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Abstract

Let X(t) be a Gaussian random field Rd → R. Using the notion of
(d − 1)-integral geometric measures, we establish a relation between (a)
the volume of the level set (b) the number of crossings of the restriction
of the random field to a line. Using this relation we prove the equivalence
between the finiteness of the expectation and the finiteness of the sec-
ond spectral moment matrix. Sufficient conditions for finiteness of higher
moments are also established.

1 Introduction

Let X(t) be a centered, stationary, Gaussian random field

X : Ω× Rd → R,

with continuous sample paths. By a scaling argument, and without loss
of generality, we may assume that X(t) is centered with variance 1. On
the other hand, for a given u ∈ R, let us consider the level set restricted
to some compact set K ⊂ Rd

Cu,K := {t ∈ K : X(t) = u}.

If the sample paths of X(t) are almost surely (a.s.) differentiable and if
a. s. there exist no point t such that X(t) = u,∇X(t) = 0 (where ∇X(t)
is X’s gradient), then by the implicit function theorem, Cu,K is almost
surely a manifold and its (d−1)-volume is well defined and coincides with
its (d − 1)-Hausdorff measure, namely, Hd−1(Cu,K). Under some non-
degeneracy hypothesis, the Kac-Rice formula (KRF) Azäıs-Wschebor [2])
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gives an expression for the moments of this measure. If we consider the
expectation, the compactness of the set K and the KRF imply that the
first moment is finite, so we already have a sufficient condition of finiteness
(but as we will see, the latter is not necessary). For higher moments the
KRF provides a multiple integral, the integrand of which is degenerate on
the diagonal so the study of finiteness is not straightforward.

When d = 1, Cu,K is a.s. a set of points and its measure is just the
number of points. We have several result on finiteness of moments, see
Sections 3 and 4. They all use at some stage the Intermediate Value The-
orem. Unfortunately these methods are completely inoperative in higher
dimensions. Here, we appeal to integral geometry in order to establish
dimension-independent necessary and sufficient conditions of almost sure
finiteness of level set volumes that boil down to one-dimensional results.

In Section 2 we recall the definition of the (d−1)-dimensional integral-
geometric measure, which is defined as the integral of the number of points
over a family of lines.

Our three main results follow

• In Section 3 we establish the equivalence between (a) the finiteness of
the expectation of the (d−1)-dimensional integral-geometric measure
of the level set and (b) the finiteness of the second spectral moment
matrix. This result gives a simpler presentation and shorter proof
of the results of Wschebor [7] which uses De Gorgi perimeters.

• In Section 4 we give sufficient conditions for finiteness of the second
moment (Theorem 2) using the Geman condition (See [5]).

• In the same section, we prove finiteness all moments (Theorem 5),
under some conditions, when the sample paths are smooth.

2 Integral geometric measure, Crofton for-
mula

Let B be a Borel set in Rd. Following Morgan [6] (and also Federer [4])
we define the (d− 1)-integral geometric measure of B by

Id−1(B) := cd−1

∫
v∈Sd−1

(∫
y∈v⊥

# {B ∩ `v,y} dHd−1(y)

)
dSd−1(v) (1)

where Sd−1 is the unit sphere in Rd with its induced Riemannian measure,
and `v,y is the affine linear space {y + tv : t ∈ R}. The constant can be
easily computed, using the Crofton formula below and considering the
particular case of the sphere, yielding,

cd−1 =
Γ
(
d+1
2

)
2π(d−1)/2

.

The integrand in (1) is measurable (see for example Morgan [6, page 13]),
and since it is non-negative, the integral is always well defined, finite or
infinite.
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In particular, if B is (d − 1)-rectifiable, then Crofton’s formula [6] p.
31 yields

Hd−1(B) = Id−1(B), (2)

where Hd−1 is the (d− 1)-Hausdorff measure.

3 Characterisation for the finiteness of
the expected volume of the level set.

The spectral measure F of X(·) is a symmetric measure with mass one:
it is a probability measure.

Let Λ2 be the second spectral moment matrix defined by

(Λ2)ij :=

∫
Rd

λiλjdF (λ).

This matrix may be finite or infinite, infinite meaning by convention that
at least one entry is infinite.

When Λ2 is finite, it is easy to prove that X(·) is differentiable in
quadratic mean. If in addition the sample paths are almost surely differ-
entiable (which is a little stronger) and if a.s. there exist no point t such
that X(t) = u,∇X(t) = 0, we have:

• the level set Cu,K is almost surely a submanifold of codimension 1,
and its Riemannian volume can be defined and coincides with its
(d− 1)-Hausdorff measure, namely, Hd−1(Cu,K);

• the KRF (see Adler-Taylor [1] or Azäıs-Wschebor [2]) implies that

E(Hd−1(Cu,K)) = E(Id−1(Cu,K)) = Ld(K)E(‖X ′(0)‖)e
−u2/2

√
2π

= Ld(K)F(Λ2)e−u
2/2, (3)

where Id−1(Cu,K) is the the (d − 1)-dimensional integral-geometric
measure defined above, Ld is the Lebesgue measure on Rd and

F(Λ2) :=
1

(2π)(d+1)/2

∫
z∈Rd

(z>Λ2z)
1/2e−‖z‖

2/2dLd(z). (4)

The second equality in (3) is the true Kac-Rice formula, the third is
due to classical integration.

We need to extend the definition of F(Λ2) by setting it to +∞ when
Λ2 is infinite.

So we consider the following relation:

E(Id−1(Cu,K)) = Ld(K)F(Λ2)e−u
2/2. (5)

Note that its terms on both hand sides are now always well defined, finite
or infinite.

The goal of this section is to prove that in a broad sense this formula
is always true :
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• Whenever Λ2 is finite, of course the RHS of (3) is finite, but also
the LHS is finite also and equality holds true.

• If Λ2 is infinite then both sides of (3) are infinite.

Such a kind of property is known since the work of Cramér-Leadbetter
[3] for d = 1 and from the work of Wschebor [7] for d > 1. Our proof uses
Cramer-Leadbetter’s result and generalised Crofton’s formula.
We first recall a result due to Cramér-Leadbetter, main result of Section
10.3 of [3].
The expected number of crossings Nu([0, T ] of a stationary processes with
any level u on an interval [0, T ] is finite if and only if λ2 < ∞, where λ2

denotes the second spectral moment.
In case λ2 is finite we have furthermore

E(Nu([0, T ]) =
T

π

√
λ2e
−u2/2.

This result is based on polygonal approximation and intermediate val-
ues theorem, so it heavily relies on one-dimensional settings.

We now turn to our first main result.

Theorem 1. Let X(t) be a centered, stationary random field X : Rd → R,
with continuous sample paths. Then, we have equivalence between:

• E(Id−1(Cu,K)) <∞,

• The second spectral moment matrix Λ2 is finite.

In such a case we have

E(Id−1(Cu,K)) = Ld(K)F(Λ2)e−u
2/2

Proof. Since X is almost surely continuous, then Cu,K is a Borel set on
Rd a.s., and therefore its integral geometric measure is well defined. By
Fubini theorem we get that

E(Id−1(Cu,K)) = cd−1

∫
v∈Sd−1

(∫
y∈v⊥

E(# {Cu,K ∩ `v,y}) dHd−1(y)

)
dSd−1(v)

As a matter of fact, because of stationarity of the process and by Cramér-
Leadbetter applied to the process t 7→ X(y + tv), we get

E(# {Cu,K ∩ `v,y}) = H1(K ∩ `v,y)
√
v>Λ2v

1

π
e−u

2/2.

Then, E(Id−1(Cu,K)) is equal to

e−u
2/2 cd−1

π
·
∫
v∈Sd−1

√
v>Λ2v

(∫
y∈v⊥

H1(K ∩ `v,y) dHd−1(y)

)
dSd−1(v)

and by Fubini, we obtain that

E(Id−1(Cu,K)) = Ld(K)e−u
2/2 cd−1

π

∫
Sd−1

√
v>Λ2v dS

d−1(v). (6)
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Integrating in polar coordinates the expression F(Λ2), given in (4), we
obtain

F(Λ2) =
1

(2π)(d+1)/2

∫ +∞

0

ρde−ρ
2/2 dρ

∫
v∈Sd−1

(v>Λ2v)1/2dSd−1(v).

Furthermore, making the change of variable u = ρ2/2, it is straighforward
to conclude that

F(Λ2) =
cd−1

π

∫
Sd−1

√
v>Λ2v dS

d−1(v), (7)

and therefore from (6) yields

E(Id−1(Cu,K)) = Ld(K)e−u
2/2F(Λ2). (8)

We consider the two following cases.

• When Λ2 is finite the integral on the RHS of (8) is finite and therefore
we get the desired result in this case.

• When Λ2 is infinite, this means that this matrix has at least one
infinite element. In such a case we define the linear subspace

G(Λ2) := {v ∈ Rd : v>Λ2v < +∞}.

We prove that G(Λ2) is of dimension strictly smaller than d. Let
v1, . . . , vd0 be a maximal set of linearly independent vectors ofG(Λ2).
Then by standard linear algebra:

– the space span(v1, . . . , vd0) generated by v1, . . . , vd0 is in G(Λ2).
This implies that d0 < d,

– for every v /∈ span(v1, . . . , vd0): v>Λ2v = +∞ (unless v1, . . . , vd0
is not maximal) ,

– this implies that G(Λ2) = span(v1, . . . , vd0).

In conclusion the integrand in (8) is almost everywhere infinite so
the integral is infinite and by consequence the expectation of the
integral geometric measure is infinite.

4 Finitness of k-moments of the volume
of the level set

Using Formula (1) it is possible to obtain sufficient conditions under which
the random variable Id−1(B) has finite moments. To illustratethis we will
first consider the second moment. Thus we have the following

Theorem 2. Let assume that

• The second spectral moment matrix Λ2 is non-degenerate.

• There exists δ > 0 such that the spectral mesure F satisfies∫
Rd

||λ||2+δdF (λ) <∞.
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Then we have
E(Id−1(Cu,K))2 <∞.

Remark 3. Let us point out that under the assumption that
∫
Rd ||λ||2+δdF (λ)

is finite, the Kolmogorov-Chentsov criterion implies that the field X has
a.s. C1 sample paths. Thus the following equality takes place
E(Id−1(Cu,K))2 = E(Hd−1(Cu,K))2. Moreover, the Riemannian volume
of Cu,K can be defined and coincides with its (d− 1)-Hausdorff measure.

Proof. Without loss of generality we assume that δ < 2. Let r be the
covariance function of X, and let us first consider the field restricted to
the line `y,v : y + tv, t ∈ R: X̃y,v(t) = X(y + tv). Its covariance function
is given by

rv(t) = E[X(y + tv)X(y)] = r(tv).

Note that because of stationarity it does not depend on y.
It is sufficient to prove the assertion of the theorem for a set K being

a centred ball Ba with sufficiently small diameter a. In that case note
that the integral in the right-hand side of (1) is finite since for |y| > a
the integrand vanishes. Since the second spectral moment matrix is finite
and non degenerate ∫

Rd

〈λ, v〉2dF (λ),

is bounded below and above. On the other hand, using a monotone con-
vergence argument, as b tends to infinity∫

Rd\Bb

〈λ, v〉2dF (λ) ≤
∫
Rd\Bb

||λ||2dF (λ)→ 0. (9)

So it is easy to conclude that for b sufficiently large, for any v ∈ Sd−1∫
Bb

〈λ, v〉2dF (λ) > 1/2

∫
Rd

〈λ, v〉2dF (λ). (10)

In the rest of the paper C will denote some unimportant constant, its
value may change from an occurence to another.

Applying the Jensen inequality (with respect to the integral) yields

E(Id−1(Cu,K))2

≤ C c2d−1

∫
v∈Sd−1

∫
y∈v⊥

E(#{Cu,K ∩ `y,v})2 dHd−1(y) dSd−1(v).

As already remarked, the integral is over a bounded domain and it is
sufficient to prove that the integrand is uniformly bounded.

Remark also that Bb ∩ `y,v is always a centred interval with length 2c
less that 2a. Consequently,

E(#{Cu,K ∩ `y,v})2 ≤ E(#{Cu,K ∩ `0,v})2.

It remains to prove that

E(#{Cu,K ∩ `0,v})2

is uniformly bounded.
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In fact, because of the Rolle theorem, if Uu is the number of up-
crossings of the level u on the line `0,v, then

#{Cu,K ∩ `0,v} ≤ 2Uu + 1.

So it is sufficient to bound the second moment of Uu and even, because
we have proved in the previous section that the first moment is uniformly
bounded, it is sufficient to bound the second factorial moment. Since the
variance has been assumed to be 1 and Λ2 is non-degenerate, the Kac-Rice
formula applies and yields

E(Uu(Uu − 1))

=

∫ a

−a

∫ a

−a
E
(
X ′+(s)X ′+(t)

∣∣X(s) = X(t) = u
) 1

2π

1√
1− r2v(s− t)

dsdt

≤ C

∫ 2a

0

(2a− τ)E
(
X ′+(0)X ′+(τ)

∣∣X(0) = X(τ) = u
) 1√

1− r2v(τ)
dτ,

where X stands for X̃0,v.
By a standard regression formula, see for example [2] page 99,

E(X ′(0)
∣∣X(0) = X(τ) = u) = −E(X ′(τ)

∣∣X(0) = X(τ) = u) =
−r′v(τ)u

1 + rv(τ)
.

Also,

σ2
v(τ) : = Var(X ′(0)|X(0) = X(τ) = u)

= Var(X ′(τ)|X(0) = X(τ) = u) =
λ2,v(1− rv(τ))− r′2v (τ)

1− r2v(τ)
.

Set θv(τ) := rv(τ)− 1 + λ2,vτ
2/2 using the inequality z+t+ ≤ (z + t)2/4

and the fact that θv(τ), θ′v(τ), θ′′v (τ) are non-negative we get

E(Uu(Uu − 1)) ≤ Ca

∫ 2a

0

2λ2,vτθ
′
v(τ)

(
1− r2v(τ)

)−3/2
.

Now, there exists a constant C0 such that

0 < w < 1 implies that 1− cos(w) ≥ C0w
2.

This implies in turn that for τ < 1/b where b has been defined in (10)

1− rv(τ) =

∫ +∞

0

1− cos(λτ) dFv(λ)

≥
∫ 1/τ

0

1− cos(λτ)dFv(λ)

≥ C0τ
2

∫ 1/τ

0

λ2dFv(λ) ≥ 1

2
C0τ

2

∫ +∞

0

λ2dFv(λ) ≥ Cτ2,

where Fv is the spectral measure along the line `0,v (for convenience it
is on (0,+∞)). The penultimate equality uses (10), the last inequality is
due to the fact that Λ2 is non-degenerate.
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On the other hand it is direct to prove that 1− rv(τ) ≤ λ2,vτ
2 and, by

compactness, the quantity λ2,v is bounded as a function of v giving that
1 + rv(τ) ≥ 1 as soon as the radius a of the ball is sufficiently small. This
yields

1− r2v(τ) ≥ Cτ2.

As a consequence

E(Uu(Uu − 1)) ≤ Cλ2,va

∫ 2a

0

2
θ′v(τ)

τ2
dτ. (11)

The integrand in (11) can be bounded because∫ ∞
0

λ2+δdFv(λ) ≤ I(δ) :=

∫
Rd

||λ||2+δdF (λ) <∞.

We have
θ′v(τ)

τ2
= τ−2

∫ ∞
0

(τλ2 − λ sin(λτ))dFv(λ).

Define
R(u) := (u− sin(u)).

Its behaviour at zero and at infinity implies that for every δ, 0 < δ < 2,
there exist a constant Cδ such that

0 ≤ R(u) ≤ Cδu1+δ.

This implies that ∣∣∣θ′v(τ)

τ2

∣∣∣ ≤ τ−2

∫ ∞
0

λ|R(λτ)|dFv(λ)

≤ Cδτ−2

∫ ∞
0

λ(λτ)1+δdFv(λ)

≤ Cδτ δ−1

∫ ∞
0

λ2+δdFv(λ),

Implying the convergence of the integral in (11), uniformely in v.

Next, we consider a Gaussian field having C∞ sample paths. This is
for instance the case of Gaussian random trigonometric polynomials in
several variables or the random plane wave model [8]. A result of Nualart
& Wschebor, quoted as Theorem 3.6 in the book [2], can be used for
obtaining that all the moments of the random variable Id−1(Cu,K) are
finite. The background result is the following:

Proposition 4. Consider a Gaussian process χ,R→ R satisfying Var(χ(t)) >
κ for all t ∈ I a compact interval of R and some κ > 0. Then for all u ∈ R,
and m, p ∈ N such that p > 2m, it holds

E[(Nu)m] ≤ Cp,m
[
1 + C + E

(
‖X(p+1)‖∞

)]
(12)

where Nu is the number of points t ∈ I such that χ(t) = u, Cp,m is a
constant depending only on p,m and the length of the interval I, and C
is a bound for the density of χ(t).
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Let us assume now that the field X has C∞ sample paths and we
assume that the variance is bounded below. As in the proof on Corollary
2 the process X̃y,v(t) = X(y + tv) is a real process but now with C∞

trajectories. Chose p = 2m+ 1 then from Proposition 4, for every m,

E(# {Cu,K ∩ `v,y})m < Cp,m
[
1 + C + E

(
‖X(2m+2)

y,v ‖∞
)]
.

It is an easy consequence of the Borel-Sudakov-Tsirelson inequality that
E
(
‖X(2m+2)

y,v ‖∞
)

is finite. An argument of continuity shows that it is
uniformly bounded. A further application of Jensen’s inequality gives our
third main result

Theorem 5. Let X(t) a Gaussian random field Rd → R with C∞ sample
paths and with variance bounded below. Then for every integer m and
every compact set K,

E(Id−1(Cu,K))m <∞.
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