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Abstract: In order to be acceptable and able to “camou-
flage” into their physio-social context in the long run,
robots need to be not just functional, but autonomously
psycho-affective as well. This motivates a long term neces-
sity of introducing behavioral autonomy in robots, so they
can autonomously communicatewithhumanswithout the
need of “wizard” intervention. This paper proposes a tech-
nique to learn robot speech models from human-robot di-
alog exchanges. It views the entire exchange in the Au-
tomated Planning (AP) paradigm, representing the dialog
sequences (speech acts) in the form of action sequences
that modify the state of the world upon execution, grad-
ually propelling the state to a desired goal. We then ex-
ploit intra-action and inter-action dependencies, encod-
ing them in the form of constraints. We attempt to satisfy
these constraints using aweightedmaximum satisfiability
model known as MAX-SAT, and convert the solution into a
speech model. This model could have many uses, such as
planning of fresh dialogs. In this study, the learnt model
is used to predict speech acts in the dialog sequences us-
ing the sequence labeling (predicting future acts based
on previously seen ones) capabilities of the LSTM (Long
Short Term Memory) class of recurrent neural networks.
Encouraging empirical results demonstrate the utility of
this learnt model and its long term potential to facilitate
autonomous behavioral planning of robots, an aspect to
be explored in future works.
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1 Introduction
For social robots, socio-communicative qualities are in-
creasingly becoming indispensable as they strengthen the
possibility of acceptance and emotional attachment to the
robot [1, 2]. This acceptance is likely only if the robot fulfills
a fundamental expectation that one being has of the other:
not only to do the right thing, but also at the right time
and in the right manner [1]. Classical Human Robot Inter-
action (HRI) approaches advocate that much like humans,
robots can only learnwith experience. Thus themost com-
mon strategy used to endow robots with social skills is
to analyze, model and implement human behaviors either
by observation, imitation or demonstration techniques [3].
The limitation with this approach is the misalignment of
the degrees of freedom of the robot with those of the hu-
man instructor. The other approach is to “codify” speech
into robots. While this ensures autonomy, encoding into
a robot the subtleties of a social interaction is not trivial.
A standard dialogue exchange integrates the widest possi-
ble panel of signs which intervene in the communication
and are difficult to codify (the tone of the voice, emotion
being conveyed etc.). Human emotions aremasked in sub-
tlety, making them complicated as it is to understand and
respond to, rendering themevenmore difficult to program.
Scripting these subtleties is time consuming, impractical
and requires a lot of programming. In such a complex sce-
nario, learning the underlying speech model of the robot
from HRI dialog sequences is a promising alternative.

This learning can be done with the help of Artificial
Intelligence (AI) techniques, by viewing the entire sce-
nario in the Automated Planning (AP) paradigm. In this
study, the body of HRI dialog exchanges is drawn from the
Vernissage corpus [4] and consists of exchanges between a
Nao robot (operated by a skilled operator in aWizard-of-Oz
setup) posing as a museum guide and two human visitors
to themuseum. An example of the dialog exchange can be
seen in Listing 1.

Listing 1: Example of dialog exchange between NAO as a museum
guide and museum visitors.

Nao : Hello , my name is Nao , what is
yours?
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Human : My name is Alan
Nao : It ’s a pleasure to meet you Alan ,
can I tell you something about these
paintings ?
Human : Yes , please

In the context of AP, each utterance is considered ide-
ologically equivalent to an action (represented in the cor-
pus in the form of an action name and signature). Thus,
each dialog sequence is represented as a sequential and
orchestrated action name-signature sequencewhich effec-
tuates transitions in the world state, gradually propelling
it towards a predetermined goal. By means of these utter-
ances, the speaker plans to influence the listeners’ beliefs,
goals and emotional states [1, 2]; with the intent of ful-
filling his own goals. These utterances, interleaved with
head and bodymovements (i.e. multi modal acts) can then
be modeled as sequences of actions in an AP system, and
frameworks can be developed for providing their seman-
tics [5, 6]. However, for the sake of simplicity, in this work
we ignore the definite uncertainty in communication, as
well as the head andbodymovements comprising the acts,
and concentrate solely on utterances. The objective is then
to leverage the advancements in Machine Learning (ML)
to learn the underlying action model from the data i.e.
learning the preconditions and effects of each of the con-
stituent actions from their signatures. Learning the under-
lying model comprising action descriptions from action
name-signature sequences could save the effort from hav-
ing to code these action descriptions from scratch, thus
promoting re usability. This model can further be fed to
an automated planner to generate fresh dialogs, thus al-
lowing the robot to communicate autonomously in future
scenarios.

Our contribution in this paper is the following: given
a HRI dialog corpus, our approach learns the robot’s be-
havioral model comprising of the utterances encoded in
the form of actions alongwith their signatures, precondi-
tions and effects. The novelty of the approach lies in bridg-
ing of symbolic and connectionistmachine learningmeth-
ods to make progress on the problem of learning an in-
teractive model of a human for use in human-robot in-
teraction. The work can be considered a progressive step
in the automatic generation of dialog sequences, an as-
pect which will become more and more relevant as social
robotics makes inroads into the real world and manual
interaction script generation becomes economically invi-
able. The approach is divided into three phases. In the first
phase, HRI dialogues taken from the Vernissage corpus [4]
are annotated with the following pre-engineered speech
acts: (sayHello, farewell, inform, say, ask, claim, deny, ad-

vise, thank, autoFeedback (feedback on last heard dialogue
e.g. “oh”, “great” etc. )). These acts are drawn from the en-
coding of speech acts introduced in [7]. The reader is in-
vited to read the aforementioned paper for more detail on
the encoding scheme. The second phase consists of learn-
ing the speech model. The MAX-SAT framework is used
for this purpose. The constraints used as the input for
this framework are constituted by intra-action and inter-
action specific constraints. These constraints are then fed
to a weighted MAX-SAT solver, the solved constraints be-
ing used to reconstruct the underlying actionmodel. Feed-
ing this learnt model to a planner to generate fresh inter-
actions and testing them in a real scenario is beyond the
scope of this paper. We, however, demonstrate the utility
of this learnt model by predicting speech acts likely to be
executed by the robot for the same dialog corpus. For ex-
ample, using the speech model, we predict whether in the
scenario of the robot meeting a subject for the first time,
the probability that the act of greeting the subject is fol-
lowed by the act of introducing itself. This is performed
with the aid of sequence labelling capabilities of recurrent
neural networks. Deep learning, in general, offers multi-
ple layers of representation wherein the features are not
designed by human engineers but learn from data using
a general-purpose learning procedure [8]. It has also been
extensively used in the field of robotics [9]. In particular,
the successes of LSTM [10], a deep learning technique be-
ing increasingly used in learning long range dependencies
in the fields of speech and handwriting recognition [8], are
exploited. A plan is an orchestrated execution of a series
of actions which are by virtue interdependent in order to
execute. There is thus a direct link between the principle
of operation of the LSTM and plan execution, which this
paper seeks to explore.

This paper is divided into the following sections: we
firstly present some related work in Section 2, followed
by the definition of our learning problem in Section 3. We
then detail the functioning of our learning system in Sec-
tion 4, following it up with empirical evaluations in Sec-
tion 5. We conclude the paper with some perspectives and
future work in Section 6.

2 Related work
We elaborate the state of the art of two different fields: ma-
chine learning (ML) in AP and ML in robotics. Learning
action models in the field of AP have a considerable his-
tory. SomeprominentlyusedML techniques to learn action
models include: inductive techniques (absence of back-
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ground knowledge, e.g. PELA [11]), transfer learning tech-
niques (extraction of knowledge from one or more source
tasks to apply to the target task when the latter has fewer
high-quality training data [12] e.g. TRAMP [13]), reinforce-
ment learning based approaches (e.g. [14]). More specific
to our case, certain approaches have used the MAX-SAT
framework to learn deterministic actions (e.g. ARMS [15]),
macro-actions [16], models in Hierarchical Task Networks
(HTNs) [17], and models in multi-agent setups ([18]). In
particular, our approach is on the same lines of ARMS,
which also generates intra-action and inter-action con-
straints (mined with the Apriori algorithm [19]). These ap-
proaches, however, use a partially ordered series of ac-
tions as input. Since in our problem multiple speech acts
can co-occur at the same instant (e.g.multiple participants
speaking at the same time), we are primarily interested in
co-occurring actions. On the robotics side, there has been
considerable use of ML for task-oriented robot behavior
learning [20] and robot motion planning [21]. Deep learn-
ing has also been extensively used in the robotics commu-
nity [9]. Our work, however, is concentrated on the learn-
ing of PDDL (PlanningDomainDescriptionLanguage) [22],
a syntax for planning domains used for behavioral mod-
els for robots; a requirement not catered for in the afore-
mentioned works. The literature also speaks of other ap-
proaches which have treated dialogues as planning oper-
ators. In [23] the authors introduce a new language called
MAPL (Multi Agent Programming Language) which repre-
sents speech acts as operators with qualitative and quan-
titative temporal relations between them. Other works use
AP to generate natural language sentences for communi-
cation [24] or treating utterances in the formof actions [25].
Contrary to the previousworks, our problem is centered on
the learning of the action model which serves as a prereq-
uisite to be fed to a planner prior to it being utilized in the
forms mentioned as in the aforedescribed works.

3 Definitions and problem
formulation

We begin by laying out some important definitions of AP
which symbolize the HRI interaction. In the field of AP,
agents interact with the environment by executing actions
which change the state of the environment, gradually pro-
pelling it from its initial state towards the agents’ desired
goal. In the classical representation, both the world state
and actions are pre-engineered and constituted by prop-
erties called predicates. States are defined to be sets of
ground (positive) predicates. Here, each action a∈Awhere

A = {a1, a2, . . . an}, n being the maximum number of ac-
tions in the domain. We use actions and operators inter-
changeably in our context. These actions constitute a cor-
pus which serves as a blueprint for these actions, called
the action model. An action model m is the blueprint of all
thedomain-applicable actionsbelonging to the setA. Each
action in the model is defined as an aggregation of : (i) the
action name (with zero ormore typed variables as parame-
ters), and (ii) three lists, namely (pre, add and del). These
are: the pre list (predicates whose satisfiability determines
the applicability of the action), add list (predicates added
to the current systemstate by the action execution) and the
del list (predicates deleted from the current system state
upon action execution), respectively. A planning problem
is a triplet P = (s0, g,m) composed of (i) the initial state
of the world so, (ii) the desired goal g and (iii) the action
model m. All the aforementioned elements in this section
contribute to the formulation of a plan. A plan, given P, is
a sequence of actions represented as: π = [a1, a2, . . . , an]
that drives the system from the initial state to the goal.
Each action sequence, complete with initial state and goal
information, constitutes a trace. Each dialogue sequence
in HRI can be viewed as a trace in AP. An aggregation of
these traces constitutes a trace setT, which in this case cor-
responds to ourHRI dialog corpus. Having described these
preliminaries, we can proceed to formulating our problem.

Given the aforementioned information, our problem
can be formulated as follows: given (i) a set of HRI traces
T, each trace consisting of a dialogue sequence encoded
in the form of actions; our approach produces a complete
domainmodelm encompassing all the domain-applicable
operators which best explain the observed traces. This is
done by encoding the inter-operator and intra-operator
dependencies in the form of constraints and solving them
as a satisfiability problem, then reconstructing the domain
model from the satisfied constraints. We then proceed to
use the learnt model to predict the label of the operators
in the traces using LSTM techniques.

4 Approach
The approach can be divided into four phases, a snap-
shot of which is illustrated in Figure 1. The dialogs of the
HRI traces are first annotated to symbolize a sequence of
actions (each consisting of a name and a signature). In
the first phase, we generalize the grounded actions in the
trace set by replacing the variables by their pre-engineered
types to obtain a trace set of operators. The secondphase is
dedicated to constraint generation; namely intra-operator
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Figure 1: Approach phases.

and inter-operator ones. In the third phase, these con-
straints are supplied to a MAX-SAT solver and the satisfied
ones are used to reconstruct the action model. This model
consists of operator signatures, preconditions (alias forpre
list), and effects (alias for add and del lists). It conforms to
the semantics of STRIPS [26]. In the fourth phase, using
the operators learnt in the previous phase as features, we
predict the operators likely to be chosen by the robot based
on previous ones during the dialog exchange highlighted
in the corpus. This classification is done by encoding the
operator sequences of the corpus in the form of input and
output vectors to an LSTM. We elaborate these phases in
the forthcoming subsections.

4.1 Annotation and generalization

In this phase, dialogues in the dialogue corpus are first
annotated to actions. These dialogues are taken from the
Vernissage corpus which is a multimodal HRI dataset [4],
and has a total of 10 conversation instances between Nao
and human participants. In the scenario, the robot ex-
plains paintings in a room and then performs a quiz with
the participants. We first annotate with predefined pred-
icates the initial state of the world before the beginning
of each interaction. We then annotate each robot dia-
logue within each trace as an action drawn from the fol-
lowing set of actions: (sayHello, farewell, inform, say, ask,
claim, deny, advise, thank, autoFeedback (feedback on last
heard dialogue e.g. “oh”, “great” etc. )). The participant re-
sponses are encoded in the form of (speech, silence, laugh-
ter). These actions and predicates are derived from the en-
coding of speech acts in [7]. This encoding is chosen as it
depicts speech acts in logical form, rendering it more con-
ducive to translate into PDDL operators. These actions are

represented in the form of constituents of a PDDL model
[22] whose snippet is represented in Listing 3. This model
is referred to as the ground truth model, or the correct
baseline model that the empirically generated model will
compare to in order to gauge the accuracy of our proposed
learning approach. This ground truthmodel consists of the
names of the 11 actions described above, alongwith each
of their preconditions and effects in the form of predicates.
The interpretationof thesepredicates is detailed inTable 2.
An example of the annotation process can be seen in Ta-
ble 1.

The next step is generalization,which is done by scan-
ning each action in each of the traces and substituting
its instantiated variables with their corresponding types.
This produces a trace set of operator sequences, with the
generalized actions constituting an operator schema Os.
We then create a dictionary of all possible relevant pred-
icates to each operator, the keys of the dictionary identi-
fied by the operator names. Each operator in the operator
schema is associated with its relevant predicates, where a
predicate p is said to be relevant to an operator o ∈ Os
if they share the same variable types. We denote the rele-
vant predicate dictionary as relPre, with the set of relevant
predicates to an operator oi (represented as key) can be
denoted as relPreoi (represented as value of key oi). The
generalization procedure is represented in Figure 2. The
complexity of this phase comes out to be lmn, where l is
the number of actions per trace,m is the number of traces,
and n is the number of unique predicates in the dictionary.

Figure 2: Illustration of Phases 1 and 2 of our approach. In Phase 1,
the dialog corpus is annotated with pre-engineered speech acts to
produce a representation closer to AP. The new representation is
then used to formulate intra and inter-operator constraints in the
second phase.
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Figure 3: Illustration of Phases 3 and 4 of our approach. Phase 3
involves solving of the formulated constraints as a SAT problem to
reconstruct the underlying model. Phase 4 involves using the pre-
viously learnt model to perform sequence labelling on the speech
acts comprising the training data.

Listing 2: Predicates and their implications in speech acts.

bel (?i ?p) - agent ?i believes
in the proposition ?p

goal (?i ?p) - proposition ?p is the
goal of agent ?i

ideal (?i ?p) - proposition ?p should
ideally be true for agent ?i

belbelapproval (?i ?j ?p) - agent ?i
believes that agent ?j believe
that ?i gives its approval for
proposition ?p

belideal (?i ?j ?p) - agent ?i
believes that proposition ?p
should be the ideal for agent ?j

goal (?i ?p) - proposition ?p is not
the goal of agent ?i

notbel (?i ?p) - agent ?i does not
believe in the proposition ?p

belbel (?i ?j ?p) - agent ?i believes
that agent ?j believes in the
proposition ?p

belgoal (?i ?j ?p) - agent ?i believes that
the goal of agent ?j is proposition ?p

notbelbel (?i ?j ?p) - agent ?i believes that
agent ?j does not believe in the proposition ?p

goalbel (?i ?j ?p) - the goal of agent ?i
is that agent ?j believes in proposition ?p

goalresp (?i ?j ?p) - the goal of agent ?i
is that agent ?j assumes responsibility
of proposition ?p

notgoalresp (?i ?j ?p) - the goal
of agent ?i is not that the agent ?j
assumes responsibility of proposition
?p

belbelgoalresp (?i ?j ?p) - agent
?i believes that agent ?j believes
that the goal of ?i is ?j assumes
the responsibility of proposition
?p

belbelnotgoalresp (?i ?j ?p) - agent
?i believes that agent ?j believes
that the goal of ?i is not that ?j
assumes the responsibility of
proposition ?p

goalbelgoalrespWeak (?i ?j ?p) - goal
of agent ?i is that agent ?j believes
that the goal of ?i is that ?j assumes
the responsibility of proposition ?p
to a lesser magnitude

goalbelstr (?i ?j ?p) - goal of agent
?i is that agent ?j believes strongly
in proposition ?p

belbelgratitude (?i ?j ?p) - goal of
agent ?i is to express to agent ?j
its gratitude for proposition ?p

belresp (?i ?j ?p) - goal of agent ?i
is that agent ?j assumes
responsibility for proposition ?p

belbelmoralsatisfaction (?i ?j ?p) -
agent ?i believes that agent ?j
believes that agent ?i assumes
moral satisfaction with
proposition ?p

look (?i ?j) - agent ?i looks
at agent ?j

at (?i ?r) - agent ?i is at room ?r

already -seen (?i ?j) - agent ?i has
already seen agent ?j

never -seen (?i ?j) - agent ?i has
never seen agent ?j
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4.2 Constraint generation

In this phase, we detail the intra-action constraints for
individual operators and inter-operator temporal con-
straints among operators.

4.2.1 Intra-operator constraints

In order to satisfy the semantics of STRIPS [26], each oper-
ator in Os must satisfy certain intra-operator constraints.
Thus, for each operator oi ∈ Os and relevant predicate
p ∈ relPreoi : (i) p cannot be in the add list and the del
list at the same time, and (ii) p cannot be in the add list
and the pre list at the same time. The relevant predicates
of each operator are encoded to generate variables. Each
association of a relevant predicate with one of a (pre, add,
del) list of an operator can be encoded as a variable. These
variables and constraints are illustrated in Figure 2.

4.2.2 Inter-operator constraints

Any operator sequence exhibits inter-operator dependen-
cies, which can be uncovered by means of data mining
techniques to facilitate the process of learning. In the case
of an HRI scenario, operators may be temporally concur-
rent: for example, two agents may be speaking at the
same time. These temporal dependencies can be explored
with the help of patternmining techniques. The aforemen-
tioned trace set T can thus be treated as a set of transac-
tions S in the pattern mining domain. S can be written as
S = [s1, s2, . . . , sn], where each transaction sn represents
a trace. A transaction is a set of symbols, in our case rep-
resenting operators. A time series is a set of unique time
points. A symbolic time series is generally used to repre-
sent series of ordered (but non time-sampled) events (e.g.
< a, b, d, a, c > ). A symbolic time sequence is a multi-set
of time points. Contrary to time series, symbolic time se-
quences can deal with several events defined at the same
temporal location. This difference is also illustrated in the
Figure 7. We symbolize the concurrent utterances in the
Vernissage corpus in the form of operators chaining to-
gether in a symbolic time sequence [29].

Listing 3: Ground truth speech model called "hri" to symbolize di-
alog exchange in Vernissage corpus. The pre-engineered types
are (agent, proposition, room) are defined adjacent to the :types
keyword. The predicates are defined adjacent to the :predicates
keyword. This is followed by the definition and description of the
constituent actions, (their preconditions and effects defined adja-
cent to the :precondition and :effect keywords respectively.

( define ( domain hri)
(: requirements : strips : typing )
(: types

agent - object
robot human - agent
proposition - object
room - object

)
(: predicates

(bel ?i - agent ?p - proposition )
(goal ?i - agent ?p - proposition )
(ideal ?i - agent ?p - proposition )
( approval ?i - agent
?p - proposition )
( belbelapproval ?i - agent
?j - agent ?p - proposition )
( belideal ?i - agent ?j - agent
?p - proposition )
( notgoal ?i - agent
?p - proposition )
( notbel ?i - agent
?p - proposition )
( belbel ?i - agent ?j - agent
?p - proposition )
( belgoal ?i - agent ?j - agent
?p - proposition )
( notbelbel ?i - agent ?j - agent
?p - proposition )
( goalbel ?i - agent ?j - agent
?p - proposition )
( goalresp ?i - agent ?j - agent
?p - proposition )
( notgoalresp ?i - agent ?j - agent
?p - proposition )
( belbelgoalresp ?i - agent
?j - agent ?p - proposition )
( belbelnotgoalresp ?i - agent
?j - agent ?p - proposition )
( goalbelgoalresp ?i - agent
?j - agent ?p - proposition )
( goalbelstr ?i - agent ?j - agent
?p - proposition )
( goalbelgoalrespWeak ?i - agent
?j - agent ?p - proposition )
( belbelgratitude ?i - agent
?j - agent ?p - proposition )
( belresp ?i - agent ?j - agent
?p - proposition )
( belbelmoralsatisfaction ?i - agent
?j - agent ?p - proposition )
(look ?a - agent ?b - agent)
(at ?a - agent ?l - room)
(already -seen ?i - agent ?j - agent)
(never -seen ?i - agent ?j - agent)

)

;; One agent greets another agent
(: action sayHello

: parameters (?i - agent ?j - agent
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?r - room)
: precondition (and (at ?i ?r) (at ?j ?r)
(look ?i ?j) (never -seen ?i ?j))
: effect (and (already -seen ?i ?j)
(not (never -seen ?i ?j)))

)

;; One agent bids farewell to another agent
(: action farewell

: parameters (?i - agent ?j - agent ?r - room)
: precondition (and (at ?i ?r) (at ?j ?r)
(look ?i ?j) (already -seen ?i ?j))
: effect (( not(look ?i ?j))

)

;; One agent informs another agent
(: action inform

: parameters (?i - agent ?j - agent
?p - proposition )

: precondition (and (bel ?i ?p)
( goalbel ?i ?j ?p) ( notbelbel ?i ?j ?p)
(already -seen ?i ?j))

: effect ( belbel ?i ?j ?p)
)

;; One agent says something to another agent
(: action say

: parameters (?i - agent ?j - agent
?p - proposition )

: precondition (and (bel ?i ?p)
( goalbel ?i ?j ?p) (already -seen ?i ?j))

: effect ( belbel ?i ?j ?p)
)

;; One agent asks/tells/ suggests to another agent
(: action ask

: parameters (?i - agent
?j - agent ?p - proposition )

: precondition (and
( goalresp ?i ?j ?p)

( goalbelgoalresp ?i ?j ?p)
(already -seen ?i ?j))

: effect (and
( belbelgoalresp ?i ?j ?p))

)

;; One agent claims something to
;; another agent
(: action claim

: parameters (?i - agent
?j - agent ?p - proposition )

: precondition (and (bel ?i
?p)
( goalbelstr ?i ?j ?p)

(already -seen ?i ?j))
: effect ( belbel ?i ?j ?p)

)

;; One agent denies something to
;; another agent

(: action deny
: parameters (?i - agent

?j - agent
?p - proposition )

: precondition (and (bel ?i
?p)
( goalbel ?i ?j ?p)

(already -seen ?i ?j))
: effect ( belbel ?i ?j ?p)

)

;; One agent advises something
;;to another agent
(: action advise

: parameters (?i - agent
?j - agent ?p - proposition )

: precondition (and
( goalresp ?i ?j ?p)

( goalbelgoalrespWeak ?i ?j
?p) (already -seen ?i ?j))

: effect ( belbelgoalresp ?i
?j ?p)

)

;; One agent thanks another agent
(: action thank

: parameters (?i - agent
?j - agent ?p - proposition )

: precondition (and (goal
?i ?p)
( belresp ?i ?j ?p)

(already -seen ?i ?j))
: effect ( belbelgratitude

?i ?j ?p)
)

;; One agent thanks another agent
(: action autoFeedback

: parameters (?i - agent ?j -
agent
?p - proposition )

: precondition (and (goal ?i ?p)
( belresp ?i ?j ?p)

(already -seen ?i ?j))
: effect ( belbelmoralsatisfaction

?i ?j ?p)
)
)

Various approaches to mine temporal time sequences
are presented in the literature. Winepi [27] is a well known
algorithm which learns episodes and association rules
based on the episodes. The face algorithm allows for min-
ing of chronicles from symbolic time sequences [28]. These
approaches are, however, not equipped to deal with tem-
poral inaccuracies in the temporal events. We choose the
Temporal Interval Tree Association Rule Learning (Titarl)
algorithm [29] as it allows the representation of imprecise
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(non-deterministic) and inaccurate temporal information
between speech acts considered as symbolic events. Fol-
lowing is an example of a rule mined with Titarl: “If there
is an eventA at time t, then an event of typeBwill occur be-
tween times t+5 and t+10 with a 95% chance". The tempo-
ral relationships between operators can be uncovered by
means of association rule learning, which is the search for
association rules. An association rule is a conditions →
implications pattern.

We hypothesize that if an association rule frequently
correlates two operators, there must be a reason for their
frequent co-existence. The input traces are parsed and fed
to the Titarl algorithm, which produces temporal associ-
ation rules [29]. The operators featuring in the frequent
temporal rules are suspected to share a “semantic” rela-
tionship among themselves, which can be represented in
the form of inter-operator constraints. These constraints
have been proposed by the ARMS [15] system, and may
serve as heuristics to explain the frequent co-existence of
these operators. More precisely, if there is an operator pair
(oi , oj), 0 ≤ i < j ≤ (n − 1) where n is the total number of
operators in the plan; and prei, addi and deli represent
oi’s pre, add and del list, respectively:
– A predicate pwhich serves as a precondition in the pre

lists of both oi and oj cannot be deleted by the first
operator.

– A predicate p added by the first operator oi (p ∈
addoi ) which serves as a prerequisite for the second
operator oj (p ∈ preoj ), cannot not be deleted by the
first operator oi.

– A predicate p that is deleted by the first operator oi is
addedby oj. In otherwords, anoperator re-establishes
a predicate that is deleted by a previous operator.

– The above plan constraints can be combined into one
constraint and restated as:
∃p((p ∈ (prei ∩ prej) ∧ p ∈ ̸ (deli)) ∨ (p ∈ (addi ∩
prej)) ∨ (p ∈ (deli ∩ addj))

A snippet of the aforementioned constraints is illus-
trated for the action pair (ask, say) and relevant predicate
already-seen in the Figure 2.

Thedetails pertaining to the resolutionof the intra and
inter-operator constraints with the help of a SAT solver to
reconstruct the underlying action model is detailed in the
Figure 3.

4.3 LSTM based operator classification

As mentioned before in section 3, a plan is a chained se-
ries of interdependent operators directed towards the ac-

Table 1: Sample annotation of traces. The “Utterance” in the second
column at the timestamp (in seconds) from the beginning of the
interaction mentioned in the column “Timestamp” is annotated with
the speech act in the column “Annotation”. The (..) represents the
operator parameters.

Timestamp Utterance Annotation
35.803 Hello sayHello (..)
35.803 Should I tell you something

about these paintings? ask (..)
395.619 So, I am starting the quiz! claim (..)
556.885 Great, your answer

is perfectly right. auto
Feedback (..)

629.532 So. It’s the end of this quiz. say (..)

complishment of a goal. Thus, extracting patterns from se-
quences of previously executed operators is likely to pro-
vide strong evidence to predict the label of the next oper-
ator in the chain; inspiring our investigation of long short-
term memory networks (LSTMs) [10] for action sequence
labelling. In the following subsectionswe present our data
encoding method for the input and output vector of the
LSTM.

Figure 4: Vector representations for the operator “ask” and succes-
sive operator “say” for the learnt behavioral model.

4.3.1 Data encoding for labelling of operator sequences

Weuse the sequence labelling capabilities of LSTM to iden-
tify the most likely operator that succeeds a given one.
The input to our LSTM system is a large corpus compris-
ing vector representations of each operator of each trace.
Each trace is taken one by one, and the comprising oper-
ators are sequentially encoded into input and output vec-
tors; thus producing a large corpus of vectors. Each opera-
tor of each trace is represented by two distinct vectors: an
input vector which encodes the operator, and an output
vector which classifies the successive operator. These vec-
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Figure 5: Vector representations for the operator “ask” and suc-
cessive operator “say” for the features respective to the relevant
predicates in the encoding scheme sans speech model.

tors serve as the input and output respectively to the LSTM
cells, the encoding of which represents the core of this sec-
tion. This corpus of vector representations is divided into
a training and validation set to eventually train the LSTM
on the training set and gauge its performance on the vali-
dation set. At the output of this learning system, we obtain
an accuracy of prediction on the folds of validation data.
The encoding of the input and output vectors is presented
in the following paragraphs.

The input vector representing an operator in a trace
is encoded in the following fashion. It is divided into two
sections: one section which labels the entire set of oper-
ators in the domain, and the other which labels the rele-
vant predicates for the operators in the domain. In the first
block, there is a slot for each operator in the domain. The
slot for the operator currently being encoded is labeled as
1, and the slots for the remaining operators in the domain
are labeled as 0. Thus if (o1, o2, . . . , on) ∈ Os is the set
of domain-applicable operators, the first n elements of the
vector will be representing this first block, with the entry
for the operator currently being encoded being switched to
1, the other (n −1) slots for the remaining (n −1) operators
being kept at 0. Once this first block has been assigned, we
dedicate blocks of elements in the vector specific to each
operator in the domain. Thus for n operators in the do-
main, there are n different blocks (plus the one block for
all the domain applicable operators as explained above).
Each operator-specific block contains one entry for each
predicate relevant to that particular operator. For exam-
ple, if [goalresp (Ag0 - Agent, Pr0 - Proposition), already-
seen (Ag0 - Agent, Ag1 - Agent)] are two predicates rele-
vant to the operator ask, they will constitute two entries
in the ask operator block.We thus create operator-specific
blocks and for each operator, the number of blocks for the
input vector standing at (n + 1). The dimension d of this
input vector is directly proportional to the number of op-

erators in a domain, as well as the number of predicates
relevant to each operator. The dimension d of a vector for
a specific domain will always remain the same, with the
switching of a slot from 0 to 1 in the vector signalling the
execution of a particular operator. If (o1, o2, . . . , on) ϵ Os
represents the operator schema, the dimension of the in-
put vector is given as:

d = n +
n∑︁
i=1

relPreoi (1)

Here relPreoi are the number of relevant predicates for the
operator oi. The output vector predicts the label of the op-
erator that follows the operator currently being encoded
in the trace. Very much like the input, the output is en-
coded as a binary vector. It consists of a single blockwhich
has as many slots as the number of operators in the do-
main, one for each operator. The slot representing the suc-
ceeding operator to the operator being currently encoded
is set to 1, the others being set to 0. For example, let us as-
sume that the operator currently being encoded is ask and
the next operator in the trace is say. The input and output
vectors for the ask operator are represented in Figure 4.
While the number of operators in a trace thus the num-
ber of vectors representing all the operators in a trace may
vary, the LSTM requires a fixed sized input. This is ensured
by calculating the maximum trace length batchLen (maxi-
mum number of operators per trace) for all the traces, and
padding the shorter lists with d-dimensional vectors filled
with zeros. This padding is done for all the traces till all the
traces have the same batchLen number of operators. The
same padding procedure is adopted for the output vectors.

The input vectors are identical in the way they are
labelled for the training and validation set. The first
section is represented in the same way, with the label
of the currently encoded operator set to 1. In this case,
the slots in the vector which correspond to the relevant
predicates in each operator of the empirical model are
set to 1. For example, as illustrated in the Figure 4,
if the empirical model is represented by (operator1:
bel(Ag0 − Agent, Pr0 − Proposition), not(already −
seen(Ag0−Agent, Ag1−Agent)), operator2: (already −
seen(Ag0 − Agent, Ag1 − Agent), belbelgoalresp(Ag0 −
Agent, Ag1 − Agent, Pr0 − Proposition)), operator3:
(bel(Ag0 − Agent, Pr0 − Proposition), already −
seen(Ag0 − Agent, Ag1 − Agent)), then the slots in
the vector for the operator1 action which represent the
predicates (bel, ¬(already − seen)) are switched to 1,
the rest of the predicates being kept at 0. This scheme is
replicated for the other two operators as well.

In the evaluation phase, the aforementioned scheme
is compared with an encoding scheme sans the presence
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of the speech model. In this alternative scheme, the first
section is represented in the same way, with the label of
the currently encoded operator set to 1. For the second sec-
tion, the slots in the vector which correspond to the rele-
vant predicates in each operator are set to 1. For example,
as illustrated in the Figure 5, if the action currently being
encoded isask, the predicates relevant to the actionask i.e.
the first block of the second section corresponding to the
first operator are labelled to 1, the rest of the blocks of this
section being kept at zero.

5 Evaluation
The objective of our evaluation is to obtain the best possi-
ble accuracy of: (i) the learnt model vis-a-vis the ground
truth model and (ii) sequence labeling obtained with
the learnt speech model. Concerning inter-operator con-
straint representation, two measures are defined for as-
sociation rules of the form a ⇒ b, b being the head
and a being the body of the rule. The confidence of a
rule is the percentage of occurrences of the rule’s body
which also matches the body and the head of the rule
i.e. support(body)/support(head + body). The support
of a rule is the percentage of occurrences of the rule’s
head which also matches the body and the head of the
rule i.e. support(head)/support(head + body) [29]. The
Titarl-mined association rules along with their confidence
and support are recorded. The rules with a highest value
of confidence and support (empirically determined) are
retained for inter-operator constraint generation (see Ta-
ble 2).

Finally we encode all the intra and inter-operator con-
straints in the form of a weighted MAX-SAT problem. The
weights of the CNF clauses representing the constraints
are determined differently for the inter and intra-operator
cases. While the weights of the intra-operator clauses are
empirically determined, the weights of the inter-operator
clauses are equal to the support of the association rules.
This problem can be stated as: Given a collection C of m
clauses, (C1, . . . , Cm) involving n logical variables with
clauseweightswi , find a truth assignment thatmaximizes
the total weight of the satisfied clauses in C [15]. We use
2 SAT solvers: the MaxSatSolver [30] and the MaxWalkSat
[31]. The solutionproducedby either solver contains all the
variableswhich evaluate to true,which are thenused to re-
construct the empirical model.

The difference between the ground truth model and
the empirically determined model is represented in the
form of a reconstruction error. This error is based on the

(:action say-hello
:parameters( ?Ag0 - Agent ?Ag1 - Agent
?Roo0 - Room)
:precondition (and (already-seen ?Ag0 ?Ag1)
(at ?Ag0 ?Ro0) (at ?Ag1 ?Ro0))
:effect (and (not (already-seen ?Ag0 ?Ag1))
(not (at ?Ag0 ?Ro0))))

Figure 6: Snapshot of PDDL representation of the learnt action say-
Hello.

similarity between the relevant predicates and the empiri-
cally determinedpredicates per operator. Let di�Preoi rep-
resent thedifference inpre lists of operator oi in the ground
truthmodel and the empiricalmodel. Each time thepre list
of the ground truthmodel presents apredicatewhich is not
in the pre list of the empirical model, the count di�Preoi is
incremented by one. Similarly, each time the pre list of the
empirical model presents a predicate which is not in the
pre list of the ground truth model, the count di�Preoi is
incremented by one. Similar counts are computed for the
add and del lists as di�Addoi and di�Deloi respectively.
This total count is then divided by the number of relevant
constraints for that particular operator relConsoi to obtain
the cumulative error per operator. This error is summed up
for every operator and averaged to obtain an average error
E for the entire model. This cumulative error for the model
is represented by:

E = 1
n

n∑︁
i=1

di�Preoi + di�Addoi + di�Deloi
relConsoi

(2)

The obtained cumulative error is mentioned in the third
column of Table 3. The relatively high error rates can be
attributed to the fact that owing to the linear structure of
the relevant predicate dictionary, there is little variation
among the constraints produced specific to each operator,
aswell as theirweights. A great deal of constraints are thus
solved, thus introducing a great deal of noise in the recon-
structed model. This noise can be illustrated with a snip-
pet of the learnt model in the Listing 6. We conclude from
these results that the ground truth model needs to be fine
tuned and reworked upon to ensure that the operators be-
ing learnt are not semantically as close to ensure a better
learning rate.

5.1 LSTM based sequence labeling

In thiswork,we explore twohyperparameters: the number
of hidden units (set between (100, 200)), and the dropout
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Table 2: Representation of the temporal rules mined with Titarl
algorithm.

Rule Confidence (%) Support (%)
ask→ say 73 96
inform→ deny 69 100
autoFeedback→ ask 100 60

Table 3: Cumulative error in model learning (* = with MaxWalkSat,
** = with MaxSatSolver).

Variables Clauses Model Error (E) Execution Time (s)
759 3606 41.78*, 39.78** 36.44*, 36.25**

rate [8] (set between (0.5, 0.75)); both of which have signif-
icant potential to influence the predictions. We use a soft-
max layer for classifying given operator sequences. The
batch size is set to batchLen.We also use categorical cross
entropy for the loss function and an adam optimizer (gra-
dient descent optimizer). Eachof the 10 sequences consists
of about of 400dialogues each,which is dividedusingfive-
fold cross validation. Every training example is presented
to the network 10 times i.e. the network is trained for 10
epochs. The results are summarized in the Figure 8 and
are the obtained with the encoded behavioral model. The
accuracy represented in the figure is the validation accu-
racy (accuracy measured on the validation set), which is
the proportion of examples for which the model produces
the correct output. It is represented as the fractionof exam-
ples classified correctly. The accuracy is recorded for 1, 2, 5
and 10 traces. As can be seen, the accuracy improves with
the number of traces. If we consider the learning perfor-
mance with the encoding scheme sans model in Figure 9,
this prediction accuracy is not so impressive. The highest
accuracy obtained is in the range of the upper forties. This
demonstrates the fact that the presence of the behavioral
model in the feature vector boosts the sequence labeling
capacity of the learning system.

6 Conclusion
In order to be acceptable and be able to “camouflage”
into their physio-social context in the long run, robots
need to be not just functional, but autonomously psycho-
affective as well. This motivates a long term necessity of
introducing behavioral autonomy in robots, such that they
can autonomously communicatewithhumanswithout the
need of “wizard” intervention. This paper proposes a tech-
nique to learn robot speech models from human-robot di-
alog exchanges. It views the entire exchange in the Au-

Figure 7: Difference between symbolic time series and symbolic
time sequences. While items in a symbolic time series are partially
ordered and do not repeat, items in a symbolic time sequence may
be co-occurring and repeat as well [29].

Figure 8: LSTM operator labelling accuracy (128 hidden units, 0.8
dropout rate).

tomated Planning (AP) paradigm, representing the dialog
sequences (speech acts) in the form of action sequences
that modify the state of the world upon execution, grad-
ually propelling the state to a desired goal. We then ex-
ploit intra-action and inter-action dependencies, encod-
ing them in the form of constraints. We attempt to satisfy
these constraints using aweightedmaximum satisfiability
model known as MAX-SAT, and convert the solution into a
speech model. This model can be put to many uses, such
as planning of fresh dialogs, automatic generation of di-
alogs etc. In this study, the learnt model is used to predict
speech acts in the dialog sequences using the sequence
labeling (predicting future acts based on previously seen
ones) capabilities of the LSTM (Long Short Term Memory)
class of recurrent neural networks. While this work rep-
resents a first step in this direction of behavioral auton-
omy viaAutomatedPlanning, it leaves amajor scope of im-
provement as well. While this study has focused on learn-
ing speech models, true behavioral autonomy can only be
achieved using behavioral models (models which consist
of speech acts interleaved with co-verbal gestures). This
speech model thus needs to be enriched with gestural in-
formation in order to render it complete and realistic. The
planning for fresh dialog sequences can only be obtained
with a behavioral model under the hood. Devising tech-
niques for further reduction of the learning error between
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Figure 9: LSTM operator labeling accuracy with relevant predicates
as constituents of the feature vector (128 hidden units, 0.8 dropout
rate).

the learnt model and ground truth model, and exploring
the interleaving between physical and speech acts is in the
scope of future work.
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