF (b) have zero divergence at each
internal vertex, which is similar to the case of the Coulomb gauge in electromagnetism,
corresponding to the choice of a divergence-free vector potential [20, Section 6.5]. The

existence of a Coulomb gauge G,F taking the boundary values ( ~B,− ~W ) (6),(7) (for
graphs with boundary lengths 4 or more) is discussed in Section 3.4 below. As shown
there, equations (4)-(7) determine G and F up to a finite number of choices: in fact
one or two (and typically two) choices for boundary of length 4, see below.

Given G,F satisfying the above, define a function ω on oriented edges by ω(w, b) =
G(w)KwbF (b) (and ω(b, w) = −ω(w, b), so that ω is a flow, or 1-form).

Equations (4) and (5) imply that ω is co-closed (divergence free) at internal vertices.
Thus ω can be integrated to define a mapping φ from the augmented dual graph G∗
into C by the formula

(8) φ(f1)− φ(f2) = ω(w, b)

where f1, f2 are the faces adjacent to edge wb, with f1 to the left and f2 to the right
when traversing the edge from w to b. The mapping φ is defined up to an additive
constant; by (6) and (7) we can choose the constant so that the vertices f11, f12, f22, f21

go to the vertices of Q.

Theorem 2. Suppose G has outer face of degree 4. The mapping φ defines a convex
embedding into Q of G∗ sending the outer vertices to the corresponding vertices of Q.
The images of the vertices of G∗ are the centers of a circle pattern with the given
combinatorics of G and face weights X. Moreover the outer face of G will also be
cyclic.

Boundary length 4 is special in the sense that if G has outer face of degree strictly
larger than 4, the outer face of the associated circle pattern will not necessarily be
cyclic.

Proof. Our proof relies on two lemmas, whose statements and proofs are postponed
until after the proof of the theorem. Lemma 3 shows that G can be obtained from the
4-cycle graph using a sequence of elementary transformations (see Figure 1). Lemma 4
shows that the theorem holds true when G is equal to the 4-cycle graph. Therefore to
complete the proof of the theorem it suffices to show that, if it holds for a graph then
it holds for any elementary transformation applied to that graph.

To use this argument we must extend slightly our notion of convex embedding to
include the case when G has degree 2 vertices, and when G has parallel edges, because
these necessarily occur at intermediate stages when we build up the graph G from the
4-cycle.

When G has parallel edges connecting two vertices w and b, the graph G∗ has one or
more degree-2 vertices there; we assign a location to these vertices as shown in Figure 3.
Note that under the elementary move merging those edges of G, we can simply forget
the corresponding circle and circle center of G∗.

When G has a degree-2 vertex v, connected to neighbors v1 and v2, then for the
associated Coulomb 1-form ω we necessarily have ω(v, v1) + ω(v, v2) = 0. This implies
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c(w)

c(b)
x+ y

x

y

u1

u2
u′

w b

w b

f1

f2

f1

f ′

f2

Figure 3. Replacing a single edge with weight (x + y) by parallel
edges with weights x, y corresponds to adding a point u′ = φ(f ′) on seg-
ment u1u2, where u1 = φ(f1) and u2 = φ(f2). The position of the point u′

on the segment is chosen so that |u1−u
′|

|u2−u′| = x
y
. The circle (in dashed stroke)

corresponding to f ′ is centered at u′ and passes through c(w) and c(b).

that under φ the duals of these edges get mapped to the same edge. We call this a
“near-embedding” since faces of degree 2 in G∗ get collapsed to line segments. Note
however that for any such graph G, contracting degree-2 vertices results in a new graph
with the same mapping φ, minus those paired edges.

Consequently, among the elementary transformations of Figure 1, only the spider
move has a nontrivial effect on the embedding.

Now let H be a graph obtained from G by applying a spider move. The embedding
of H∗ is obtained from the embedding of G∗ by a “central move”, see equation (14) and
Figure 7 in Section 5. This move gives a convex embedding by convexity of the faces:
the new central vertex is necessarily in the convex hull of its neighbors: see Lemma 4
below.

For the case G is a 4-cycle, see Corollary 5 and Figure 4.

Figure 4. For the 4-cycle there are generically two Coulomb gauges
and thus two embeddings of G∗, see Corollary 5. These are shown for a
particular choice of boundary.
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Finally, the fact that φ maps the vertices of G∗ to centers of a circle pattern follows
from the proof of Proposition 1 and the fact that the sum of the angles of the corners
of the white/black faces around a given vertex of φ(G∗) equals π. The fact that the
outer face is cyclic also follows by induction: this is true for the 4-cycle, and the central
moves do not move the outer dual vertices, or change their radii. �

We now show that G can be reduced to the 4-cycle graph using elementary transfor-
mations.

Lemma 3. Let G be a finite connected nondegenerate planar bipartite graph with 4
marked boundary vertices (two black and two white, with colors alternating while going
around the outer face). Then G can be reduced to the 4-cycle graph by applying a
sequence of elementary transformations described in Figure 1, without modifying the 4
marked vertices at intermediate stages.

Proof. We rely on the theory of planar bicolored graphs in the disk (also known as
plabic graphs) developed by Postnikov [38], of which finite planar bipartite graphs
with marked boundary vertices are a special case: just draw the graph inside a disk
and attach each boundary vertex to the boundary of the disk using an additional edge.
We declare two graphs to be equivalent if one can get from one to the other using a
sequence of spider moves and degree 2 vertex contractions or their inverses. A graph
is said to be reduced if there is no graph in its equivalence class to which one can
apply the merging of parallel edges. By applying merging of parallel edges as much
as necessary, we first transform G via a sequence elementary transformations into a
reduced graph G ′. Note that G ′ is connected and nondegenerate, since these properties
are preserved by elementary transformations.

We define a zigzag path of G ′ to be any path starting at the boundary of the disk
and turning maximally left (resp. maximally right) at each white (resp. black) vertex.
By [38, Theorem 13.2], since G ′ is reduced, every zigzag path ends on the boundary
of the disk. Label the boundary points of the disk cyclically and define the boundary
permutation π by setting π(i) = j if the zigzag path starting at the ith boundary
point ends at the jth boundary point. By [38, Theorem 13.2], since G ′ is connected,
π has no fixed point. It follows from [38, Theorem 13.4] that G ′ is equivalent to
another reduced graph G ′′ if and only if they have the same boundary permutation.
The boundary permutation of the plabic graph associated with the four-cycle graph is
(13)(24), where we write permutations as products of cycles with disjoint supports. We
will show that all the other permutations of four elements cannot arise as the boundary
permutation of G ′. Figure 5 displays three reduced graphs associated respectively with
the three permutations (1234), (1324) and (12)(34). These graphs cannot be equivalent
to G ′ since they are respectively degenerate for the first two and not connected for the
third. All the remaining permutations are obtained by symmetry from these three
permutations, hence the boundary permutation of G ′ has to be (13)(24). �

We now treat the base case of the induction in the above proof, namely the case of
the 4-cycle. It has one inner face with face weight X. By an Euclidean motion and
scaling, we can assume the four outer vertices of G∗ are placed at locations 0, 1, ρ, ξ ∈ C.
It remains to determine the only inner vertex u of G∗.
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1

2 3

4 1

2 3

4 1

2 3

4

Figure 5. Three reduced graphs with respective boundary permuta-
tions (1234), (1324) and (12)(34), from left to right. The graph on the
left has no dimer cover since it has more white vertices than black ver-
tices, the graph in the middle has an edge which is used by no dimer
cover and the graph on the right is not connected.

Lemma 4. Let Q′ be a convex quadrilateral with vertices 0, 1, ρ, ξ in counterclockwise
order and let X ∈ (0,∞). The equation

(9) − (1− u)(ξ − u)

(0− u)(ρ− u)
= X

has two solutions u (counted with multiplicity), both of which lie strictly inside Q′.

Proof of Lemma 4. When X = 0 the solutions to (9) are u = 1, u = ξ and when X =∞
the two solutions are u = 0, u = ρ. Notice that no other point on the boundary of Q
can be a solution for any X because one of the angle sums 0u1 + ρuξ or 1uρ + ξu0
would be larger than π. So by continuity it suffices to show that for small X > 0 there
is one solution inside Q′ near 1 and one solution inside Q′ near w. Solving (9) for u
and expanding near X = 0 gives the solutions

u = 1− ρ− 1

ξ − 1
X +O(X2)

u = ξ − ξ ρ− ξ
1− ξ

X +O(X2).

Note that for the first solution, arg ξ−1
ρ−1

is less than the angle at 1 of Q′, so the vector

−ρ−1
ξ−1

points into Q′ from the point 1; thus this solution is inside Q′ for small X > 0.

For the second, arg ρ−ξ
1−ξ is less than the angle of Q′ at ξ, so the vector −ξ ρ−ξ

1−ξ points

into the interior of Q′ from ξ. �

Each solution u determines a Coulomb gauge for the 4-cycle graph sending the outer
vertices to Q′, and hence to any convex quadrilateral Q:

Corollary 5. Suppose that G = {w1, b1, w2, b2} is a single 4-cycle with the inner face f .
Let u solve (9) and suppose the convex quadrilateral Q differs from Q′ by a complex
dilation λ ∈ C. Then the pair of functions G : {w1, w2} → C and F : {b1, b2} → C
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defined by

G(w1) := λ,

F (b1) := λ
0− u
Kw1b1

, F (b2) := λ
ξ − u
Kw1b2

,

G(w2) := λ
ρ− u

F (b2)Kw2b2

= λ
1− u

F (b1)Kw2b1

,

gives a Coulomb gauge for G; and the mapping φ defines a convex embedding of G∗
into Q, where φ(f) = u.

Remark 6. The isogonal conjugate of a point U with respect to a quadrilateral ABCD
is constructed by reflecting the lines UA, UB, UC and UD about the angle bisectors
of A, B, C, and D respectively. If these four reflected lines intersect at one point,
then this point is called the isogonal conjugate of U . Not all points have an isogonal
conjugate with respect to a quadrilateral, but only those lying on a certain cubic curve
associated with the quadrilateral [4]. One can show that the two solutions to (9) are
isogonally conjugate with respect to Q′. Moreover all possible pairs of isogonal conjugate
points inside Q′ can be achieved upon varying X > 0.

3.4. Existence of Coulomb gauge. In this subsection we consider the case when
the outer face of the planar bipartite graph has an arbitrary degree. We prove the
existence of at least one Coulomb gauge in this setting.

Lemma 7. Let G have outer boundary vertices w1, b1, . . . , wk, bk. Let Q ⊂ C be a convex
polygon, with non-zero edges W1, B1, . . . ,Wk, Bk ∈ C summing to zero. Suppose that
(G r {w1, b1, . . . , wk, bk}) has a dimer covering and (G r {w1, b1, . . . , wk, bk})∪ {bi, wj}
for any bi, wj on the boundary has a dimer covering as well. Then there exists a solution

to (4)-(7) for boundary values ( ~B,− ~W ).

Proof. It suffices to assume that Q is generic, that is its sides have no algebraic relations
beyond summing to zero. Indeed, a limit of dual embeddings of G∗ into nearby generic
polygons Q will be a dual embedding into Q.

Let K be a Kasteleyn matrix of G. Note that K is invertible. Let G(w) and F (b)
be functions on white and black vertices of G defined by

G(w) =
k∑
i=1

αiK
−1
biw

and F (b) =
k∑
j=1

K−1
bwj
βj

for some αi, βj ∈ C. For all internal white vertices w, we have∑
b

G(w)KwbF (b) = 0,

and for all internal black vertices b, we have∑
w

G(w)KwbF (b) = 0,
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and for all i, j ∈ {1, . . . , k}∑
w

G(w)KwbiF (bi) =
k∑
j=1

αiK
−1
biwj

βj

∑
b

G(wj)KwjbF (b) =
k∑
i=1

αiK
−1
biwj

βj.

Let M be the k × k matrix defined by mij = K−1
biwj

. By the generalized Cramer’s

rule

detM = ±
det(KGr{w1,b1,...,wk,bk})

detK
,

where KGr{w1,b1,...,wk,bk} denotes the submatrix of K formed by choosing the rows in-
dexing the white vertices of G r {w1, b1, . . . , wk, bk} and columns indexing the black
vertices of G r {w1, b1, . . . , wk, bk}. Note that KGr{w1,b1,...,wk,bk} is a Kasteleyn matrix
of the graph G r {w1, b1, . . . , wk, bk}, hence

| det(KGr{w1,b1,...,wk,bk})| = ZGr{w1,b1,...,wk,bk} =
∑

m∈MGr{w1,b1,...,wk,bk}

ν(m).

Therefore the condition that (Gr{w1, b1, . . . , wk, bk}) has a dimer covering implies that
detM 6= 0, i.e. the matrix M is invertible. Similarly, since (G r {w1, b1, . . . , wk, bk}) ∪
{bi, wj} has a dimer covering for any bi, wj on the boundary, all elements of the inverse
matrix M−1 are non-zero (m−1

ji 6= 0). We are looking for k-tuples ~α = (α1, . . . , αk) and
~β = (β1, . . . , βk) such that

k∑
j=1

αimijβj = Bi and
k∑
i=1

αimijβj = −Wj.

The existence of a solution to a general problem of this type for generic ~B, ~W is
given in the appendix. �

Question: If there are 2k outer boundary vertices (where k > 2), how many solu-
tions are there with embedded centers? For generic weights this number is a function
only of the graph G, and is invariant under elementary transformations preserving the
boundary.

4. Biperiodic bipartite graphs and circle patterns

In this section we deal with the case of a bipartite graph embedded on a torus, or
equivalently a biperiodic bipartite planar graph.

4.1. Embedding of G∗. Let G be a bipartite graph, having dimer covers, nonde-
generate and embedded on a torus T with complementary regions (faces) which are
topological disks. Let ν : E → R>0 be a set of positive edge weights. We fix two simple
cycles l1 and l2 in the dual graph G∗ which together generate the homology H1(T,Z),
and have intersection number l1 ∧ l2 = +1. Let K be a real Kasteleyn matrix.
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We define new edge weights on G by multiplying, for i = 1, 2, each original edge
weight by λi (resp. λ−1

i ) if the edge crosses li with a white vertex to its left (respectively
right). Define K(λ1, λ2) to be a Kasteleyn matrix of G with the new edge weights and
define a Laurent polynomial P by P (λ1, λ2) := detK(λ1, λ2). Note that the graph
G with these new edge weights still has the same face weights as the original graph.
We shall see exactly for which (λ1, λ2) ∈ (C∗)2 there is a corresponding circle pattern
(Theorem 15 below).

The spectral curve of the dimer model on G is defined to be the zero-locus of P in
(C∗)2. The amoeba of P is the image in R2 of the spectral curve under the mapping
(λ1, λ2) 7→ (log |λ1|, log |λ2|). The spectral curve is a simple Harnack curve [26]; this
has the following consequences (see [34]). Every point (λ1, λ2) of the spectral curve is
a simple zero of P (λ1, λ2) or it is a double zero which is real (a real node). The partial
derivatives Pλ1 and Pλ2 vanish only at real points, and vanish simultaneously only at

real nodes; the quantity ζ :=
λ2Pλ2
λ1Pλ1

is the logarithmic slope and is real exactly on the

boundary of the amoeba (where it equals the slope of the amoeba boundary). At a real
node the logarithmic slope ζ has exactly two limits, which are nonreal and conjugate.

When (λ1, λ2) is a simple zero, (λ̄1, λ̄2) is also a zero of P (λ1, λ2), and in this case
it is shown in [25] that K(λ1, λ2) has a kernel which is one-dimensional. Hence there
exists a pair of functions (F,G) unique up to scaling, with F defined on black vertices
and G defined on white vertices, with F ∈ kerK(λ1, λ2) and G ∈ kerKt(λ1, λ2). When
λ1, λ2 are not both real we call it an interior simple zero, it corresponds to a point in
the interior of the amoeba, but not at a node.

At a real node, λ1 and λ2 are both real and the kernel of K(λ1, λ2) is two-dimensional.
The kernel is spanned by the limits of the kernels for nearby simple zeros and their
conjugates. Let F,G be functions in the kernel of K(λ1, λ2) (resp. of Kt(λ1, λ2)) which
are limits of those for simple zeros for which Im ζ > 0.

Let G̃ be the lift of G to the plane (the universal cover of the torus). Let p1, p2 be
the horizontal and vertical periods of G̃ corresponding to l1, l2 respectively. We lift F
and G to G̃ by, for i = 1, 2

(10) F (b+ pi) = λiF (b), G(w + pi) = λ−1
i G(w).

The extended version of F (resp. G) is in the kernel of Kwb (resp. Kt
wb), where

Kwb =



Kwb(λ1, λ2) if the edge wb belongs to a fundamental domain

λ−1
i ·Kwb(λ1, λ2) if the edge wb crosses li with a white vertex to its left

λi ·Kwb(λ1, λ2) if the edge wb crosses li with a white vertex to its right

0 if w and b are not adjacent

Kw′b′ if w′ = w + pi and b′ = p+ pi

is a real-valued biperiodic Kasteleyn matrix of G̃.
We define two co-closed 1-forms

(11) ω(w, b) = G(w)KwbF (b) and ω̂(w, b) = G(w)KwbF (b)

and use them to define two mappings φ, φ̂ : G̃∗ → C using (8).
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Remark 8. The image of the mapping φ is periodic, in the sense that (for i = 1, 2)
φ(v + pi) = φ(v) + Vi for constant vectors V1, V2 called the periods. Indeed,

(12) F (b+ p1)G(w + p1) = F (b)G(w)

and similarly for p2. In the case of a real node, λ1 and λ2 are real hence (12) also

holds with G replaced with G so φ̂ also has a periodic image.

As a consequence of Remark 8, one can project the centers {φ(G̃∗)} down to a flat
torus and one can give an explicit formula for the aspect ratio of that torus:

Proposition 9. The periods V1 and V2 of φ are nonzero as long as Pλ1 and Pλ2 are
nonzero, and can also be chosen nonzero at a real node by an appropriate scaling. The

ratio of the periods is V2/V1 = ζ =
λ2Pλ2
λ1Pλ1

.

Proof. For a matrix M we have the identity ∂(detM)
∂Mi,j

= M∗
i,j, where Mi,j is the (i, j)-

entry of M and M∗
i,j is the corresponding cofactor. Recalling that P = detK, we

have

λ1
∂P

∂λ1

=
∑
γ1

±KwbK
∗
bw

where the sum is over edges wb crossing γ1 (i.e. those edges of G with a weight
involving λ±1

1 ), the sign is given by the corresponding exponent of λ1 for that edge,
and K∗ is the cofactor matrix. When (λ1, λ2) is a simple zero of P , we have K∗K =
KK∗ = (detK) Id = 0 and hence the columns of K∗ are multiples of F and the rows
are multiples of G. In particular, we can write K∗bw = cst ·F (b)G(w) for some scale
factor cst. We find

λ1
∂P

∂λ1

= cst
∑
γ1

±KwbF (b)G(w) = cst ·V1.

Similarly

λ2
∂P

∂λ2

= cst ·V2

and we conclude by taking the ratio of these.
If (λ1, λ2) is a node, we can take a limit of nearby simple zeros with, say, Im(ζ) > 0,

and scaling so that V1 is of constant length; since ζ has a well-defined nonreal limit, V2

will also have a limit of finite length. �

Theorem 10. If (λ1, λ2) is in the interior of the amoeba of P , the realization φ is a
periodic convex embedding of G̃∗, dual to a circle pattern.

Note that if (λ1, λ2) is on the boundary of the amoeba, then ζ is real and so by
Proposition 9, φ cannot define an embedding.

Proof. If (λ1, λ2) is an interior simple zero, then we show in Lemma 14 below that the
realization φ1 defined from Re(G(w))KwbF (b) is a “T-graph embedding” (see definition
in Section 4.3), mapping each white face to a convex polygon. (This result is stated
in [28] without proof). In particular for φ1 the sum of the angles of white polygons at
vertices of G̃∗ is π. This implies that for the realization defined by φ, the sum of angles
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of the white polygons at vertices of G̃∗ is also π, since these polygons are simply scaled
copies of those for φ1. Likewise the realization φ2 defined from G(w)Kwb Re(F (b)) is
a T-graph embedding, mapping each black face to a convex polygon. It suffices to
show that the orientations of φ1 and φ2 agree. Note that the realization defined by
G(w)Kwb Re(F (b)) is also a T-graph embedding with the reverse orientation to that
of φ2. Thus the orientations of the white and black faces agree in exactly one of φ or
φ̂. We claim that they agree in φ, not φ̂. This is a consequence of Lemma 12 below.
Thus φ is a local homeomorphism.

By Remark 8 and Proposition 9, the image of φ is periodic with nonzero periods
(at interior simple zeros the Pλi are nonzero) and so φ is proper, and thus a global
embedding (a proper local homeomorphism is a covering map).

If (λ1, λ2) is a real node then one can argue similarly as above; the question of
orientation is resolved by taking a limit of simple zeros, since the embeddings depend
continuously on (λ1, λ2). �

4.2. The circles. Let φ be the embedding of G∗ defined from ω in (11), and φ̂ the
realization defined from ω̂. From φ we can define the associated circle pattern as in the
finite case. However the circles may grow without bound in radius as we move away
from the initial vertex; we give a criterion (Lemmas 11, 12 and 13) for determining
when the radii are bounded.

Lemma 11. The boundedness of the map φ̂ is equivalent to the boundedness of the
radii in any circle pattern.

c(b0)

c(w)

c(b)

φ̂(G∗)

φ̂
ξ

ξ = φ̂(c(b0)) = φ̂(c(w)) = φ̂(c(b)) = φ̂(c(G))

φ(G∗)

Figure 6. Under folding, all vertices of a circle pattern coincide.

Proof. First, note that φ̂(G∗) is defined up to an additive constant. For any face v of

G∗ one can describe a face φ̂(v) using the following procedure: fix a face φ(b0), consider
a face-path g from φ(v) to φ(b0) and take a sequence of reflections of φ(v) across edges

of φ(G∗) intersecting g. Note that φ̂(v) is independent of the choice of a face-path,
since φ(G∗) satisfies the angle condition around each vertex. In other words to get

φ̂(G∗) from φ(G∗) one can chose a root face φ(b0) and fold the plane along every edge of

the embedding, see Figure 6. Note that all black faces of φ̂(G∗) have their orientation
preserved while white ones are reversed. Note also that two adjacent vertices of a circle
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pattern corresponding to b, w ∈ G are symmetric with respect to the edge φ((wb)∗).
Therefore they coincide after one folds the plane along φ((wb)∗). Hence each circle

pattern corresponds to a single point under the mapping φ̂, and the radii in the circle
pattern are distances from this point to vertices of φ̂(G∗). To finish the proof note that

the boundedness of these distances is equivalent to the boundedness of the map φ̂. �

We now explain when φ̂ is bounded.

Lemma 12. If (λ1, λ2) is an interior simple zero, then φ̂ is bounded.

Proof. Assume first that neither of λ1, λ2 is real. Fix a dual vertex f ∈ G̃∗. We have

φ̂(f + 2p1)− φ̂(f + p1) = λ1λ̄
−1
1 (φ̂(f + p1)− φ̂(f)).

Since |λ1λ̄
−1
1 | = 1, the segment φ̂(f + p1)φ̂(f + 2p1) differs from φ̂(f)φ̂(f + p1) by a

rotation around the center of the circle Cφ(f),1 through φ̂(f), φ̂(f + p1), φ̂(f + 2p1) with

angle arg λ1λ̄
−1
1 6= 0. In particular this implies all the φ̂(f+kp1) for k ∈ Z lie on Cφ(f),1.

A similar argument holds for φ̂(f + kp2). So all the dual vertices φ̂(f + k1p1 + k2p2)
with (k1, k2) ∈ Z2 have distance at most the sum of the diameters of these two circles

from φ̂(f) and thus lie in a compact set.

Assume now that λ1 is real and λ2 is non-real; then the image of φ̂ is periodic in
the direction of p1 and almost periodic in the direction of p2. We claim that this is
possible only if the period in the direction of p1 is zero: on the one hand the four points
φ̂(f), φ̂(f + p1), φ̂(f + p2) and φ̂(f + p1 + p2) form a parallelogram (maybe degenerate)
because of the periodicity in the direction of p1, and on the other hand, the vectors
φ̂(f)φ̂(f + p1) and φ̂(f + p2)φ̂(f + p1 + p2) differ by multiplication by λ2λ̄

−1
2 6= 1, so

these vectors must be zero. Therefore φ̂ is also bounded in this case. �

Lemma 13. For real nodes on the spectral curve, there is a two-parameter family of
embeddings φ, up to similarity, but exactly one of them has a bounded φ̂. Moreover,
boundedness of φ̂ (in this case) is equivalent to the biperiodicity of the radii in any
circle pattern.

Proof. This proof is due to Dmitry Chelkak. By Remark 8, the images of φ and φ̂
are periodic in the case of a real node. Denote by V1, V2 the corresponding periods of

φ and by V ?
1 , V

?
2 the periods of the map φ̂. Note that for each τ, η in the unit disk

D = {z : |z| < 1} the pair of functions (F + τ F̄ , G + ηḠ) also defines, via (8), a non-
degenerate embedding φτ,η: a black face of φτ,η is the image of a black face b of φ under

the linear map z 7→ z + ηz̄, followed by a homothety with factor F (b)+τF̄ (b)
F (b)

. Similarly

the white faces undergo the linear map z 7→ z + τ z̄ followed by a homothety; these
linear maps have positive determinant when τ, η ∈ D, and so preserve orientation (and

convexity). Let φ̂τ,η be a map defined via (8) by the pair of functions (F+τ F̄ , G+ ηḠ).
If we let Vφ = nV1 +mV2 be a period of φ and Vφ̂ = nV ?

1 +mV ?
2 be the corresponding

period of φ̂, then the corresponding period of φτ,η is Vφ + τVφ̂ + ηVφ̂ + τηVφ. In order
for φτ,η to be embeddings for all τ, η ∈ D we need

(13) Vφ + τVφ̂ + ηVφ̂ + τηVφ 6= 0 for all τ, η ∈ D.
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Note that Vφ + τVφ̂ + ηVφ̂ + τηVφ = 0 when τ = −V
φ̂
η+Vφ

ηVφ+V
φ̂

. Under what conditions

are there no solutions with τ, η ∈ D? The map η 7→ −(Vφ̂η+ Vφ)/(V̄φη+ Vφ̂) sends the
unit circle to itself, and maps the unit disk strictly outside the unit disk if and only if
|Vφ| ≥ |Vφ̂|. So the above condition (13) is equivalent to the condition |Vφ| ≥ |Vφ̂| for

all n,m. Note that a period of φ̂ does not exceed in absolute value a period of φ, to
see this recall the folding interpretation of φ̂ described in the proof of Lemma 11. This
condition can be further reformulated as follows: the image of D under the mapping
z 7→ (V1 + V ?

1 z)/(V2 + V ?
2 z) does not intersect the real line: otherwise, one would have

(V1 − tV2) + (V ?
1 − tV

?
2 )z = 0 for some real t, a contradiction with |Vφ| ≥ |Vφ̂|.

Recall that the image of φ̂τ,η is periodic, hence it is bounded if and only if its periods
are zero. Thus we need to find τ, η̄ ∈ D such that:

V ?
1 + τV1 + η̄V1 + τ η̄V ?

1 = 0

V ?
2 + τV2 + η̄V2 + τ η̄V ?

2 = 0

or equivalently,
V ?

1 + η̄V1

V1 + η̄V ?
1

= −τ =
V ?

2 + η̄V2

V2 + η̄V ?
2

.

Both fractional-linear mappings send the unit disk to itself, since |V1,2| ≥ |V ?
1,2|. There-

fore it is enough to show that this quadratic equation in η̄ has a root in D; the corre-
sponding τ will lie in D too.

Clearly, either one of the roots is inside the unit disk and the other outside, or both
are on the unit circle. Finally, note that the latter is impossible as one would have

V1 + η̄V ?
1

V2 + η̄b̄2

=
V ?

1 + η̄V1

V ?
2 + η̄V2

=
V1 + ηV ?

1

V2 + ηV ?
2

∈ R

which is in contradiction with the fact that the image of D under the mapping z 7→
(V1 + V ?

1 z)/(V2 + V ?
2 z) does not intersect the real line.

�

4.3. T-graphs for periodic bipartite graphs. The notion of T-graph was intro-
duced in [28]. A pairwise disjoint collection L1, L2, . . . , Ln of open line segments in R2

forms a T-graph in R2 if ∪ni=1Li is connected and contains all of its limit points except
for some set R = {r1, ..., rm}, where each ri lies on the boundary of the infinite compo-
nent of R2 r ∪ni=1Li. Elements in R are called root vertices. Starting from a T-graph
one can define a bipartite graph, whose black vertices are the open line segments Li
and whose white vertices are the (necessarily convex) faces of the T-graph. A white
vertex is adjacent to a black vertex if the corresponding face contains a portion of the
corresponding segment as its boundary. Using a T-graph one can define in a natural
geometric way (real) Kasteleyn weights on this bipartite graph: the weights are a sign±
times the lengths of the corresponding segments, where the sign depends on which side
of the black segment the white face is on; changing the choice of which side corresponds
to the + sign is a gauge change. Conversely, as described in [28], for a planar bipartite



20 RICHARD KENYON, WAI YEUNG LAM, SANJAY RAMASSAMY, MARIANNA RUSSKIKH

graph with Kasteleyn weights one can construct a T-graph corresponding to this bipar-
tite graph. For infinite bi-periodic bipartite graphs one can similarly construct infinite
T-graphs without boundary. For any (λ1, λ2) in the liquid phase (see Section 4.4), we
consider the realization φ1 : G̃∗ → C defined from ω1(w, b) = Re(G(w))KwbF (b).

Lemma 14. The realization φ1 defined above is a T-graph embedding.

Proof. The proof starts along the lines of Theorem 4.6 of [28], which deals with the
finite case. The φ1-image of each black face is a line segment. For a generic direc-
tion τ , consider the inner products ψ(f) := φ1(f) · τ as f runs over vertices of G̃∗; we
claim that this function ψ satisfies a maximum principle: it has no local maxima or
minima. This fact follows from the Kasteleyn matrix orientation: If a face f of G̃ has
vertices w1, b1, . . . , wk, bk in counterclockwise order, we denote the neighboring faces as
f1, f2, . . . , f2k. Then the ratios

φ1(f)− φ1(f2i−1)

φ1(f)− φ1(f2i)
=

ω1(wi, bi)

−ω1(wi+1, bi)
= − Re(G(wi))Kwibi

Re(G(wi+1))Kwi+1bi

(with cyclic indices) cannot be all positive, by the Kasteleyn condition. Thus not all
black faces of G̃∗ adjacent to f have φ1-image with an endpoint at φ1(f): at least one
has φ1(f) in its interior and thus there is a neighbor of f with larger value of ψ and a
neighbor with smaller value of ψ.

It follows from Remark 8 and Proposition 9 that φ1 is a locally finite realization,
in the sense that any compact set contains only finitely many points of the form φ1.
Indeed, in the real node case, 2φ1 = φ+ φ̂ has a periodic image of nonzero period while
in the interior simple zero case, it is the sum of the periodic realization φ of nonzero
period and of the realization φ̂ which is bounded by Lemma 12.

We claim that the φ1 image of a white face w is a convex polygon. If not, we could
find a vector τ and four vertices f1, f2, f3, f4 of w in clockwise order such that both
ψ(f1), ψ(f3) are larger than either of ψ(f2), ψ(f4). By the maximum principle we can
then find four disjoint infinite paths starting from f1, f2, f3, f4 respectively on which
ψ(·) is respectively increasing, decreasing, increasing, decreasing. We linearly extend
φ1 in order to define it on the edges of G̃∗. Consider a circle C such that the disk
that it bounds contains φ1(fi) for all 1 ≤ i ≤ 4. By the local finiteness property,
this disk contains finitely many points of the realization φ1, hence the four paths must
intersect C. Denote by Ai the point at which the i-th path intersects C for the first time
for 1 ≤ i ≤ 4; these points are in cyclic order on C, since the paths are disjoint. We
obtain that ψ(A1), ψ(A3) are larger than either of ψ(A2), ψ(A4), which contradicts the
convexity of C and completes the proof of the claim that the φ1-image of each white
face is convex.

A similar argument applied to the black segments shows that the set of white faces
adjacent to a black segment winds exactly once around the black segment, rather than
multiple times, so φ1 is a local embedding near a black segment.

Since φ1 is also locally finite, it has to be proper hence it is a global embedding. �

4.4. Correspondence. Let G be a bipartite graph on the torus, with an equivalence
class of positive edge weights under gauge equivalence. Recall the definition of the
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spectral curve P (λ1, λ2) = 0 defined from this data. We say that G is in a liquid phase
if the origin is in the interior of the amoeba of P (this terminology comes from [26]
and refers to the polynomial decay of correlations for the corresponding dimer model
on G̃). In this case the roots (λ1, λ2) of P for which |λ1| = |λ2| = 1 consist in either a
pair of conjugate simple roots (λ1, λ2), (λ̄1, λ̄2) or a real node (λ1, λ2) = (±1,±1).

By Theorem 10 above, associated to the data of a liquid phase dimer model is a pe-
riodic, orientation preserving convex embedding φ of G∗, well defined up to homothety
and translation. The converse is also true, giving us a bijection between these spaces:

Theorem 15. For toroidal graphs, the correspondence between liquid phase dimer mod-
els and periodic circle center embeddings is bijective.

Proof. Given a periodic, orientation-preserving embedding φ of G̃∗ satisfying the angle
condition (and thus a convex embedding), we define edge weights by associating to
each edge e in G̃ the complex number corresponding to the dual edge e∗ dual to e,
oriented in such a way that the white dual face lies on its left. These edge weights
define positive X variables, because the sum of black angles equals the sum of white
angles around each dual vertex.

Let K be the associated Kasteleyn matrix, with Kwb equal to the corresponding
complex edge weight. Then we see that K is in a Coulomb gauge, since the sum of
the Kwb around each vertex is zero.

It remains to see that the weights are in a liquid phase. Since all face weights are
real, K is gauge equivalent to the matrix K(λ1, λ2), which has real weights except
on the dual curves l1, l2, where the weights are multiplied by λ±1

1 , λ±1
2 as before. Thus

Kwb = G(w)Kwb(λ1, λ2)F (b) for some functions G,F . If at least one of λ1, λ2 is nonreal,
then (λ1, λ2) is an interior zero of P , so we are in a liquid phase. If λ1, λ2 are both real,
then K is real; in this case K must have two dimensional kernel: both Re(F ) and Im(F )
are in the kernel, and Re(G) and Im(G) are in the left kernel; since the embedding is
two-dimensional either Re(F ) and Im(F ) are independent vectors or Re(G) and Im(G)
are independent vectors. Thus (λ1, λ2) is at a real node of P and again we are in a
liquid phase. �

5. Spider move, central move and Miquel dynamics

5.1. A central relation. Given five distinct points u, u1, u2, u3, u4 ∈ C, consider the
following equation for an unknown z:

(u2 − z)(u4 − z)

(u1 − z)(u3 − z)
=

(u2 − u)(u4 − u)

(u1 − u)(u3 − u)
.(14)

This quadratic equation has two roots z = u and z = ũ where

ũ =
uu1u3 − u1u2u3 − uu2u4 + u1u2u4 − u1u3u4 + u2u3u4

uu1 − uu2 + uu3 − u1u3 − uu4 + u2u4

.(15)

We call the map u 7→ ũ a central move.
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The central relation is known to be an integrable discrete equation of octahedron
type. Rewriting (15) yields

(u− u1)(u2 − ũ)(u3 − u4)

(u1 − u2)(ũ− u3)(u4 − u)
= −1

which coincides with type χ2 in the Adler-Bobenko-Suris list of integrable discrete
equations [1] and arises in the classical Menelaus theorem in projective geometry [29].

The central move depends on four other points u1, u2, u3, u4. It is related to the
following circle pattern relation: Suppose we have circles C,C1, C2, C3, C4 centered at
u, u1, u2, u3, u4 with, for i = 1, 2, 3, 4, the triple of circles C,Ci, Ci+1 meeting at a point
(here indices are taken modulo 4). Then, by Miquel’s six circles theorem [35], there is
another circle C̃ which, for each i = 1, 2, 3, 4 intersects Ci, Ci+1 at the other point of
intersection of Ci and Ci+1. This circle C̃ has center ũ.

Theorem 16 (Centers of Miquel’s six circles). Suppose five circles have centers u, u1,
u2, u3, u4 as in Figure 7. Then the center ũ of the remaining circle through Ã, B̃, C̃, D̃
coincides with the point given by the central move (15).

Proof. The existence of the sixth circle follows from Miquel’s six circles theorem. It
remains to show the relation between the centers. Notice that the line connecting two
centers is always perpendicular the common chord of the two circles. The center of the
sixth circle is determined uniquely as the intersection of the perpendicular bisectors of
ÃB̃, B̃C̃, C̃D̃, D̃Ã. It suffices to show that the point ũ determined from (15) lies on
these perpendicular lines.

We show that ũ− u2 is perpendicular to Ã− B̃. On one hand, since Ã, B̃, B,A are
concyclic, their cross ratio is real. We know that u3 − u2 ⊥ B̃ − B, u − u2 ⊥ B − A,

u1−u2 ⊥ A−Ã. Thus we have ũ−u2 ⊥ Ã−B̃ if and only if (ũ−u2)(u−u2)
(u1−u2)(u3−u2)

is real. On the

other hand, since u, u1, u2, u3, u4 are circumcenters, the quantity X := − (u2−u)(u4−u)
(u1−u)(u3−u)

is

real, see Section 3.2. Considering the quadratic equation (14), the roots u, ũ satisfy

u+ ũ =
(u2 + u4) +X(u1 + u3)

1 +X
, u ũ =

u2u4 +Xu1u3

1 +X
(16)

and hence

(ũ− u2)(u− u2)

(u1 − u2)(u3 − u2)
= X/(1 +X)

is real. This implies ũ− u2 is perpendicular to Ã− B̃.
Similarly we can show that ũ lies on the other perpendicular lines and so ũ is the

circumcenter of the sixth circle. �

5.2. Cluster variables. Given u, u1, u2, u3, u4 ∈ C, we define X = − (u2−u)(u4−u)
(u1−u)(u3−u)

.

More generally, if we have a bipartite circle pattern with circle centers {ui}, and f is
a face of degree 2k, define

Xf = − (u2 − u)(u4 − u) . . . (u2k − u)

(u1 − u)(u3 − u) . . . (u2k−1 − u)
.
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Figure 7. Miquel’s six circles theorem states that given a configura-
tion of five circles, meeting three at a time at A,B,C,D as indicated,
there exists a sixth circle passing through the four remaining intersection
points. The circumcenters of the six circles satisfy the central rela-
tion (14).

As discussed in Section 3.2 above, this associates a real variable to every face (i.e.
circle) of the circle pattern.

Theorem 17. Suppose we have a circle pattern with bipartite graph G, and f is a quad
face of G, with neighboring faces f1, f2, f3, f4. Let u, u1, u2, u3, u4 be the corresponding
circle centers, and X1, . . . , X4 be the X variables. Then under a spider move the circles
undergo a Miquel transformation, the new circle center is ũ, and the X variables are
transformed as follows:

X ′ = X−1

X ′1 = X1(1 +X)

X ′2 = X2(1 +X−1)−1(17)

X ′3 = X3(1 +X)

X ′4 = X4(1 +X−1)−1

Proof. Equation (16) implies

(ũ− ui)(u− ui) =
u2u4 +Xu1u3

1 +X
− ui

(u2 + u4) +X(u1 + u3)

1 +X
+ u2

i .

This factors for i = 1, 2, 3, 4, yielding

(ũ− ui)(u− ui)
(ui+1 − ui)(ui−1 − ui)

=

{
1/(1 +X) for odd i

1/(1 +X−1) for even i.
(18)

Now (17) is a short verification. �
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Remark 18. The transformation formulas for the X variables corresponds to the trans-
formation formulas for so-called Y -systems, introduced in [45] and which fall into the
broader framework of coefficient variables in cluster algebras [14, 16].

5.3. Miquel dynamics. Miquel dynamics is a dynamical system on circle patterns
with the combinatorics of the square grid [40]. We color the faces (corresponding to
circles) black and white in a chessboard fashion. A black mutation is to remove all
the black circles and replace them by new circles obtained from Miquel’s theorem, and
similarly for a white mutation. More precisely, black (resp. white) mutation moves
each vertex to the other intersection point of the two white (resp. black) circles it
belongs to. Applying two mutations of the same type gives the identity map. Miquel
dynamics is the process of applying black and white mutations alternately on a circle
pattern. Our notion of the central move shows that the centers under Miquel dynamics
follow an integrable system equivalent to that of the octahedron recurrence (defined
in [15]).

Note that, while Miquel dynamics was originally defined as a dynamics on circle
patterns, it is also a well-defined dynamics on centers of circle patterns. In terms of
centers u : F (Z2)→ C, a black mutation Mb simply applies a central move to all black
centers. In terms of spider moves on (the dual graph) Z2, a black mutation can be
decomposed into two steps:

Step 1: Apply a spider move to the black faces.
Step 2: Contract all the degree-2 vertices.

The new black centers and the old white centers define a map Mb(u) : F (Z2) → C
giving the centers of the circle pattern Mb(z). Similarly one defines the white muta-
tion Mw. Applying black and white mutations alternately yields a sequence of square
grids

{. . . ,Mb(Mw(u)),Mw(u), u,Mb(u),Mw(Mb(u)), . . .}

wb

bw
z z̃ Mb(z)

Figure 8. Starting with z : Z2 → C with black and white faces (Left),
a black mutation Mb applied a spider move to each black face (Center).
We then contract all the degree-2 vertices and obtain a new immersion
Mb(z) : Z2 → C (Right).

As in section 5.2, a weight X : F (Z2)→ R>0 is associated to the centers of the circle
pattern. Let Mb(Xm,n) be a weight of face (m,n) after a mutation Mb.
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Proposition 19. Under a black mutation

Mb(Xm,n) =

{
X−1
m,n if (m,n) is a black face

Xm,n
(1+Xm,n+1)(1+Xm,n−1)

(1+X−1
m+1,n)(1+X−1

m−1,n)
if (m,n) is a white face

In particular, Xm,n > 0 for all (m,n) ∈ Z2 if and only if Mb(Xm,n) > 0 for all
(m,n) ∈ Z2. The same holds for a white mutation.

Proof. The formulas follow from Theorem 17. If Xm,n > 0 for all (m,n) ∈ Z2, the
equations yield Mb(Xm,n) > 0 immediately. If Mb(Xm,n) > 0 for all (m,n) ∈ Z2, then
Xm,n = Mb(Mb(Xm,n)) > 0. �

This implies that the class of circle patterns with positive face weights is preserved
under Miquel dynamics.

The class of spatially biperiodic circle patterns is also preserved by Miquel dynamics
[40] and in that case, Miquel dynamics is integrable and one can deduce a complete
set of invariants from the partition function of the underlying dimer model [18].

5.4. Fixed points of Miquel dynamics. In this subsection we study the fixed points
of Miquel dynamics. Given a circle pattern, one can construct its centers and given
the centers, one can compute the X variables. This gives three possible definitions of
“fixed point of Miquel dynamics”, in increasing order of strength: either the collection
of X variables is preserved, or the collection of centers is preserved, or the circle pattern
itself is preserved.

We first consider the case of a center being fixed by the central move. We rewrite
the central move (15) as follows:

Lemma 20. Suppose X := − (u1−u)(u3−u)
(u2−u)(u4−u)

> 0. If u1 − u2 + u3 − u4 6= 0, we have

ũ = u+
((u1 − u)(u3 − u)− (u2 − u)(u4 − u))2 − (u1 − u2)(u2 − u3)(u3 − u4)(u4 − u1)

((u1 − u)(u3 − u)− (u2 − u)(u4 − u))(u1 − u2 + u3 − u4)

If u1 − u2 + u3 − u4 = 0, we have

ũ = u+
(u1 − u) + (u2 − u) + (u3 − u) + (u4 − u)

2
.

Recall that a tangential quadrilateral is a quadrilateral with an incircle, i.e. a circle
tangent to the extended lines of the four sides. The incircle is unique if it exists. In
this case, the center of the incircle is the intersection of bisectors of interior angles at
the four corners.

Proposition 21. Suppose X = − (u2−u)(u4−u)
(u1−u)(u3−u)

> 0. Then the quadratic equation (14)

has a repeated root u = ũ if and only if u1u2u3u4 forms a tangential quadrilateral with
an incircle centered at u.

Proof. If u1 − u2 + u3 − u4 = 0, then setting ũ = u in Lemma 20 implies

u =
u1 + u3

2
=
u2 + u4

2
.
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is the center of the parallelogram u1u2u3u4. Furthermore X being positive implies the
parallelogram is a rhombus whose incircle is centered at u.

Otherwise, we assume u1 − u2 + u3 − u4 6= 0. Lemma 20 implies the segment uui is
an angle bisector of ∠ui−1uiui+1. To see this, setting ũ = u in Lemma 20 yields

u4 = − (u− u1)(u− u2)(u− u3)

(u− u2)2 − (u3 − u2)(u1 − u2)
+ u

Substituting it into X, we have

X = −(u2 − u)(u4 − u)

(u1 − u)(u3 − u)
=

(u− u2)2

−(u− u2)2 + (u3 − u2)(u1 − u2)
.

Since X is positive, we can deduce (u3−u2)(u1−u2)
(u−u2)2

= 1
X

+ 1 is positive as well and thus

the segment uu2 is an angle bisector of ∠u1u2u3. Similarly we can deduce that u lies
on the angles bisectors of the other three corners and hence there is an incircle tangent
to u1u2u3u4 and centered at u. �

We can now characterize the centers that are preserved under the Miquel dynamics.

Theorem 22. The centers of a circle pattern are preserved under Miquel dynamics if
and only if they are also the centers of some circle pattern where diagonal circles are
tangential, i.e. the circles centered at um,n and um+1,n+1 are tangential, and the circles
centered at um,n and um−1,n+1 are tangential.

Proof. Suppose the centers u : F (Z2)→ C are fixed under the central move. We define
z : Z2 → C to be the intersection of the diagonals in each elementary quadrilateral
um,num+1,n+1 ∩ um+1,num,n+1. We claim the faces of z are cyclic, centered at the u’s.
To see this it suffices to show that zr := um,num+1,n+1 ∩ um,n+1um+1,n is the image of
zl := um,num−1,n+1 ∩ um,n+1um−1,n under the reflection across um,num,n+1 (See Figure
9). Indeed, Proposition 21 implies that um,n is at the center of the inscribed circle
of the quadrilateral um+1,num,n+1um−1,num,n−1. It yields that under the reflection the
ray through um,n+1 and um+1,n is the image of the ray through um,n+1 and um−1,n. By
considering a nearby quadrilateral similarly, we can deduce the ray through from um,n
and um+1,n+1 is the image of the ray through um,n and um−1,n+1.

Now consider the circles defined by the faces of the z’s; this is a new set of circles
centered at the u’s (not those inscribed in the quadrilaterals). We claim that the
diagonal circles are tangent to each other. To see this, consider the point zr which is
the intersection of the diagonals um,num+1,n+1∩um+1,num,n+1. Notice that the distance
between zr and um,n is the radius of the circle at um,n and similarly the distance
between zr and um+1,n+1 is the radius of the circle at um+1,n+1. Since zr lies on the line
joining um,n and um+1,n+1, which is perpendicular to both circles, the opposite circles
are tangential. �

A particular case where opposite circles are tangential is the case of circle patterns
with constant intersection angles. For a circle pattern z : V (Z2)→ C, one can measure
the intersection angle θ : E(Z2) → [0, π] between neighboring circles. We say a circle
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um,n

um,n−1

um+1,n

um,n+1 um+1,n+1um−1,n+1

um−1,n

zrzl

um+1,n−1um−1,n−1

Figure 9. zr is the reflection of zl with respect to the ray through um,n
and um,n+1.

pattern has constant horizontal and vertical intersection angles if there exists α ∈ [0, π]
such that

θ =

{
α along vertical edges

π − α along horizontal edges

It is an orthogonal circle pattern if α = π/2, see [41]. An example of a circle pattern
with constant intersection angles α is that of a regular rectangular grid with rectangles
of width 1 and height cotα.

If a circle pattern has the same centers as that of a circle pattern with constant
intersection angles, then its intersection points undergo rigid rotation under Miquel
dynamics:

Corollary 23. Suppose u : Z2 → C gives the centers of a circle pattern with constant
intersection angle α and z is some other circle pattern with u as centers. Then the
orbit of every intersection point z of the circle pattern lies on a circle, and Mb ◦Mw

rotates the point around the circle by angle 2α.

Proof. For each elementary quad Q = um,num+1,num+1,n+1um,n+1, the diagonals in-
tersect at angle α. We denote z̃0 the intersection of the diagonals while z0 is the
intersection of the circles at um,num+1,num+1,n+1um,n+1. Generally, z0 6= z̃0 unless z is
the circle pattern of constant intersection angle. Applying a Miquel’s move Mw once,
z̃0 is fixed while z0 is reflected across one of the diagonals to Mw(z0). Applying a
black mutation Mb, the point is reflected across the other diagonal. In both cases, the
distance to z̃ is preserved. Hence the orbit of z0 lies on a circle centered at z̃0.

Thus z0 is reflected successively across two lines (emanating from z̃0) meeting at
angle α; two such reflections define a rotation around z̃0 of angle 2α. �

Corollary 24. A circle pattern is preserved under Miquel dynamics if and only if it
has constant horizontal and vertical intersection angles.

In the infinite planar case, the intersection angles between neighboring circles do
not determine the pattern, hence for each value of α ∈ [0, π], there exists a large class
of circle patterns with constant intersection angles equal to α for vertical edges. This
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class was studied in [41] in the particular case when α = π
2
. In the case of spatially

biperiodic patterns of prescribed periods, or equivalently, circle patterns on a flat torus,
the intersection angles do characterize the circle pattern up to similarity [8], so that the
only spatially biperiodic diagonally tangent patterns are those corresponding to regular
rectangular grids (all the columns have the same width and all the rows have the same
height). Hence in the spatially biperiodic case, the regular rectangular grids are the
only fixed points of Miquel dynamics, seen either as a dynamics on circle patterns or
on circle centers. The X variables of a given such fixed point are the same for all the
faces (equal to the squared aspect ratio of the rectangle formed by a face).

For general, not necessarily biperiodic patterns we have the following.

Proposition 25. Suppose a circle pattern has face weights X : F (Z2) → R>0. If the
centers are preserved under Miquel dynamics, then

(19) X2
m,n =

(1 +X−1
m+1,n)(1 +X−1

m−1,n)

(1 +Xm,n+1)(1 +Xm,n−1)
.

Proof. This follows from Proposition 19 and the fact that the labeling of the black and
white vertices switches. �

We showed that the centers of a circle pattern with constant intersection angles are
fixed by the central moves and hence their X variables satisfy Equation (19). The
converse might not be true. For example the rectangular grid with even (resp. odd)
columns of width 1 (resp. 2) and even (resp. odd) rows of height 1 (resp. 2) has all
X variables equal to 1, hence satisfies Equation (19), but it is not diagonally tangent
hence not a fixed point of Miquel dynamics. It would be interesting to find all such
examples.

Question: Characterize circles patterns with X variables satisfying Equation (19).

5.5. Integrals of motion for Miquel dynamics. Miquel dynamics seen as a dy-
namics on circle centers on an m by n square grid with m and n even on the torus
corresponds to the dimer urban renewal dynamics on the same graph, which is a finite-
dimensional integrable system [18]. It follows from [18] that the spectral curve of the
dimer model associated with the successive collections of circle centers is kept invariant
by Miquel dynamics. The integrals of motion of the dimer dynamics have an inter-
pretation in terms of partition functions for dimer configurations with a prescribed
homology (the coefficients of the polynomial used to define the spectral curve) and it
would be interesting to find a geometric interpretation (in terms of circle patterns) of
all these integrals of motion.

It was shown in [40] that the sum along any zigzag loop of intersection angles of
circles is an integral of motion. This sum can actually be rewritten as the sum of the
turning angles along a dual zigzag loop, which is equal to twice the argument of the
alternating product along a primal zigzag loop of the associated complex edge weights.
In Section 4, we associated to each collection of circle centers on the torus a point on
the spectral curve of the associated dimer model. It follows from Theorem 15 and the
conservation of the sum of angles along zigzag loops that this point on the spectral
curve is kept invariant under Miquel dynamics.
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6. From planar networks to circle patterns

6.1. Harmonic embeddings of planar networks. A circular planar network is an
embedded planar graph G = (V (G), E(G), F (G)), with a distinguished subsetB ⊂ V (G)
of vertices on the outer face called boundary vertices, and with a conductance function
c : E(G)→ R>0 on edges. Associated to this data is a Laplacian operator ∆ : CV (G) →
CV (G) defined by

∆h(v) =
∑
w∼v

cvw(h(v)− h(w)).

An embedding h : V (G) → C is harmonic if ∆h(v) = 0 for v ∈ V (G) \ B. Harmonic
embedding of circular planar networks arise in various contexts, e.g. resistor networks,
equilibrium stress configurations, and random walks [6].

Let G be a circular planar network, with boundary consisting of vertices B =
{v1, . . . , vk} on the outer face. We define an augmented dual G∗ to G in a similar

way as for bipartite graphs, except that the intermediate graph Ĝ (whose dual is G∗)
has an edge to v∞ only from each boundary vertex of G. Thus G∗ is also a circular
planar network with boundary B∗ consisting of k = |B| vertices, one between each
pair of boundary vertices of G. Let P be a convex k-gon with vertices z1, . . . , zk. One
can find a function z : V (G) → C harmonic on V (G) \ B and with values zi at vi for
i = 1, . . . , k. Then z defines a harmonic embedding of G, also known as the Tutte
embedding, see [44].

We can also define a harmonic embedding of the dual graph G∗ (harmonic on G∗\B∗)
as follows. If v and v′ are two primal vertices and f (resp. f ′) denotes the dual vertex
associated with the face to the right (resp. left) of the edge vv′ when traversed from v
to v′, then we set

(20) z(f ′)− z(f) = icvv′(z(v′)− z(v)).

Since the function z is harmonic, this defines a unique embedding of the dual G∗ once
one fixes the position of a single dual vertex. This embedding of the dual graph is also
harmonic with respect to the inverse conductance (one should take cff ′ = c−1

vv′). Each
primal edge is orthogonal to its corresponding dual edge, hence the pair constituted
of the harmonic embeddings of the primal and the dual graph form a pair of so-called
reciprocal figures. Note that given the harmonic embedding one can reconstruct the
conductances from (20).

6.2. From harmonic embeddings to circle patterns. There is a map, known
as Temperley’s bijection [43, 27], from a circular planar network G to a face-weighted
bipartite graph GD, defined as follows. To every vertex and every face of G is associated
a black vertex of GD. To every edge of G is associated a white vertex of GD. A white
vertex and a black vertex of GD are connected if the corresponding edge in G is adjacent
to the corresponding vertex or face in G. Every bounded face of GD is a quadrilateral
consisting of two white vertices and two black vertices as in the middle of Figure 10.
The bipartite graph has face weights

Xf = ce1/ce2

where e1, e2 are two consecutive edges of G adjacent to face f of GD.
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For these weights the partition function of the planar network on G is equal to the
partition function of the dimer model on GD up to a multiplicative constant [27].

Figure 10. From the vertices of a reciprocal figure to a circle pattern.

In this section we convert a reciprocal figure into a circle pattern in such a way that
the following diagram commutes:

Planar network G −→ Bipartite graph GD

l l
Reciprocal figure −→ Circle pattern

Theorem 26. Let f : V (G)→ C be a harmonic embedding of a planar network G in a
convex polygon P ; let g : V (G∗)→ C be its dual. We define a realization z : V (GD)→ C
of the bipartite graph GD such that z = f for the black vertices coming from the vertices
of G and z = g for those from the faces of G. On the white vertices, we take z as the
intersection of the line through the primal edge and the line through the dual edge under
f and g. Then z has cyclic faces and thus is a circle pattern with the combinatorics of
GD. The face weights induced on GD from the circle pattern coincide with those from
Temperley’s bijection.

Proof. Since every dual edge of G is perpendicular to its primal edge under the harmonic
embeddings, the quadrilateral faces of GD have right angles at their white vertices.
Hence every face of z is cyclic and hence we obtain a circle pattern. The circumcenter
of each cyclic face of z is the midpoint of the two black vertices. By similarity of
triangles, the edge weight induced from the distance between circumcenters has the
following form: For an edge of GD that is a half-edge of a primal edge e of G, it has
weight `e∗/2. For an edge of GD that is a half-edge of a dual edge e∗, it has weight `e/2.
Thus for every quadrilateral face φ, the face weight is

Xφ =
`e∗1
`e1

`e2
`e∗2

=
ce1
ce2

which coincides with that from Temperley’s bijection. �

6.3. Star-triangle relation. It is a well-known fact [12] that a network can be reduced
to the trivial network by performing star-triangle and triangle-star moves, as well as
two other types of moves: replacing two parallel edges (sharing the same endpoints)
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Figure 11. Steiner’s theorem (see e.g. [3, Figure 4.9.18]) states that
the perpendicular to (AB) going through C ′, the perpendicular to (BC)
going through A′ and the perpendicular to (AC) going through B′ are
concurrent if and only if the perpendicular to (A′B′) going through C,
the perpendicular to (B′C ′) going through A and the perpendicular to
(A′C ′) going through B are concurrent.

with a single edge, and replacing two edges in series with a single edge (that is, deleting
a degree-2 vertex).

The star-triangle move has a simple interpretation in terms of reciprocal figures: it
corresponds exactly to Steiner’s theorem (see Figure 11), as was observed in [30]. The
star-triangle move corresponds to replacing a vertex which is the intersection of three
primal edges (such as D′ on Figure 11) by a dual vertex which is the intersection of
three dual edges (such as D on Figure 11); Steiner’s theorem guarantees that these
three dual edges intersect at a common point.

In [18] it was observed that a Y − ∆ transformation for planar networks can be
decomposed into a composition of four urban renewals for dimer models, upon trans-
forming the planar network into a dimer model via Temperley’s bijection. We show
that this decomposition can be seen in purely geometric terms, using the correspon-
dences between planar networks and reciprocal figures on the one hand, and between
dimer models and circle patterns on the other hand.

Theorem 27. The star-triangle move for reciprocal figures can be decomposed into
four Miquel moves, upon transforming the reciprocal figures into a circle pattern as
described in Theorem 26.

Proof. This decomposition is illustrated in Figure 12. We start with a triangle ABC in
a harmonic embedding, we denote by D′ the dual vertex associated with that triangle
and by A′, B′ and C ′ the three dual vertices adjacent to D′. We construct the circle
pattern associated with the reciprocal figures as described in Theorem 26, denoting by
a′, b′ and c′ the intersections of the primal edges and their associated dual edges. We
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MOC

MOA
MOB

MO

star-triangle move

Figure 12. Decomposition of a star-triangle move for reciprocal figures
into four Miquel moves.
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respectively denote by OA, OB and OC the centers of the circumcircles of the quadrilat-
erals Ac′D′b′, Ba′D′c′ and Cb′D′a′. We also respectively denote by OAC′ , OC′B, OBA′ ,
OA′C OCB′ and OB′A the circumcenters of the triangles Ac′C ′, C ′c′B, Ba′A′, A′a′C,
Cb′B′ and B′b′A. We first apply the Miquel move MOC to the quadrilateral D′a′Cb′

with circumcenter OC . The points D′, a′, C and b′ respectively transform into c′, IA′ ,
c and IB′ , which form a cyclic quadrilateral with circumcenter denoted by O. Then
we apply the Miquel move MOA to the quadrilateral Ac′IB′b

′ with circumcenter OA.
The points A, c′, IB′ and b′ respectively transform into a, IA, c and B′, which form a
cyclic quadrilateral with circumcenter denoted by OB′ . Next we apply the Miquel move
MOB to the quadrilateral Ba′IA′c

′ with circumcenter OB. The points B, a′, IA′ and c′

respectively transform into b, A′, c and IB, which form a cyclic quadrilateral with cir-
cumcenter denoted by OA′ . Finally we apply the Miquel move MO to the quadrilateral
IAc

′IBc with circumcenter O. The points IA, c′, IB and c respectively transform into
a, C ′, b and D, which form a cyclic quadrilateral with circumcenter denoted by OC′ .

We now show that this point D created by a composition of four Miquel moves
coincides with the point D̃ created by the star-triangle move applied to the reciprocal
figures. First, as observed in the proof of Theorem 26, in a circle pattern coming from
reciprocal figures, the center of each circle is the midpoint of the segment formed by
the two black vertices. Since OAC′ is the circumcenter of the triangle AC ′a and is the
midpoint of [AC ′], this implies that the perpendicular to (B′C ′) going through A is the
line (Aa). Similarly, (Bb) is the perpendicular to (A′C ′) going through B and (Cc) is
the perpendicular to (A′B′) going through C. Hence the point D̃ created by the star-
triangle move is the intersection point of the three lines (Aa), (Bb) and (Cc). Because
of the orthogonality property at a, b and c, the point D̃ lies on the circumcircles of the
three triangles aC ′b, bA′c and cB′a so D̃ = D. �

7. From Ising s-embeddings to circle patterns

We consider the Ising model on a planar graph G with edge weights xe. Chelkak
introduced in [9] an s-embedding of G, which is an embedding s defined on each
vertex, dual vertex and vertices associated to edges of G with the following property:
for any edge e in G, if v•0 and v•1 (resp. v◦0 and v◦1) denote the endpoints of e (resp. of
the edge dual to e) and ve a vertex associated to e as on Figure 13, then s(v•0), s(v◦0),
s(v•1) and s(v◦1) form a tangential quadrilateral with incenter s(ve), meaning that there
exists a circle centered at s(ve) and tangential to the four sides of the quadrilateral.

On the other hand, Dubédat [11] gave a natural map from the Ising model on G to a
bipartite dimer model GD, as in Figure 13: Each edge in G is replaced by a quadrilateral
in GD and each vertex or face of degree d in G is replaced by a face of degree 2d in GD.
Every face of GD corresponds to a vertex, an edge or a face of G. For every edge e of
G, define θe ∈ (0, π) by

xe = tan
θe
2
.

Then we define the edge weights on GD by the following formulas (adopting the notation
of Figure 13):

ω(b, w1) = 1, ω(b, w2) = cos θe, ω(b, w3) = sin θe.
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v•0

v◦0

v◦1

s(ve)

s(v◦0)

s(v•1)

s(v◦1)

s(v•0)
s

vev•1

b

w1

w2

w3

bw1

w2

w3

Figure 13. Ising graph G (black rhombi); dual graph G∗ (gray rhombi);
dimer graph GD (black and white vertices).

For these weights the partition function of the Ising model on G is equal (up to a
multiplicative constant) to the partition function of the dimer model on GD, see [11].

The goal of this section is to show that the following diagram commutes:

Ising model on G −→ Bipartite graph GD
l l

s-embedding −→ Circle pattern

In particular, the s-embedding of the vertices, dual vertices and edge midpoints of
G coincide with the circle centers associated with the bipartite graph GD. Note that
combinatorially this is consistent since each face of GD corresponds to either a vertex,
a face or an edge of G.

Theorem 28. An s-embedding of G provides an embedding of G∗D into C sending each
vertex of G∗D to the centers of a circle pattern associated with GD.

Proof. It suffices to prove that, for each face of the bipartite graph GD, the alternating
product of the edge weights ω induced by s satisfies (3), where X is the face weight
of GD.

First, we check the conditions on the faces of GD that correspond to vertices or
faces of G. By symmetry, it suffices to consider just a face of G. Let v∗ be a vertex
of the dual graph of GD which corresponds to a face of G of degree d and denote by
ve1 , v1, ve2 , v2, . . . , ved , vd the neighbors of v∗ in G∗D in counterclockwise order, where the
vertices of type vei correspond to an edge in G while the vertices of type vi correspond
to a vertex in G. The weight of an edge in GD dual to an edge of type v∗vei (resp. v∗vi)
is of the form sin θi (resp. is equal to 1). Hence we need to show the following two
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formulas:

arg

∏d
i=1 s(vei)− s(v∗)∏d
i=1 s(vi)− s(v∗)

= π and

∏d
i=1 |s(vei)− s(v∗)|∏d
i=1 |s(vi)− s(v∗)|

=
d∏
i=1

sin θi.

By splitting each formula into d equations centered around the edges of type v∗vei ,
it suffices to prove the following two formulas, where we are using the notation of
Figure 13:

arg
s(ve)− s(v◦0)

s(v•0)− s(v◦0)
= arg

s(v•1)− s(v◦0)

s(ve)− s(v◦0)
,(21)

sin2 θe =
|s(ve)− s(v◦0)|2

|s(v•1)− s(v◦0)| · |s(v•0)− s(v◦0)|
.(22)

Formula (21) follows from the fact that s(ve) is the center of the incircle of the
quadrilateral with vertices s(v•0), s(v◦0), s(v•1) and s(v◦1). For the other formula, we
start from [9, Formula (6.3)] which implies that

tan2 θe =
|s(v◦0)− s(ve)| · |s(v◦1)− s(ve)|
|s(v•0)− s(ve)| · |s(v•1)− s(ve)|

,

hence

(23)
1

sin2 θe
=
|s(v◦0)− s(ve)| · |s(v◦1)− s(ve)|+ |s(v•0)− s(ve)| · |s(v•1)− s(ve)|

|s(v◦0)− s(ve)| · |s(v◦1)− s(ve)|
.

Furthermore, we have the following classical formula for tangential quadrilaterals

(24) |s(v•1)− s(v◦0)| · |s(v•0)− s(v◦0)| =
|s(v◦0)− s(ve)|
|s(v◦1)− s(ve)|

(|s(v◦0)− s(ve)| · |s(v◦1)− s(ve)|+ |s(v•0)− s(ve)| · |s(v•1)− s(ve)|) .

To see this formula, suppose that the center s(ve) of the inscribed circle is at the
origin of the complex plane. Let a, b, c, d ∈ C be the respective positions of vertices

s(v•1), s(v◦1), s(v•0), s(v◦0). Note that (a−b)(c−b)
b2

∈ R+ and ac
bd
∈ R− since s(v•1)s(v◦1)s(v•0)s(v◦0)

is a tangential quadrilateral. Note that 1/ā is the midpoint of the segment connecting
the tangency points where the incircle touches the sides s(v•1)s(v◦1) and s(v•1)s(v◦0), and
similarly for 1/b̄, 1/c̄, 1/d̄. Thus 1/ā+ 1/c̄ = 1/b̄+ 1/d̄: both sides of this equation are
twice the geocenter of the four tangency points. Conjugating, this is equivalent to the

expression (a−b)(c−b)
b2

= 1− ac
bd

, which is in turn equivalent to (24).
Next, we check these conditions for faces of GD corresponding to edges of G. We

need to show the following two formulas:

arg
(s(v•0)− s(ve))(s(v•1)− s(ve))
(s(v◦0)− s(ve))(s(v◦1)− s(ve))

= π,(25)

|s(v•0)− s(ve)| · |s(v•1)− s(ve)|
|s(v◦0)− s(ve)| · |s(v◦1)− s(ve)|

=
cos2 θe
sin2 θe

.(26)
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Formula (25) follows from subdividing the quadrilateral with vertices s(v•0), s(v◦0),
s(v•1) and s(v◦1) into four triangles sharing the common vertex s(ve), taking the alter-
nating sum of four formulas of the type of (21). Formula (26) follows immediately from
formula (6.3) in [9]. �

8. Appendix

Let M = (mij)i,j=1,...,n be an invertible matrix such that m−1
j1 6= 0 for each j. Can we

find diagonal matrices F and G so that FMG has given row and column sums (subject
to the obvious condition that the sum of the row sums equals the sum of the column
sums)? If M has positive entries this follows from Sinkhorn’s Theorem [42]. We show
here that for M of the above form it is true for a Zariski dense set of row and column
sums.

Consider the map F : C2n → C2n given coordinate-wise by

pi(f1, . . . , fn, g1, . . . , gn) =
n∑
j=1

fimijgj,

qj(f1, . . . , fn, g1, . . . , gn) =
n∑
i=1

fimijgj,

where pi, qj are coordinates on the terminal C2n and fi, gj are coordinates on the
initial C2n. It is clear that the image of F is contained in the hyperplane

Σ =

{
(p1, . . . , pn, q1, . . . , qn) ∈ C2n |

n∑
i=1

pi =
n∑
i=1

qi

}
.

Lemma 29. The image of F is Zariski dense in Σ.

Proof. It suffices to prove that the Jacobian of F is of (maximal) rank 2n− 1 at some
point. In order to do this we first restrict F to the subset (C∗)n × Cn and then write
it as a composition Φ ◦Ψ, where

Ψ(f, g) = (p, f), where pi =
n∑
j=1

fimijgj;

Φ(p, f) = (p, q), where qj =
n∑
l=1

flmlj

n∑
i=1

m−1
ji

pi
fi
.

Note that the map Ψ is invertible since given p and f one can reconstruct g. Indeed,
gj =

∑n
i=1m

−1
ji

pi
fi

. Since Ψ is invertible it is enough to find a point where the Jacobian

of Φ has the maximal rank. Fix variables p and consider Φ as the map from the space
with coordinates f to the space with coordinates q. Let p1 = 1 and p2 = · · · = pn = 0.
For this particular choice of p we get

Φ(p, f) = (p, q), qj = m−1
j1

p1

f1

n∑
l=1

flmlj.
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Note that the right-hand side of the equation for q is linear in f2, . . . , fn. Since the
matrix (mij) is invertible we conclude that the Jacobian of the map that sends f to q
is of rank n− 1. Hence the Jacobian of Φ is of rank 2n− 1. �
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Progr. Probab., Birkhäuser, Basel, 2008, pp. 31–58.

[6] M. Biskup, Recent progress on the random conductance model, Probab. Surv., 8 (2011), pp. 294–
373.

[7] A. I. Bobenko, U. Pinkall, and B. A. Springborn, Discrete conformal maps and ideal
hyperbolic polyhedra, Geom. Topol., 19 (2015), pp. 2155–2215.

[8] A. I. Bobenko and B. A. Springborn, Variational principles for circle patterns and Koebe’s
theorem, Trans. Amer. Math. Soc., 356 (2004), pp. 659–689.

[9] D. Chelkak, Planar Ising model at criticality: state-of-the-art and perspectives, in Proceedings
of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures,
World Sci. Publ., Hackensack, NJ, 2018, pp. 2801–2828.

[10] D. Chelkak, B. Laslier, and M. Russkikh, Dimer model and holomorphic functions on
t-embeddings of planar graphs, arXiv preprint, (2020). arXiv:2001.11871.
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