
HAL Id: hal-01908044
https://hal.science/hal-01908044v3

Submitted on 17 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Post-processing of the planewave approximation of
Schrödinger equations. Part II: Kohn-Sham models

Geneviève Dusson

To cite this version:
Geneviève Dusson. Post-processing of the planewave approximation of Schrödinger equations.
Part II: Kohn-Sham models. IMA Journal of Numerical Analysis, 2020, 41 (4), pp.2456-2487.
�10.1093/imanum/draa052�. �hal-01908044v3�

https://hal.science/hal-01908044v3
https://hal.archives-ouvertes.fr


Post-processing of the planewave approximation of Schrödinger
equations. Part II: Kohn–Sham models

Geneviève Dusson∗

Université Bourgogne Franche-Comté,
Laboratoire de Mathématiques de Besançon,

UMR CNRS 6623, Besançon, France

Abstract

In this article, we provide a priori estimates for a perturbation-based post-processing method of the
plane-wave approximation of nonlinear Kohn–Sham LDA models with pseudopotentials, relying on [6]
for the proofs of such estimates in the case of linear Schrödinger equations. As in [5], where these a priori
results were announced and tested numerically, we use a periodic setting, and the problem is discretized
with planewaves (Fourier series). This post-processing method consists of performing a full computation
in a coarse planewave basis, and then to compute corrections based on first-order perturbation theory in
a fine basis, which numerically only requires the computation of the residuals of the ground-state orbitals
in the fine basis. We show that this procedure asymptotically improves the accuracy of two quantities
of interest: the ground-state density matrix, i.e. the orthogonal projector on the lowest N eigenvectors,
and the ground-state energy.

1 Introduction
To determine the electronic ground-state of a system within the Born–Oppenheimer approximation [1],
DFT Kohn–Sham models [12] are among the state-of-the-art methods, especially for their good trade-off
between accuracy and computational cost. In the context of condensed matter physics and materials science,
most simulations of the Kohn–Sham models are performed with periodic boundary conditions, for which a
planewave (Fourier) discretization method is particularly suited (see the introduction of [6] for more detail
on the physical context). Nevertheless, this method scales cubically with respect to the number of electrons
in the system, and becomes expensive for large systems.

In previous works [2, 5, 6], we have proposed a post-processing method to provide cheaper and still
accurate results for this problem. This two-grid method consists of computing first a rough approximation
of the solution to the Kohn–Sham problem in a coarse planewave basis. This solution is then corrected in
a fine basis, based on first-order Rayleigh–Schrödinger perturbation theory, considering the exact Kohn–
Sham ground-state as a perturbation of the approximate ground-state computed in the coarse basis. In [5,
Section 5], numerical results for this method were presented, showing that in practice, this method leads to
a substantial improvement for the ground-state energy, the improvement factor varying between 10 and 100
for small size systems such as the alanine molecule. Besides, the computational extra-cost did not exceed
about 3-5% of the total computations, depending on the size of the chosen fine basis.

In this article, we focus on the theoretical improvement of this post-processing method for the Kohn–
Sham problem. We provide the proofs of theoretical estimates presented in [5], which partly rely on the
proofs for the linear subproblem of the Kohn–Sham model presented in the first part of this contribution [6].
Compared to the procedure proposed in [6], we construct here two different post-processed sets of orbitals
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from the ground-state orbitals of the discrete Kohn–Sham problem in the coarse basis. The first one is
derived directly from first-order Rayleigh–Schrödinger perturbation theory, but is not a priori orthonormal;
the second one is orthonormal. From these two sets of orbitals, we define in Definition 4.1 two corresponding
density matrices, and two post-processed energies. Note that, since the problem is nonlinear, the corrections
given by the perturbative expansion at first-order cannot be computed exactly. However, we derive that the
neglected uncomputable contributions are a priori small.

The main result of this article is provided in Theorem 5.1. We show that, as in the linear case, the
convergence rates of both the post-processed ground-state density matrices and the post-processed ground-
state energies are improved within the asymptotic regime where the discretization space is large enough.
On top of that, we show that the two versions of the post-processing lead to the same improvement on the
density matrix error, but to different improvements on the energy. Indeed, only the post-processed energy
computed from the orthonormal post-processed orbitals presents a convergence doubling compared to the
density matrix error. These results are valid under the assumption that there is a gap between the highest
occupied orbital and the lowest unoccupied orbital, which corresponds to considering insulators. All other
assumptions come from the a priori analysis for the Kohn–Sham problem and do not differ from [3]. Also,
our post-processing method crucially relies on the fact that the Laplace operator, which is the leading part
in the Hamiltonian, is diagonal in a planewave basis, so that it commutes with the orthogonal projector on
the discretization space.

This article is organized as follows. In Section 2.1, we present the Kohn–Sham model in the periodic
setting, and define the main quantities of interest: the ground-state orbitals (φ0

1, . . . , φ
0
N ), the density matrix

γ0 and the energy IKS0 . In Section 2.2, we briefly recall the functional setting used in the following sections.
In Section 3.1, we present the planewave discretization of this Kohn–Sham problem. In Section 3.2, we
recall a priori estimates derived in [3]. We also translate these results in terms of density matrix formalism.
In Section 4, we describe the post-processing method based on Rayleigh–Schrödinger perturbation theory,
and in particular define the corrections. In Section 5.1, we present the main results of this paper, i.e. an
improved convergence rate on the post-processed ground-state density matrices and energies. The proofs are
given in Section 5.2.

List of notation
To help the reader navigate through the paper, we summarize below the principal notation, and refer to the
definitions when needed.

To start with, N denotes the number of computed eigenvalues. The quantities related to the choice of
discretisation (Section 3.1) are

• Ec: kinetic energy cutoff,

• Nc =
√

Ec

2
L
π : discretisation parameter,

• XNc : discretisation space.

The quantities related to energies are

• IKS0 : exact ground state energy (2.4),

• IKS
0,Nc

: variational approximation of the ground state energy (3.1),

• ẼNc
: perturbed ground state energy (4.11),

• ˜̃
ENc

: orthonormalized perturbed energy (4.12).

The different eigenfunctions, corresponding eigenvalues and Lagrange multiplier matrices defined in this
article are
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• Φ0 = (φ0
1, · · · , φ0

N )T and (λ0
1, · · · , λ0

N ): lowest N eigenfunctions and corresponding eigenvalues of the
Hamiltonian. The matrix of Lagrange multipliers Λ0 is diagonal Λ0 = diag(λ0

1, · · · , λ0
N ) (Section 2.1).

• ΦNc
:= (φ1,Nc

, . . . , φN,Nc
)T and (λ1,Nc

, . . . , λN,Nc
): lowest eigenfunctions diagonalizing the Hamilto-

nian on the discretisation space and corresponding eigenvalues (Section 3.1). The corresponding matrix
of Lagrange multiplier is diagonal as well.

• Φ0
Nc

= (φ0
1,Nc

, . . . , φ0
N,Nc

)T : eigenfunctions given by a unitary transform of ΦNc
such that Φ0

Nc
is

as much aligned with Φ0 as possible. The corresponding matrix of Lagrange multipliers Λ0
Nc

=

(λ0
ij,Nc

)1≤i,j≤N := (〈φ0
i,Nc
|H|φ0

j,Nc
〉)1≤i,j≤N ∈ RN×N is not diagonal (Section 3.2).

• Φ̃Nc = (φ̃1,Nc
, . . . , φ̃N,Nc

) and (λ̃1,Nc
, . . . , λ̃N,Nc

): perturbed eigenfunctions and perturbed eigenval-
ues (4.5).

• ˜̃
ΦNc

= (
˜̃
φ1,Nc

, . . . ,
˜̃
φN,Nc

): orthonormalized perturbed eigenfunctions (4.6).

The different density matrices involved in the following are:

• γ0: exact ground state density matrix (2.8),

• γNc
: approximate density matrix (Section 3.1),

• γ̃Nc
: perturbed density matrix (4.8). Note that this density matrix is not an orthogonal projector, as

mentioned in Remark 4.1,

• ˜̃γNc
: orthonormalized perturbed density matrix (4.10).

2 Periodic Kohn–Sham models with pseudopotentials

2.1 Problem setting
In this article, we adopt the system of atomic units, for which ~ = 1, me = 1, e = 1, 4πε0 = 1. Thus,
the electric charge of the electron is −1, and the charges of the nuclei are positive integers. We consider a
periodic setting, therefore the nuclear configuration is supposed to be R-periodic, R being a periodic lattice
with corresponding supercell Ω. To simplify the notation, we consider a cubic lattice R = LZ3 (L > 0),
which corresponds to a cubic supercell Ω = [0, L)3. But our arguments also apply in the more general case
of any Bravais lattice. For 1 ≤ p ≤ ∞ and s ∈ R+, we denote by

Lp#(Ω) :=
{
u ∈ Lploc(R3,R) | u is R-periodic

}
,

Hs
#(Ω) :=

{
u ∈ Hs

loc(R3,R) | u is R-periodic
}
,

the spaces of real-valued R-periodic Lp and Hs functions.

We consider a spin-restricted LDA Kohn–Sham model [12] with pseudopotentials. This method is typ-
ically used for computing condensed phase properties, when the number of atoms in the simulation cell is
limited. A detailed presentation of this model employing the same notation can be found in [5, Section 2],
see also [3]. We recall here only the main features of the model. Given a system with N valence electron
pairs, we are considering the following energy functional

EKS
0,Ω(Ψ) =

N∑
i=1

∫
Ω

|∇ψi|2 +

∫
Ω

Vlocal ρ[Ψ] + 2

N∑
i=1

〈ψi|Vnl|ψi〉+
1

2
DΩ(ρ[Ψ], ρ[Ψ]) + Ecxc,Ω(ρ[Ψ]), (2.1)

where the different terms of the energy are described below. The set of admissible states is

M =

{
Ψ = (ψ1, . . . , ψN )T ∈

[
H1

#(Ω)
]N ∣∣∣∣ ∫

Ω

ψiψj = δij

}
. (2.2)
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The electronic density reads

ρ[Ψ](r) = 2

N∑
i=1

|ψi(r)|2. (2.3)

The Coulomb energy is defined as

DΩ(ρ, ρ′) =

∫
Ω

∫
Ω

GΩ(r− r′)ρ(r)ρ′(r′)drdr′ =

∫
Ω

ρ(r′)[Vcoul(ρ
′)](r′)dr′,

where the Green’s function GΩ and the periodic Coulomb potential Vcoul(ρ
′) are respectively solutions to

the following problems
−∆GΩ = 4π

(∑
k∈R

δk −
1

|Ω|

)
in R3,

GΩ R− periodic,∫
Ω

GΩ = 0,

and


−∆Vcoul(ρ

′) = 4π

(
ρ′ − 1

|Ω|

∫
Ω

ρ′
)

in R3,

Vcoul(ρ
′) R− periodic,∫

Ω

Vcoul(ρ
′) = 0.

The pseudopotential, modeling the effects of the nuclei and the core electrons (and some relativistic effects for
heavy atoms) consists of two terms: a local component Vlocal (whose associated operator is the multiplication
by the R-periodic function Vlocal) and a nonlocal component Vnl given by

Vnlψ =

J∑
j=1

(∫
Ω

ξj(r)ψ(r) dr

)
ξj ,

where ξj are regular enough R-periodic functions and J is an integer depending on the chemical nature of
the ions in the unit cell. The exchange-correlation functional based on a local density approximation is given
in this periodic setting with pseudopotentials by

Ecxc,Ω(ρ[Ψ]) =

∫
Ω

eLDA
xc (ρc(r) + ρ[Ψ](r)) dr,

where ρc ≥ 0 is a nonlinear core correction, and eLDA
xc (ρ) is an approximation of the exchange-correlation

energy per unit volume in a homogeneous electron gas with density ρ.

The ground-state energy is then the solution of the following minimization problem:

IKS0 = inf
{
EKS

0,Ω(Ψ), Ψ ∈M
}
. (2.4)

Under some assumptions on Vnl, Vlocal, and Ecxc,Ω presented in [3] and recalled in Appendix 6.1, (2.4) has a
local minimizer Φ0 = (φ0

1, . . . , φ
0
N ) ∈M. Noting that the energy is invariant under a unitary transformation

of the orbitals, i.e.

∀Ψ ∈M, ∀U ∈ U(N), UΨ ∈M, ρ[UΨ] = ρ[Ψ] and EKS
0,Ω(UΨ) = EKS

0,Ω(Ψ), (2.5)

where U(N) is the group of orthogonal matrices:

U(N) =
{
U ∈ RN×N | UTU = 1N

}
, (2.6)

1N denoting the identity matrix of rank N , any unitary transform of the Kohn–Sham orbitals Φ0 in the sense
of (2.5) is also a minimizer of the Kohn–Sham energy, and (2.4) has an infinity of minimizers. It is therefore
possible to diagonalize the matrix of the Lagrange multipliers in the first-order optimality conditions relative
to (2.4), and show the existence of a minimizer (still denoted by Φ0), such that

∀i = 1, . . . , N, H0 φ
0
i = λ0

iφ
0
i , and ∀i, j = 1, . . . , N, 〈φ0

i |φ0
j 〉 = δij ,
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for some λ0
1 ≤ λ0

2 ≤ · · · ≤ λ0
N , where the Hamiltonian H0 is the self-adjoint operator on L2

#(Ω) with domain
H2

#(Ω) defined by

∀u ∈ H2
#(Ω), H0u = −1

2
∆u+ Vionu+ Vcoul(ρ0)u+ Vxc(ρ0)u,

with ρ0 = ρ[Φ0], Vion = Vlocal + Vnl, and where

Vxc(ρ)(r) =
deLDA

xc

dρ
(ρc(r) + ρ(r)).

The matrix of Lagrange multipliers of Φ0 is then Λ0 = diag(λ0
1, · · · , λ0

N ).
Let us also define the Kohn–Sham operator for a given density ρ as

H[ρ] = −1

2
∆ + Vion + Vcoul(ρ) + Vxc(ρ), (2.7)

so thatH0 = H[ρ0]. The potentials Vlocal, Vcoul(ρ), and Vxc(ρ) being multiplicative, we use the same notations
for the potentials as functions on Ω, and for the corresponding multiplicative operators.

We will suppose in the following that the system under consideration satisfies the Aufbau principle, so
that λ0

1 ≤ λ0
2 ≤ · · · ≤ λ0

N are the lowest N eigenvalues of the Kohn–Sham Hamiltonian H0. Note that,
although this property seems to hold in practice for most systems, it has not been proved in general, except
for the extended Kohn–Sham model (see [3] for details).

Also, as in the linear case [6], we will make the following assumption:

Assumption 2.1. There is a gap between the N th and the (N + 1)st eigenvalues of H0, i.e.

g := λ0
N+1 − λ0

N > 0.

In this setting, the Fermi level εF could be defined as any real number in the range (λ0
N , λ

0
N+1). We

define it as εF :=
λ0
N+λ0

N+1

2 .
The purpose of this problem is to compute two quantities of interest:

1. the ground-state density matrix γ0 based on the orbitals Φ0 = (φ0
1, . . . , φ

0
N )T , defined as

γ0 := 1(−∞,εF](H 0) =

N∑
i=1

|φ0
i 〉〈φ0

i |, (2.8)

which belongs to the Grassmann manifold

Υ =
{
γ ∈ L(L2

#)
∣∣ γ∗ = γ, γ2 = γ, Tr (γ) = N, Tr (−∆γ) <∞

}
;

2. the ground-state energy defined as
IKS0 := EKS

0,Ω(Φ0).

We refer to [6] for the definition of the operator trace Tr .

2.2 Functional setting
In this article, the functional setting is similar to [6]. We denote by ‖ · ‖ the operator norm on L(L2

#), the
space of bounded linear operators on L2

#(Ω). We also denote by S1(L2
#) the Banach space of trace-class

operators on L2
#(Ω) endowed with the norm defined by ‖A‖S1(L2

#) := Tr (|A|) = Tr (
√
A∗A). Also, let the
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Hilbert space of Hilbert–Schmidt operators S2(L2
#) on L2

#(Ω) be endowed with the inner product defined
by (A,B)S2(L2

#) := Tr (A∗B). Moreover, let us define for any operator A on L2
#(Ω) with domain D(A),

∀Ψ ∈ [D(A)]N , ‖AΨ‖L2
#

:=

(
N∑
i=1

‖Aψi‖2L2
#

)1/2

,

which corresponds to ‖Ψ‖L2
#
when A is the identity operator and ‖Ψ‖H1

#
when A = (1−∆)1/2.

3 Discretization and resolution of the Kohn–Sham model

3.1 Planewave discretization
In the context of periodic boundary conditions, we discretize the Kohn–Sham problem (2.4) in Fourier modes,
also called planewaves. We denote by R∗ = 2π

L Z3 the dual lattice of the periodic lattice R = LZ3. For k ∈ R∗,
we denote by ek the planewave with wavevector k and kinetic energy 1

2 |k|
2, with | · | the Euclidean norm,

defined by

ek : R3 → C

x 7→ |Ω|−1/2eik·x,

where |Ω| = L3. The family (ek)k∈R∗ forms an orthonormal basis of L2
#(Ω,C) endowed with the scalar

product

∀u, v ∈ L2
#(Ω,C), 〈u|v〉 =

∫
Ω

u(r) v(r) dr,

where u(r) denotes the complex conjugate of u(r), and for all v ∈ L2
#(Ω,C),

v(r) =
∑
k∈R∗

v̂k ek(r) with v̂k = 〈ek|v〉 = |Ω|−1/2

∫
Ω

v(r)e−ik·r dr.

To discretize the variational set M, we introduce some energy cutoff Ec > 0 and consider all basis functions
with kinetic energy smaller than Ec, i.e. |k| ≤

√
2Ec. That is, for each cutoff Ec, we set Nc =

√
Ec

2
L
π and

consider the finite-dimensional discretization space

XNc
:=

 ∑
k∈R∗,|k|≤ 2π

L Nc

v̂k ek

∣∣∣∣∣∣ ∀k, v̂−k = v̂∗k

 ⊂ ⋂
s∈R

Hs
#(Ω).

We denote by ΠNc
the orthogonal projector on XNc

for any Hs
#(Ω), s ∈ R, defined as

ΠNcv =
∑

k∈R∗,|k|≤ 2π
L Nc

v̂kek,

and by Π⊥Nc
= (1−ΠNc

) the orthogonal projector on X⊥Nc
, the orthogonal complement to XNc

.
Finally, the variational approximation to the ground-state energy in XNc

is defined as

IKS
0,Nc

= inf
{
EKS

0 (ΨNc
) , ΨNc

∈M ∩ [XNc
]N
}
. (3.1)

Using again the invariance property (2.5), the Euler equations of this minimization problem can be
diagonalized and reduced to find the pairs (φj,Nc

, λj,Nc
)j=1,...,N satisfying

∀j = 1, . . . , N, HNc,proj φj,Nc
= λj,Nc

φj,Nc
, and ∀i, j = 1, . . . , N, 〈φi,Nc

|φj,Nc
〉 = δij , (3.2)
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λ1,Nc ≤ λ2,Nc ≤ . . . ≤ λN,Nc , where HNc,proj : XNc → XNc is defined as

HNc,proj = ΠNc
H[ρNc ]ΠNc

= −1

2
ΠNc

∆ΠNc
+ ΠNc

[
Vion + Vcoul(ρNc

) + Vxc(ρNc
)
]
ΠNc

, (3.3)

with ρNc
= ρ[ΦNc ], ΦNc

= (φ1,Nc
, . . . , φN,Nc

)T and where H[ρNc ] is defined by (2.7) for the approximate
ground-state density ρNc

. The corresponding density matrix, which is independent of the chosen orthonormal
basis for Span(φ1,Nc

, φ2,Nc
, . . . , φN,Nc

), is denoted by γNc
∈ Υ, and defined as

γNc
=

N∑
i=1

|φi,Nc
〉〈φi,Nc

|.

Finally, the ground-state energy is defined as

IKS
0,Nc

= EKS
0 (ΦNc

).

In order to solve the nonlinear eigenvalue problem (3.2), a Self-Consistent Field (SCF) procedure is
employed [15]. It consists of solving a linear eigenvalue problem at each step, at which the Hamiltonian is
computed from the density found at the previous step. The details of the algorithm in this setting can be
found in [5] and the references therein.

3.2 A priori results on the density matrices
The existence of minimizers of problems (2.4) and (3.1) as well as a priori error estimates on the convergence
of the solutions to the discretized problem (3.1) to those of the continuous problem (2.4) hold under several
assumptions presented in [3]. For completeness, these assumptions are recalled in Appendix 6.1.

Moreover, in order to use the a priori results of [3] in the proofs of our estimates, we first show that
similar a priori results hold in the density matrix formalism. To start with, let us define the solution to the
discrete problem lying in the space

MΦ0

:=

{
Ψ ∈M

∣∣∣∣ ‖Ψ− Φ0‖L2
#

= min
U∈U(N)

‖UΨ− Φ0‖L2
#

}
,

where U(N) is defined in (2.6) and M in (2.2). Therefore we define Φ0
Nc

= (φ0
1,Nc

, . . . , φ0
N,Nc

)T ∈ MΦ0

such
that

‖Φ0
Nc
− Φ0‖L2

#
= min
U∈U(N)

‖UΦNc
− Φ0‖L2

#
,

where ΦNc
is a solution to (3.2). Moreover, we define the Lagrange multiplier matrix of the orthonormality

constraints as
Λ0
Nc

= (λ0
ij,Nc

)1≤i,j≤N := (〈φ0
i,Nc
|H|φ0

j,Nc
〉)1≤i,j≤N ∈ RN×N .

The following lemma exhibits norm equivalences between density matrices and their corresponding orbitals.

Lemma 3.1 (L2
# and H1

# norm equivalences). There exist c, C > 0 such that for all Ψ0 = (ψ0
1 , . . . , ψ

0
N ) ∈

MΦ0

with corresponding density matrix γ0
Ψ =

∑N
i=1 |ψ0

i 〉〈ψ0
i |, satisfying for all v ∈ Span(φ0

1, . . . , φ
0
N )\{0},

‖γΨ0v‖L2
#
6= 0,

‖Ψ0 − Φ0‖L2
#
≤ ‖γ0

Ψ − γ0‖S2(L2
#) ≤

√
2‖Ψ0 − Φ0‖L2

#
, (3.4)

c‖(1−∆)1/2(Ψ0 − Φ0)‖L2
#
≤ ‖(1−∆)1/2(γ0

Ψ − γ0)‖S2(L2
#) ≤ C‖(1−∆)1/2(Ψ0 − Φ0)‖L2

#
. (3.5)

The proof is given in Appendix 6.2. Note that this lemma is more general than the similar result
provided in the linear case [6, Lemma 2.3], as γ0

Ψ can be any density matrix and not only the discrete density
matrix γNc .

Based on Lemma 3.1, it is possible to express the results of [3, Theorem 4.2] in terms of density matrices,
which we detail in the following Theorem.
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Theorem 3.1 (see [3]). Let Φ0 be a local minimizer of (2.4). Under Assumption 6.1, there exist N0
c > 0

and r0 > 0 such that for Nc ≥ N0
c , (3.1) has a unique local minimizer Φ0

Nc
in the set{

ΦNc
∈MΦ0

∩ [XNc
]N
∣∣‖ΦNc

− Φ0‖ ≤ r0

}
.

Moreover, if the assumptions of the a priori analysis of [7, Theorem 4.2] recalled in Assumptions 6.1 and 6.2
are satisfied, there exist c, C > 0, and N0

c ∈ N such that for Nc ≥ N0
c ,

c‖(1−∆)1/2(γ0 − γNc)‖2S2(L2
#) ≤ I

KS
0,Nc
− IKS0 ≤ C‖(1−∆)1/2(γ0 − γNc)‖2S2(L2

#), (3.6)

‖(1−∆)−1/2(Φ0
Nc
− Φ0)‖L2

#
≤ CN−2

c ‖(1−∆)1/2(γNc − γ0)‖S2(L2
#), (3.7)

‖γ0 − γNc
‖S2(L2

#) ≤ CN−2
c , (3.8)

‖(1−∆)1/2(γ0 − γNc
)‖S2(L2

#) ≤ CN−1
c , (3.9)

and

‖Λ0 − Λ0
Nc
‖F ≤ C

(
‖(1−∆)1/2(γNc − γ0)‖2S2(L2

#) +N−2
c ‖(1−∆)1/2(γNc − γ0)‖S2(L2

#)

)
, (3.10)

where ‖ . ‖F denotes the Frobenius norm.

The proof is given in Appendix 6.2.

4 Post-processing of the planewave approximation
Our post-processing method strongly relies on the fact that the Laplace operator is diagonal in planewaves,
with explicitly known eigenvalues |k|2,k ∈ R∗. The smallest eigenvalue of the operator − 1

2∆ on X⊥Nc

being strictly larger than 1
2

(
2πNc

L

)2
, if the N th eigenvalue of the operator HNc,proj defined in (3.3) satisfies

λN,Nc <
1
2

(
2πNc

L

)2
, which holds for Nc large enough, the lowest eigenvalues and eigenvectors of HNc,proj

are preserved by addition of the operator − 1
2∆ on X⊥Nc

: (1−ΠNc
)(− 1

2∆)(1−ΠNc
). Therefore, the discrete

solution ΦNc
is also the ground-state of the following Kohn-Sham problem

∀j = 1, . . . , N, HNc
φj,Nc

= λj,Nc
φj,Nc

, and ∀i, j = 1, . . . , N, 〈φi,Nc
|φj,Nc

〉 = δij , (4.1)

λ1,Nc ≤ λ2,Nc ≤ . . . ≤ λN,Nc , where

HNc
= −1

2
∆ + ΠNc

[
Vion + Vcoul(ρNc

) + Vxc(ρNc
)
]
ΠNc

= HNc,proj + (1−ΠNc
)(−1

2
∆)(1−ΠNc

).

Replacing HNc,proj by HNc
in the equations satisfied by ΦNc

will be crucial in our analysis. Conversely, the
exact solution (φ0

j , λ
0
j )j=1,...,N satisfies

(HNc
+ V⊥Nc

+ WNc
)φ0

j = λ0
j φ

0
j , 〈φ0

i |φ0
j 〉 = δij , (4.2)

where

V⊥Nc
= [Vion + Vcoul(ρNc

) + Vxc(ρNc
)]−ΠNc

[
Vion + Vcoul(ρNc

) + Vxc(ρNc
)
]
ΠNc

,

and
WNc = [Vcoul(ρ0) + Vxc(ρ0)]− [Vcoul(ρNc) + Vxc(ρNc)].

As described in [5, Section 4], we rely on Rayleigh–Schrödinger perturbation method [11] to define improved
orbitals (φ̃j,Nc

, λ̃j,Nc
)j=1,...,N , taking (4.2) as the perturbed equation, and (4.1) as the unperturbed one. For

non-degenerate eigenvalues, the corrections arising from first-order perturbation theory are

∀ j = 1, . . . , N, φ0
j ' φ0

j,Nc
+ φ

(1)
j,Nc

+ φ
(2)
j,Nc

,
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where

φ
(1)
j,Nc

= −
(
−1

2
∆− λj,Nc

)−1

rj ∈ X⊥Nc
, (4.3)

rj ∈ X⊥Nc
being the residual defined by

rj =

(
−1

2
∆ + Vion + Vcoul(ρNc

) + Vxc(ρNc
)− λj,Nc

)
φj,Nc

=
(
HNc

+ V⊥Nc
− λj,Nc

)
φj,Nc

= V⊥Nc
φj,Nc

,

and φ(2)
j,Nc

being defined by

φ
(2)
j,Nc

= − (HNc
− λj,Nc

)
−1
|
(φj,Nc

)⊥
WNc

φj,Nc
. (4.4)

Note that the definition of φ(1)
j,Nc

is only consistent because the residuals rj belong to X⊥Nc
for all j = 1, . . . , N .

Moreover, the corrections (4.3) can easily be computed in practice in a very large basis, i.e. introducing a
second, very large cutoff, as we will detail in Remark 4.2.

Compared to the linear case [6], the main difference is the presence of the uncomputable potential WNc
,

which depends on the exact density ρ0, and leads to uncomputable corrections (4.4), even projected on a
finite basis.

However, we will derive that these uncomputable terms are a priori small, and define the post-processed
orbitals only from the computable corrections defined in (4.3), which are also well-defined for degenerate
eigenvalues. We therefore define the perturbed orbitals, as well as density matrix and energy as follows.

Definition 4.1 (Perturbed eigenvectors, density matrix and energy). For all j = 1, . . . , N, we define the
perturbed eigenvectors as

φ̃j,Nc
= φj,Nc

+ φ
(1)
j,Nc

. (4.5)

We also define orthonormal perturbed eigenvectors as an orthonormalization of (φ̃j,Nc)j=1,...,N . More pre-
cisely, for all j = 1, . . . , N, define ˜̃

ΦNc
= SNc

−1/2Φ̃Nc
, (4.6)

where SNc
, the N ×N overlap matrix of Φ̃Nc

= (φ̃1,Nc
, . . . , φ̃N,Nc

), is defined as

∀i, j = 1, . . . , N, (SNc
)i,j = 〈φ̃i,Nc

|φ̃j,Nc
〉. (4.7)

We define the perturbed density matrix as

γ̃Nc
=

N∑
i=1

|φ̃j,Nc
〉〈φ̃j,Nc

| = γNc
+ γ

(1)
Nc

+

N∑
i=1

|φ(1)
j,Nc
〉〈φ(1)

j,Nc
|, (4.8)

where

γ
(1)
Nc

=

N∑
i=1

|φ(1)
j,Nc
〉〈φj,Nc

|+
N∑
i=1

|φj,Nc
〉〈φ(1)

j,Nc
|. (4.9)

We also define an orthonormalized perturbed density matrix as

˜̃γNc
=

N∑
i=1

|˜̃φi,Nc
〉〈˜̃φi,Nc

|. (4.10)

We define the perturbed energy as the energy of the perturbed eigenvectors computed with (2.1)

ẼNc
= EKS

0,Ω(Φ̃Nc
), (4.11)

and the orthonormalized perturbed energy as

˜̃
ENc

= EKS
0,Ω(

˜̃
ΦNc

). (4.12)
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Remark 4.1. Since the post-processed orbitals (4.5) are not orthonormal, γ̃Nc ∈ Υ does not hold in general,
although γ̃Nc = γ̃Nc

∗. Indeed, a priori, γ̃Nc

2 6= γ̃Nc
and Tr (γ̃Nc

) 6= N. On the other hand, the post-processed
orbitals (4.6) being orthonormal, there holds ˜̃γNc

∈ Υ.

Remark 4.2. Note that the computational cost of the corrections is limited, and similar to the linear case [6].
For all j = 1, . . . , N , the operator

(
− 1

2∆− λj,Nc

)
is diagonal in a planewave basis, hence trivial to in-

vert. Each residual V⊥Nc
φj,Nc

can be computed using a very large basis with only two FFT’s, hence with a
O(ndof log(ndof )N) scaling where ndof is the number of degrees of freedom in the fine basis. On top of that,
to compute the orthonormalized density matrix (4.10) and energy (4.12), one needs to orthonormalize the
post-processed orbitals, with a cost of O(ndofN

2). This corresponds to the cost of a QR decomposition of the
matrix containing the post-processed orbitals Φ̃Nc = (φ̃1,Nc , . . . , φ̃N,Nc). Indeed, as the density matrix ˜̃γNc

does not depend on the orbitals themselves but on their span, as well as for the energy ˜̃ENc
, we do not need

to compute the matrix SNc

−1/2 explicitely in practice.
We refer to [5, Section 5] for numerical results illustrating the low computational cost of the post-

processing, and showing that taking for the second cutoff a few times the planewave cutoff is sufficient.
Indeed, taking larger cutoffs for computing the corrections does not change the observed results (see Fig. 1
in [5]).

5 Convergence improvement on the density matrix and the energy

5.1 Theorem
The improvement results on the post-processed density matrices and the energies are collected in the following
theorem. Compared to the linear case [6], the results are similar except for the post-processed energy (4.12)
based on the orthonormal version of the post-processed density matrix, for which we derive a convergence
doubling compared to the density matrix improvement factor of N−2

c .

Theorem 5.1 (Improved convergence for the density matrix and the energy). Under the gap assump-
tion (2.1) and the smoothness assumptions of [3, Theorem 4.2] recalled in Appendix 6.1 and 6.2, there exist
C ∈ R+ and N0

c ∈ N such that for Nc ≥ N0
c ,

‖(1−∆)1/2(γ0 − γ̃Nc
)‖S2(L2

#) ≤ CN−2
c ‖(1−∆)1/2(γ0 − γNc

)‖S2(L2
#), (5.1)

‖(1−∆)1/2(γ0 − ˜̃γNc
)‖S2(L2

#) ≤ CN−2
c ‖(1−∆)1/2(γ0 − γNc

)‖S2(L2
#), (5.2)

|ẼNc − IKS0 | ≤ CN−2
c |IKS

0,Nc
− IKS0 |, (5.3)

and

|˜̃ENc − IKS0 | ≤ CN−4
c |IKS

0,Nc
− IKS0 |. (5.4)

Remark 5.1. The difference of right-hand sides between (5.3) and (5.4) mainly comes from the property

that the orbitals ˜̃ΦNc
are orthonormal whereas the orbitals Φ̃Nc

are not. Indeed, a priori results lead to a
doubling of the convergence rate improvement between (5.2) and (5.4). But the lack of orthonormality of the
postprocessed orbitals Φ̃Nc

gives rise to an extra error in the energy, which explains the similar convergence
rate improvements between the density matrix error (5.1) and the energy error (5.3).
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5.2 Proof
In order to prove Theorem 5.1, we first provide in Section 5.2.1 a decomposition of γ0 based on spectral
projection in Lemma 5.1, and then, in Section 5.2.2, we provide four preliminary lemmas. In Section 5.2.3,
we decompose the difference γ0− γ̃Nc into six parts in Lemma 5.7, and we then estimate each of these terms
in the following lemmas 5.2, 5.8, 5.9, 5.10, and 5.11 in order to prove estimate (5.1). Lemma 5.12 then allows
to extend the proof to estimate (5.2). Finally, in Section 5.2.4, we provide a proof for estimates (5.3) and
(5.4).

5.2.1 Exact density matrix in terms of approximate density matrix

From [6, Lemma 4.2], whose proof is identical in the nonlinear case, relying on the gap assumption 2.1, there
exists a contour Γ and N0

c ∈ N, such that for all Nc ≥ N0
c , Γ contains the lowest N eigenvalues of both

operatorsH0 andHNc
and none of the higher ones. Taking such a contour Γ, writingH0 = HNc

+V⊥Nc
+WNc

,
and using the definition of spectral projection, the density matrix defined in (2.8) can be decomposed as

γ0 =
1

2πi

∮
Γ

(z −H0)
−1
dz =

1

2πi

∮
Γ

(
z −HNc

− V⊥Nc
−WNc

)−1
dz.

Then using the Dyson equation twice [10, 13] to decompose the operator
(
z −HNc

− V⊥Nc
−WNc

)−1, we
obtain

γ0 =
1

2πi

∮
Γ

(z −HNc)
−1
dz +

1

2πi

∮
Γ

(z −HNc)
−1

(V⊥Nc
+ WNc) (z −HNc)

−1
dz

+
1

2πi

∮
Γ

(z −H0)−1(V⊥Nc
+ WNc

) (z −HNc
)
−1

(V⊥Nc
+ WNc

) (z −HNc
)
−1
dz. (5.5)

Lemma 5.1 (Decomposition of γ0). There holds

γ0 = γNc + γ
(1)
Nc

+ γ
(2)
Nc

+ Q̃Nc
, (5.6)

where γ(1)
Nc

is defined in (4.9),

γ
(2)
Nc

=
1

2πi

∮
Γ

(z −HNc)
−1

WNc (z −HNc)
−1
dz, (5.7)

and
Q̃Nc

=
1

2πi

∮
Γ

(z −H0)−1(V⊥Nc
+ WNc) (z −HNc)

−1
(V⊥Nc

+ WNc) (z −HNc)
−1
dz. (5.8)

Proof. We start from (5.5). By definition of the spectral projection, there holds

γNc
=

1

2πi

∮
Γ

(z −HNc)
−1
dz,

i.e. the first term of the right hand side in (5.5). Following the proof of [6, Lemma 4.3], one can show that

γ
(1)
Nc

=
1

2πi

∮
Γ

(z −HNc
)
−1

V⊥Nc
(z −HNc

)
−1
.

From the definition of γ(2)
Nc

in (5.7), we get that γ(1)
Nc

+ γ
(2)
Nc

corresponds to the second term of the right hand
side in (5.5). Finally, the definition of Q̃Nc in (5.8) allows to conclude the proof of the lemma.
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5.2.2 Preliminary lemmas

We collect in a first lemma all results following immediately from [6], relying in particular on the a priori
estimates of Theorem 3.1.

Lemma 5.2 (see [6]). There exist C ∈ R+ and N0
c ∈ N, such that for Nc ≥ N0

c ,

‖(1−∆)1/2(γ0 − γNc)
2‖S2(L2

#) ≤ CN−2
c ‖(1−∆)1/2(γ0 − γNc)‖S2(L2

#), (5.9)

‖H[ρNc ](γNc
− γ0) + H0γ0 −HNc

γNc
‖S2(L2

#) ≤ CN−2
c ‖(1−∆)1/2(γ0 − γNc

)‖S2(L2
#). (5.10)

Proof. The proof of (5.9) is identical to [6, proof of Lemma 4.5], given the a priori estimate (3.8). The
bound (5.10) can be obtained exactly as in the proof of [6, Lemma 4.6] using in particular the a priori
estimate (3.10).

We now turn to preliminary results that are specific to the nonlinear case, and will be used to show that
the uncomputable terms (4.4) in the perturbative development are small. From [3, (3.19)], there holds for
the Coulomb multiplicative potential

∀s ∈ R, ∀ρ1, ρ2 ∈ Hs
#(Ω), ‖Vcoul(ρ1)− Vcoul(ρ2)‖Hs+2

#
≤ C‖ρ1 − ρ2‖Hs# , (5.11)

from which we deduce in particular with s = 0 using Sobolev embeddings that

‖Vcoul(ρ0)− Vcoul(ρNc
)‖L∞# + ‖∇ (Vcoul(ρ0)− Vcoul(ρNc

)) ‖L3
#
≤ C‖ρ0 − ρNc

‖L2
#
, (5.12)

which is in particular bounded by a constant independent of Nc. Moreover, under Assumptions 6.1 and 6.2,
Vlocal + Vcoul(ρNc

) + Vxc(ρNc
) ∈ H3/2+ε

# (Ω), for some ε > 0, therefore there exist C ∈ R+ and N0
c ∈ N such

that for Nc ≥ N0
c ,

‖Vlocal + Vcoul(ρNc
) + Vxc(ρNc

)‖L∞# + ‖∇ (Vlocal + Vcoul(ρNc
) + Vxc(ρNc

)) ‖L3
#
≤ C, (5.13)

and
‖Vxc(ρ0)− Vxc(ρNc)‖L∞# + ‖∇ (Vxc(ρ0)− Vxc(ρNc)) ‖L3

#
≤ C. (5.14)

The next lemma deals with the exchange-correlation potential.

Lemma 5.3. There exist C > 0 and N0
c ∈ N such that for Nc ≥ N0

c ,

‖Vxc(ρ0)− Vxc(ρNc)‖H−1
#
≤ C‖ρ0 − ρNc‖H−1

#
. (5.15)

Proof. Using a Taylor formula with integral remainder, there holds

‖Vxc(ρ0)− Vxc(ρNc)‖H−1
#

=

∥∥∥∥∫ 1

0

d2eLDA
xc

dρ2
(ρc + tρ0 + (1− t)ρNc) (ρ0 − ρNc)dt

∥∥∥∥
H−1

#

≤
∫ 1

0

∥∥∥∥d2eLDA
xc

dρ2
(ρc + tρ0 + (1− t)ρNc) (ρ0 − ρNc)

∥∥∥∥
H−1

#

dt. (5.16)

From [3, (4.25)] and the definition of the density (2.3), ρc + tρ0 + (1 − t)ρNc is uniformly bounded in
Hσ

#(Ω) for some σ > 3/2 uniformly in Nc and t for Nc ≥ N0
c and 0 ≤ t ≤ 1. As for all t ∈ [0, 1],

ρc + tρ0 + (1 − t)ρNc
is bounded away from zero uniformly in Nc, and from (6.3) and (6.4), the quantity

d2eLDA
xc

dρ2 (ρc + tρ0 + (1− t)ρNc) is also uniformly bounded in Hσ
#(Ω). Note that for σ > 3/2, there holds

∀f ∈ Hσ
#(Ω), ∀g ∈ H−1

# (Ω), fg ∈ H−1
# (Ω) and ‖fg‖H−1

#
≤ Cσ‖f‖Hσ#‖g‖H−1

#
, (5.17)
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for some constant Cσ ≥ 0 independent of f and g. Indeed,

‖fg‖H−1
#

= sup
w∈H1

#(Ω),w 6=0

〈fg, w〉H−1
# ,H1

#

‖w‖H1
#

≤ sup
w∈H1

#(Ω),w 6=0

‖g‖H−1
#
‖fw‖H1

#

‖w‖H1
#

.

Noting that Hσ
#(Ω) is compactly embedded in the space of continuous functions, and using Hölder inequality,

we obtain

‖fw‖2H1
#

= ‖fw‖2L2
#

+ ‖∇(fw)‖2L2
#

≤ ‖fw‖2L2
#

+ 2‖f(∇w)‖2L2
#

+ 2‖(∇f)w‖2L2
#

≤ Cσ
(
‖f‖2L∞# ‖w‖

2
L2

#
+ ‖f‖2L∞# ‖∇w‖

2
L2

#
+ ‖∇f‖2L3

#
‖w‖2L6

#

)
≤ Cσ

(
‖f‖2Hσ#‖w‖

2
L2

#
+ ‖f‖2Hσ#‖w‖

2
H1

#
+ ‖∇f‖2L3

#
‖w‖2L6

#

)
.

Finally, using Sobolev embeddings leads to

‖fw‖H1
#
≤ Cσ‖f‖Hσ#‖w‖H1

#
,

from which (5.17) follows. Combining (5.16) and (5.17) gives the result.

Lemma 5.4 (Estimation of (1−∆)−1/2WNc). There exist C ∈ R+ and N0
c ∈ N such that for Nc ≥ N0

c ,

‖(1−∆)−1/2WNc
γ0‖S2(L2

#) ≤ CN−2
c ‖(1−∆)1/2(γ0 − γNc

)‖S2(L2
#), (5.18)

and
‖(1−∆)−1/2WNc

γNc
‖S2(L2

#) ≤ CN−2
c ‖(1−∆)1/2(γ0 − γNc

)‖S2(L2
#). (5.19)

Proof. By definition of the Hilbert–Schmidt norm,

‖(1−∆)−1/2WNc
γ0‖2S2(L2

#) =

N∑
i=1

‖(1−∆)−1/2WNc
φ0
i ‖2L2

#

=

N∑
i=1

‖WNc
φ0
i ‖2H−1

#

.

As for all 1 ≤ i ≤ N , φ0
i ∈ H2

#(Ω), and for all Nc ∈ N∗, WNc ∈ H−1
# (Ω), we show using (5.17) that there

exists C ∈ R+ such that for all Nc ∈ N∗,

‖WNc
φ0
i ‖H−1

#
≤ C‖WNc

‖H−1
#
‖φ0

i ‖H2
#
.

Therefore, as
∑N
i=1 ‖φ0

i ‖2H2
#(Ω)

is bounded, there exists C ∈ R+ such that for all Nc ∈ N∗,

‖(1−∆)−1/2WNc
γ0‖2S2(L2

#) ≤ C‖WNc
‖2
H−1

#

N∑
i=1

‖φ0
i ‖2H2

#
≤ C‖WNc

‖2
H−1

#

.

From (5.11) with s = −1 and (5.15), we derive

‖(1−∆)−1/2WNc
γ0‖S2(L2

#) ≤ C‖ρ0 − ρNc
‖H−1

#
. (5.20)

Moreover, as shown in [3, (4.85)], there holds

‖ρ0 − ρNc
‖H−1

#
≤ C‖(1−∆)−1/2(Φ0 − Φ0

Nc
)‖L2

#
. (5.21)

Finally, using (3.7) in (5.21) together with (5.20) allows to prove (5.18).
Since for all 1 ≤ i ≤ N , φi,Nc

is bounded in H2
#(Ω) independently of Nc, the proof can be easily adapted

to show (5.19).
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Lemma 5.5 (Estimation of (1−∆)−1/2V⊥Nc
γNc). There exist C ∈ R+ and N0

c ∈ N such that for Nc ≥ N0
c ,

‖(1−∆)−1/2V⊥Nc
γNc‖S2(L2

#) ≤ C‖(1−∆)1/2(γ0 − γNc)‖S2(L2
#). (5.22)

Proof. The proof is similar to the proof of [6, Lemma 4.5]. First,

‖(1−∆)−1/2V⊥Nc
γNc
‖S2(L2

#) =
∥∥∥(1−∆)−1/2(H[ρNc ] −HNc

)γNc

∥∥∥
S2(L2

#)

=
∥∥∥(1−∆)−1/2

[
H[ρNc ](γNc

− γ0) + H0γ0 −HNc
γNc
−WNc

γ0

]∥∥∥
S2(L2

#)
.

The result follows by combining (5.10) and (5.18).

Lemma 5.6 (Estimation of ‖SNc − 1N‖F.). There exist C ∈ R+ and N0
c ∈ N such that for Nc ≥ N0

c ,

‖SNc
− 1N‖F ≤ CN−2

c ‖(1−∆)1/2(γ0 − γNc
)‖2S2(L2

#). (5.23)

Proof. Given the definition of SNc
in (4.7), noting that for all 1 ≤ i ≤ N , φ(1)

i,Nc
∈ X⊥Nc

, and for all 1 ≤ i, j ≤ N,
〈φi,Nc

|φj,Nc
〉 = δij , and using the Cauchy–Schwarz inequality, there holds

‖SNc − 1N‖2F =

N∑
i,j=1

|〈φ̃i,Nc |φ̃j,Nc〉 − δij |2

=

N∑
i,j=1

|〈φi,Nc |φj,Nc〉+ 〈φ(1)
i,Nc
|φ(1)
j,Nc
〉 − δij |2 (by orthogonality)

=

N∑
i,j=1

|〈φ(1)
i,Nc
|φ(1)
j,Nc
〉|2

≤
N∑

i,j=1

‖φ(1)
i,Nc
‖2L2

#
‖φ(1)

j,Nc
‖2L2

#

=

 N∑
j=1

‖φ(1)
j,Nc
‖2L2

#

2

.

Using definition (4.3), and noting that for all j = 1, . . . , N , the operator
(
− 1

2∆− λj,Nc

)−1 is diagonal and
commute with Π⊥Nc

, we obtain

‖SNc
− 1N‖F ≤

N∑
j=1

‖(−1

2
∆− λj,Nc

)−1Π⊥Nc
V⊥Nc

φj,Nc
‖2L2

#

≤‖Π⊥Nc
(1−∆)−1/2‖2 max

i=1,...,N
‖(1−∆)1/2(−1

2
∆− λi,Nc

)−1(1−∆)1/2‖2

×
N∑
j=1

‖(1−∆)−1/2V⊥Nc
φj,Nc

‖2L2
#
.

There exists N0
c ∈ N such that for Nc ≥ N0

c , the operator (1−∆)1/2(− 1
2∆−λi,Nc)

−1(1−∆)1/2 is bounded in
L(L2

#) for all i = 1, . . . , N independently of Nc. Moreover, there exist C ∈ R+ such that ‖Π⊥Nc
(1−∆)−1/2‖ ≤
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CN−1
c . Also,

∑N
j=1 ‖(1 − ∆)−1/2V⊥Nc

φj,Nc‖2L2
#

= ‖(1 − ∆)−1/2V⊥Nc
γNc‖2S2(L2

#)
. Hence, there exist C ∈ R+

and N0
c ∈ N such that for Nc ≥ N0

c ,

‖SNc − 1N‖F ≤CN−2
c ‖(1−∆)−1/2V⊥Nc

γNc‖2S2(L2
#)

≤CN−2
c ‖(1−∆)1/2(γ0 − γNc

)‖2S2(L2
#),

from (5.22), which concludes the proof of the lemma.

5.2.3 Proof of estimates (5.1) and (5.2)

Lemma 5.7. The density matrix difference γ0 − γ̃Nc
can be decomposed as

γ0 − γ̃Nc
= (γ0 − γNc

)2 + γNc
γ

(2)
Nc

+ γ
(2)
Nc
γNc

+ Q̃Nc
γNc

+ γNc
Q̃Nc

−
N∑
j=1

|φ(1)
j,Nc
〉〈φ(1)

j,Nc
|.

Proof. Let us first remark, using (5.6), and γ2
Nc

= γNc , that

γNc
γ0 = γNc

+ γNc
γ

(1)
Nc

+ γNc
γ

(2)
Nc

+ γNc
Q̃Nc

,

γ0γNc
= γNc

+ γ
(1)
Nc
γNc

+ γ
(2)
Nc
γNc

+ Q̃Nc
γNc

.

Moreover, since for all i, j = 1, 2, · · · , N , φi,Nc
is orthogonal to φ(1)

j,Nc
, one can show as in the proof of [6,

Lemma 4.4] that
γNc

γ
(1)
Nc

+ γ
(1)
Nc
γNc

= γ
(1)
Nc
.

Hence
γNcγ0 + γ0γNc = 2γNc + γ

(1)
Nc

+ γNcγ
(2)
Nc

+ γ
(2)
Nc
γNc + γNcQ̃Nc + Q̃NcγNc ,

and thus
(γ0 − γNc

)2 = γ0 − γNc
− γ(1)

Nc
− γNc

γ
(2)
Nc
− γ(2)

Nc
γNc
− Q̃Nc

γNc
− γNc

Q̃Nc
,

from which we deduce using (4.8) that

γ0 − γ̃Nc
= (γ0 − γNc

)2 + γNc
γ

(2)
Nc

+ γ
(2)
Nc
γNc

+ Q̃Nc
γNc

+ γNc
Q̃Nc

−
N∑
j=1

|φ(1)
j,Nc
〉〈φ(1)

j,Nc
|.

Lemma 5.8 (Estimation of (1 −∆)1/2Q̃Nc
γNc

and (1 −∆)1/2γNc
Q̃Nc

). There exist C ∈ R+ and N0
c ∈ N

such that for Nc ≥ N0
c ,

‖(1−∆)1/2Q̃NcγNc‖S2(L2
#) ≤ CN−2

c ‖(1−∆)1/2(γ0 − γNc)‖S2(L2
#), (5.25)

‖(1−∆)1/2γNc
Q̃Nc
‖S2(L2

#) ≤ CN−2
c ‖(1−∆)1/2(γ0 − γNc

)‖S2(L2
#). (5.26)

Proof. Using the definition of Q̃Nc given in (5.8), we have

(1−∆)1/2Q̃NcγNc =
1

2πi

∮
Γ

(1−∆)1/2(z−H0)−1(V⊥Nc
+WNc) (z −HNc)

−1
(V⊥Nc

+WNc) (z −HNc)
−1
γNcdz.

Therefore, using [6, (2.12)] twice, we show that there exists C ∈ R+ such that

‖(1−∆)1/2Q̃NcγNc‖S2(L2
#) ≤ C max

z∈Γ
‖(1−∆)1/2(z −H0)−1(1−∆)1/2‖

× ‖(1−∆)−1/2(V⊥Nc
+ WNc

)(1−∆)1/2‖

×max
z∈Γ
‖(1−∆)−1/2(z −HNc

)−1(V⊥Nc
+ WNc

)γNc
(z −HNc

)
−1 ‖S2(L2

#).
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First, maxz∈Γ ‖(1−∆)1/2(z−H0)−1(1−∆)1/2‖ is bounded, which is a classical result (see e.g. [4, Lemma 1]
for a proof). Second, there exists C ∈ R+ such that

‖(1−∆)−1/2(V⊥Nc
+ WNc)(1−∆)1/2‖ = ‖

[
(1−∆)−1/2(V⊥Nc

+ WNc)(1−∆)1/2
]∗
‖

= ‖(1−∆)1/2(V⊥Nc
+ WNc)(1−∆)−1/2‖

≤ C
(
‖(1−∆)1/2V⊥Nc

(1−∆)−1/2‖+ ‖WNc
‖L∞ + ‖∇WNc

‖L3

)
≤ C

(
‖(1−∆)1/2

(
Vlocal + Vcoul(ρNc

) + Vxc(ρNc
)
)
(1−∆)−1/2‖

+‖(1−∆)1/2Vnl(1−∆)−1/2‖+ ‖WNc
‖L∞ + ‖∇WNc

‖L3

)
≤ C

(
‖Vlocal + Vcoul(ρNc

) + Vxc(ρNc
)‖L∞#

+‖∇ (Vlocal + Vcoul(ρNc) + Vxc(ρNc)) ‖L3
#

+‖(1−∆)1/2Vnl(1−∆)−1/2‖

+‖WNc
‖L∞ + ‖∇WNc

‖L3

)
,

from [8, Lemma 17], which is bounded from (5.13), (5.12), (5.14), and the inequality ‖(1 − ∆)1/2Vnl(1 −
∆)−1/2‖ ≤

∑J
j=1 ‖ξj‖L2

#
‖ξj‖H1

#
. Thus, there exists C ∈ R+ such that

‖(1−∆)1/2Q̃Nc
γNc
‖S2(L2

#) ≤ C max
z∈Γ
‖(1−∆)−1/2(z −HNc

)−1(V⊥Nc
+ WNc

)γNc
(z −HNc

)
−1 ‖S2(L2

#).

Moreover, Ran(V⊥Nc
γNc

) ⊂ X⊥Nc
, and the Laplace operator and the projection Π⊥Nc

commute. Therefore,
noting that (z −HNc

)−1V⊥Nc
γNc

= (z + 1
2∆)−1V⊥Nc

γNc
, we obtain

‖(1−∆)1/2Q̃Nc
γNc
‖S2(L2

#) ≤ C
[
‖(1−∆)−1Π⊥Nc

‖max
z∈Γ
‖(1−∆)1/2(z +

1

2
∆)−1(1−∆)1/2‖

×max
z∈Γ
‖(1−∆)−1/2V⊥Nc

γNc
(z −HNc

)−1‖S2(L2
#)

+ ‖(1−∆)−1‖max
z∈Γ
‖(1−∆)1/2(z −HNc

)−1(1−∆)1/2‖

× ‖(1−∆)−1/2WNc
γNc

(z −HNc
)−1‖S2(L2

#)

]
.

As ‖(1−∆)−1‖ and maxz∈Γ ‖(1−∆)1/2(z+ 1
2∆)−1(1−∆)1/2‖ are bounded, noting that ‖(1−∆)−1Π⊥Nc

‖ ≤
CN−2

c , and maxz∈Γ ‖(1−∆)1/2(z −HNc
)−1(1−∆)1/2‖ is bounded independently of Nc, we can proceed as

in [6, Lemma 4.6] and show that there exist C ∈ R+ and N0
c ∈ N such that for Nc ≥ N0

c ,

‖(1−∆)1/2Q̃Nc
γNc
‖S2(L2

#) ≤ C
(
N−2

c max
z∈Γ
‖(1−∆)−1/2V⊥Nc

γNc
(z −HNc

)−1‖S2(L2
#)

+ max
z∈Γ
‖(1−∆)−1/2WNc

γNc
(z −HNc

)−1‖S2(L2
#)

)
≤ C

(
N−2

c ‖(1−∆)−1/2V⊥Nc
γNc
‖S2(L2

#) + ‖(1−∆)−1/2WNc
γNc
‖S2(L2

#)

)
.

The first estimate (5.25) is finally obtained by using (5.19) and (5.22). The proof for the estimate (5.26) is
similar to the proof of [6, Lemma 4.7], relying on (5.25).

Lemma 5.9 (Estimation of (1−∆)1/2γ
(2)
Nc
γNc

). There exist C ∈ R+ and N0
c ∈ N, such that for Nc ≥ N0

c ,

‖(1−∆)1/2γ
(2)
Nc
γNc‖S2(L2

#) ≤ CN−2
c ‖(1−∆)1/2(γ0 − γNc)‖S2(L2

#).
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Proof. First, by definition of γ(2)
Nc

in (5.7),

(1−∆)1/2γ
(2)
Nc
γNc =

1

2iπ

∮
Γ

(1−∆)1/2(z −HNc)
−1WNc(z −HNc)

−1γNcdz.

Hence, using that γNc and (z−HNc)
−1 commute, that maxz∈Γ ‖(1−∆)1/2(z−HNc)

−1(1−∆)1/2‖ is bounded,
we obtain that there exist C ∈ R+ and N0

c ∈ N such that for Nc ≥ N0
c ,

‖(1−∆)1/2γ
(2)
Nc
γNc
‖S2(L2

#) ≤ C max
z∈Γ
‖(1−∆)1/2(z −HNc

)−1(1−∆)1/2‖

×max
z∈Γ
‖(1−∆)−1/2WNc

γNc
(z −HNc

)−1‖S2(L2
#)

≤ C max
z∈Γ
‖(1−∆)−1/2WNc

γNc
(z −HNc

)−1‖S2(L2
#)

≤ C‖(1−∆)−1/2WNcγNc‖S2(L2
#)

≤ CN−2
c ‖(1−∆)1/2(γ0 − γNc

)‖S2(L2
#),

where we have used (5.19) for this last inequality. This concludes the proof of the lemma.

Lemma 5.10 (Estimation of (1−∆)1/2γNc
γ

(2)
Nc

). There exist C ∈ R+ and N0
c ∈ N, such that for Nc ≥ N0

c ,

‖(1−∆)1/2γNc
γ

(2)
Nc
‖S2(L2

#) ≤ CN−2
c ‖(1−∆)1/2(γ0 − γNc

)‖S2(L2
#).

Proof. Noting that γ2
Nc

= γNc
, and from [6, (2.10)] and [6, (2.12)], we obtain

‖(1−∆)1/2γNcγ
(2)
Nc
‖S2(L2

#) ≤ ‖(1−∆)1/2γNc‖S2(L2
#)‖γNcγ

(2)
Nc
‖S2(L2

#)

= ‖(1−∆)1/2γNc
‖S2(L2

#)‖γ
(2)
Nc
γNc
‖S2(L2

#),

since γNc
is an orthogonal projector of finite rank. Moreover, as the orbitals (φi,Nc

)i=1,··· ,N are bounded in
H1

#(Ω) independently of Nc, ‖(1−∆)1/2γNc‖S2(L2
#) is bounded. On top of that, using [6, (2.12)],

‖γ(2)
Nc
γNc
‖S2(L2

#) ≤ ‖(1−∆)−1/2‖‖(1−∆)1/2γ
(2)
Nc
γNc
‖S2(L2

#) ≤ ‖(1−∆)1/2γ
(2)
Nc
γNc
‖S2(L2

#).

Therefore, we can use the estimate of Lemma 5.9 to conclude.

Lemma 5.11 (Estimation of (1 −∆)1/2
∑N
j=1 |φ

(1)
j,Nc
〉〈φ(1)

j,Nc
|). There exist C ∈ R+ and N0

c ∈ N, such that
for Nc ≥ N0

c ,

‖(1−∆)1/2
N∑
j=1

|φ(1)
j,Nc
〉〈φ(1)

j,Nc
|‖S2(L2

#) ≤ CN−2
c ‖(1−∆)1/2(γ0 − γNc

)‖S2(L2
#).

Proof. Expanding ‖(1−∆)1/2
∑N
j=1 |φ

(1)
j,Nc
〉〈φ(1)

j,Nc
|‖2

S2(L2
#)
, and using the Cauchy–Schwarz inequality twice,
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we obtain

‖(1−∆)1/2
N∑
j=1

|φ(1)
j,Nc
〉〈φ(1)

j,Nc
|‖2S2(L2

#) =Tr

 N∑
i,j=1

|φ(1)
i,Nc
〉〈φ(1)

i,Nc
|(1−∆)|φ(1)

j,Nc
〉〈φ(1)

j,Nc
|


=

N∑
i,j=1

〈φ(1)
i,Nc
|(1−∆)|φ(1)

j,Nc
〉〈φ(1)

j,Nc
|φ(1)
i,Nc
〉

≤
N∑

i,j=1

‖(1−∆)1/2φ
(1)
i,Nc
‖L2

#
‖(1−∆)1/2φ

(1)
j,Nc
‖L2

#
‖φ(1)

i,Nc
‖L2

#
‖φ(1)

j,Nc
‖L2

#

≤

(
N∑
i=1

‖(1−∆)1/2φ
(1)
i,Nc
‖L2

#
‖φ(1)

i,Nc
‖L2

#

)2

.

Noting that for all j = 1, . . . , N , φ(1)
j,Nc
∈ X⊥Nc

, so that ‖φ(1)
j,Nc
‖L2

#
≤ CN−1

c ‖φ
(1)
j,Nc
‖H1

#
, with C = 2

√
2π
L , there

holds

‖(1−∆)1/2
N∑
j=1

|φ(1)
j,Nc
〉〈φ(1)

j,Nc
|‖S2(L2

#) ≤ CN−1
c

N∑
j=1

‖(1−∆)1/2φ
(1)
j,Nc
‖2L2

#

≤ CN−1
c

N∑
j=1

‖(1−∆)1/2(−1

2
∆− λj,Nc

)−1(1−∆)1/2‖2

× ‖(1−∆)−1/2V⊥Nc
φj,Nc‖2L2

#
.

Moreover, for all j = 1, . . . , N , (1 − ∆)1/2(− 1
2∆ − λj,Nc)

−1(1 − ∆)1/2 is a bounded operator. Then using
(5.22) and (3.9), we show that there exist C ∈ R+ and N0

c ∈ N such that for Nc ≥ N0
c ,

‖(1−∆)1/2
N∑
j=1

|φ(1)
j,Nc
〉〈φ(1)

j,Nc
|‖S2(L2

#) ≤ CN−1
c

N∑
j=1

‖(1−∆)−1/2V⊥Nc
φj,Nc

‖2L2
#

≤ CN−1
c ‖(1−∆)−1/2V⊥Nc

γNc‖2S2(L2
#)

≤ CN−1
c ‖(1−∆)1/2(γNc

− γ0)‖2S2(L2
#)

≤ CN−2
c ‖(1−∆)1/2(γNc

− γ0)‖S2(L2
#).

This concludes the proof.

Combining the estimations given in Lemmas 5.7, 5.8, 5.9, 5.10, and 5.11 in the density matrix difference
decomposition of Lemma 5.7, we easily obtain (5.1).

Lemma 5.12 (Estimation of (1 − ∆)1/2(γ̃Nc
− ˜̃γNc

)). There exist C ∈ R+ and N0
c ∈ N, such that for

Nc ≥ N0
c ,

‖(1−∆)1/2(γ̃Nc
− ˜̃γNc

)‖S2(L2
#) ≤ CN−2

c ‖(1−∆)1/2(γ0 − γNc
)‖S2(L2

#).
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Proof. First,

γ̃Nc − ˜̃γNc =

N∑
i=1

|φ̃i,Nc
〉〈φ̃i,Nc

| −
N∑
i=1

|˜̃φi,Nc
〉〈˜̃φi,Nc

|

=

N∑
i=1

|φ̃i,Nc
〉〈φ̃i,Nc

| −
N∑
i=1

|SNc

−1/2φ̃i,Nc
〉〈SNc

−1/2φ̃i,Nc
|

=

N∑
i=1

|φ̃i,Nc
〉〈φ̃i,Nc

| −
N∑
i=1

N∑
k,l=1

(SNc

−1/2)i,k|φ̃k,Nc
〉〈φ̃l,Nc

|(SNc

−1/2)l,i

=

N∑
i=1

|φ̃i,Nc
〉〈φ̃i,Nc

| −
N∑

k,l=1

(
N∑
i=1

(SNc

−1/2)i,k(SNc

−1/2)l,i

)
|φ̃k,Nc

〉〈φ̃l,Nc
|

=

N∑
i=1

|φ̃i,Nc〉〈φ̃i,Nc | −
N∑

k,l=1

(SNc

−1)k,l|φ̃k,Nc〉〈φ̃l,Nc |

=
N∑

k,l=1

(δk,l − (SNc

−1)k,l)|φ̃k,Nc
〉〈φ̃l,Nc

|.

Taking the Hilbert–Schmidt norm, we obtain

‖(1−∆)1/2(γ̃Nc
− ˜̃γNc

)‖2S2(L2
#) =Tr

(
(γ̃Nc

− ˜̃γNc
)(1−∆)(γ̃Nc

− ˜̃γNc
)
)

=

N∑
k,l=1

N∑
m,n=1

(δk,l − (SNc

−1)k,l)(δm,n − (SNc

−1)m,n)

× 〈φ̃l,Nc
|(1−∆)|φ̃m,Nc

〉〈φ̃n,Nc
|φ̃k,Nc

〉

=

N∑
k,l=1

N∑
m,n=1

(δk,l − (SNc

−1)k,l)(δm,n − (SNc

−1)m,n)

×
(
〈φl,Nc

|(1−∆)|φm,Nc
〉+ 〈φ(1)

l,Nc
|(1−∆)|φ(1)

m,Nc
〉
)(

δn,k + 〈φ(1)
n,Nc
|φ(1)
l,Nc
〉
)
,

as for all i = 1, . . . , N , φi,Nc ∈ XNc and φ
(1)
i,Nc
∈ X⊥Nc

, and the Laplace operator commutes with ΠNc and

Π⊥Nc
. Using the Cauchy–Schwarz inequality and noting that for i = 1, . . . , N , φi,Nc

and φ(1)
i,Nc

are uniformly
bounded in H1

#-norm independently of Nc, there exists C ∈ R+ such that

‖(1−∆)1/2(γ̃Nc − ˜̃γNc)‖2S2(L2
#) ≤ C

 N∑
k,l=1

|δk,l − (SNc

−1)k,l|

2

≤ C‖1N − (SNc

−1)‖2F .

The matrix SNc
being a perturbation of 1N , there holds at first order 1N − SNc

−1 = SNc
− 1N + h.o.t,

h.o.t. standing for higher order terms. Using (5.23), we can therefore conclude in particular that there exist
C ∈ R+ and N0

c ∈ N such that for Nc ≥ N0
c ,

‖(1−∆)1/2(γ̃Nc − ˜̃γNc)‖S2(L2
#) ≤ CN−2

c ‖(1−∆)1/2(γ0 − γNc)‖S2(L2
#).

Combining (5.1) with the estimation given in Lemma 5.12 allows to prove (5.2).
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5.2.4 Proof of estimates (5.3) and (5.4)

We start by proving (5.4). Let us define
˜̃
Φ0
Nc
∈MΦ0

by

min
U∈U(N)

‖U ˜̃ΦNc
− Φ0‖L2

#
= ‖

˜̃
Φ0
Nc
− Φ0‖L2

#
.

Since
˜̃
Φ0
Nc
∈MΦ0

, we can combine [3, Lemma 4.7] and [3, (4.47)], and obtain that there exists C ∈ R+ and
N0

c ∈ N such that for all Nc ≥ N0
c ,

EKS
0,Ω(

˜̃
Φ0
Nc

)− EKS
0,Ω(Φ0) ≤ C‖(1−∆)1/2(

˜̃
Φ0
Nc
− Φ0)‖2L2

#

≤ C‖(1−∆)1/2(˜̃γNc
− γ0)‖2S2(L2

#),

from (3.5), and noting that the density matrix corresponding to
˜̃
Φ0
Nc

is ˜̃γNc
. Moreover, from the invariance

property (2.5), there holds EKS
0,Ω(

˜̃
Φ0
Nc

) = EKS
0,Ω(

˜̃
ΦNc

). Using (5.2) and (3.6), we obtain (5.4).

Let us now prove (5.3). The same reasoning cannot be applied as the perturbed eigenvectors Φ̃Nc
do not

satisfy the constraint, i.e. Φ̃Nc /∈M. A second-order Taylor expansion on the energy gives

EKS
0,Ω(Φ̃Nc

)− EKS
0,Ω(Φ0) = 〈(EKS

0,Ω)′(Φ0), Φ̃Nc
− Φ0〉H−1

# ,H1
#

+
1

2
(EKS

0,Ω)′′(Φ0)(Φ̃Nc
− Φ0, Φ̃Nc

− Φ0) + h.o.t.

Noting that such a development is also valid for the energy difference EKS
0,Ω(

˜̃
ΦNc

)− EKS
0,Ω(Φ0), we obtain, still

up to second order

EKS
0,Ω(Φ̃Nc)− EKS

0,Ω(Φ0) = 〈(EKS
0,Ω)′(Φ0),

˜̃
ΦNc − Φ0〉H−1

# ,H1
#

+
1

2
(EKS

0,Ω)′′(Φ0)(
˜̃
ΦNc − Φ0,

˜̃
ΦNc − Φ0)

+ 〈(EKS
0,Ω)′(Φ0), Φ̃Nc

− ˜̃ΦNc
〉H−1

# ,H1
#

+
1

2
(EKS

0,Ω)′′(Φ0)(Φ̃Nc −
˜̃
ΦNc , Φ̃Nc +

˜̃
ΦNc − 2Φ0) + h.o.t.

=EKS
0,Ω(

˜̃
ΦNc

)− EKS
0,Ω(Φ0) + 〈(EKS

0,Ω)′(Φ0), Φ̃Nc
− ˜̃ΦNc

〉H−1
# ,H1

#

+
1

2
(EKS

0,Ω)′′(Φ0)(Φ̃Nc
− ˜̃ΦNc

, Φ̃Nc
+
˜̃
ΦNc
− 2Φ0) + h.o.t.

From the continuity of (EKS
0,Ω)′′(Φ0) [3, (4.18), (4.47)]), and since (EKS

0,Ω)′(Φ0) is bounded in H−1
# -norm [3,

Lemma 4.7], there exist C ∈ R+ and N0
c ∈ N such that for Nc ≥ N0

c ,

|EKS
0,Ω(Φ̃Nc

)− EKS
0,Ω(

˜̃
ΦNc

)| ≤ C‖(1−∆)1/2(Φ̃Nc
− ˜̃ΦNc

)‖L2
#

+ C‖(1−∆)1/2(Φ̃Nc
− ˜̃ΦNc

)‖2L2
#
. (5.31)

Moreover, developing the expression Φ̃Nc
− ˜̃ΦNc

, we obtain

‖(1−∆)1/2(Φ̃Nc −
˜̃
ΦNc)‖L2

#
≤ ‖1N − SNc

−1/2‖F‖(1−∆)1/2Φ̃Nc‖L2
#
. (5.32)

Since there exists N0
c ∈ N such that for Nc ≥ N0

c , ‖(1−∆)1/2Φ̃Nc
‖L2

#
is bounded independently of Nc, there

holds at first order

‖1N − SNc

−1/2‖F =
1

2
‖1N − SNc

‖F + h.o.t.

≤ CN−2
c ‖(1−∆)1/2(γNc

− γ0)‖2S2(L2
#)

≤ CN−2
c |EKS

0,Ω(ΦNc
)− EKS

0,Ω(Φ0)|, (5.33)

where C ∈ R+, from (5.23) and (3.6). Combining (5.31), (5.32) and (5.33), we obtain (5.3).
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6 Appendix

6.1 Smoothness assumptions
The existence of minimizers of problem (2.4) as well as a priori error estimates on the convergence of
the solutions to the discretized problem (3.1) to those of the continuous problem (2.4) hold under several
assumptions described in [3]. We recall here the main assumptions, under which the proofs of Theorem 5.1
will hold.

Assumption 6.1 (Smoothness assumptions). There exists m > 3 such that the local potential Vlocal satisfies

∃C ≥ 0 s.t. ∀k ∈ R∗, |(V̂local)k| ≤ C|k|−m,

and the functions defining the non-local potential Vnl are such that

∀1 ≤ j ≤ J, ∀ε > 0, ξj ∈ Hm−3/2−ε
# (Ω).

Moreover, there holds for the exchange-correlation function

the function ρ 7→ eLDA
xc (ρ) belongs to C1([0,+∞)) ∩ C3((0,+∞)), (6.1)

eLDA
xc (0) = 0,

deLDA
xc

dρ
(0) = 0, (6.2)

and there exists 0 < α < 1 and C ∈ R+ such that

∀ρ ∈ R+\{0},
∣∣∣∣d2eLDA

xc

dρ2
(ρ)

∣∣∣∣+

∣∣∣∣ρd3eLDA
xc

dρ3
(ρ)

∣∣∣∣ ≤ C(1 + ρα−1). (6.3)

Finally, there holds for the nonlinear core correction

∀ε > 0, ρc ∈ Hm−3/2−ε
# (Ω).

Note that for example, Troullier-Martins pseudopotentials [14] have Fourier coefficients (V̂local)k decreas-
ing as |k|−m with m = 5. The assumptions (6.1), (6.2) and (6.3) are satisfied by the Xα exchange-correlation
functional with α = 1/3 (eXα

xc (ρ) = −CXρ4/3, where CX > 0 is a given constant). The exact exchange-
correlation functional also verifies these assumptions [9].

The a priori results of [3] require some additional assumptions on the exchange-correlation function eLDA
xc ,

that we detail below.

Assumption 6.2 (Extra-regularity of the exchange-correlation). There exists m > 3 such that

eLDA
xc ∈ Cnm,αm((0,+∞)) where

∣∣∣∣∣nm = [m] + 1 and αm = m− [m] + 1/2 if 0 ≤ m− [m] ≤ 1/2,

nm = [m] + 2 and αm = m− [m]− 1/2 if 1/2 < m− [m] ≤ 1,

(where [m] denotes the integer part of m) and

eLDA
xc ∈ Cnm,αm([0,+∞)) or ρc + ρ0 > 0 in R3. (6.4)

6.2 Additional proofs
Proof of Lemma 3.1. The proof of (3.4) is identical to the proof of [6, (2.24)], where the condition that for all
v ∈ Span(φ0

1, . . . , φ
0
N )\{0}, ‖γΨ0v‖L2

#
6= 0, guarantees that the overlap matrix with entries (〈ψ0

i , φ
0
j 〉)Ni,j=1

is invertible (see [3, Lemma 4.3]). In order to show (3.5), let us recall that the positive operator |H0 − εF |
defined by the functional calculus is |H0 − εF | = −γ0(H0 − εF )γ0 + (1− γ0)(H0 − εF )(1− γ0), where γ0 is
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the exact density matrix defined in (2.8). It is known (see e.g. [4]) that, under Assumption 2.1, there exist
0 < c ≤ C <∞ such that

c(1−∆) ≤ |H0 − εF| ≤ C(1−∆).

Moreover, as is classical (see e.g. [4, Lemma 1] for a proof) there exists C ∈ R+ such that

‖|H0 − εF |1/2(1−∆)−1/2‖ ≤ C and ‖(1−∆)1/2|H0 − εF |−1/2‖ ≤ C. (6.5)

To finish the proof, we demonstrate the following lemma. For simplicity, we denote by A = |H0 − εF | and
µi = |λ0

i − εF | for i ≥ 1.

Lemma 6.1. Let Ψ0 = (ψ0
1 , . . . , ψ

0
N ) ∈ MΦ0

with corresponding density matrix γΨ0 =
∑N
i=1 |ψ0

i 〉〈ψ0
i |,

satisfying for all v ∈ Span(φ0
1, . . . , φ

0
N )\{0}, ‖γΨ0v‖L2

#
6= 0. There holds

‖A1/2(Ψ0 − Φ0)‖2L2
#
≤
(

1 +N
maxk=1,...,N µk

mini∈N∗ µi

)
‖A1/2(γΨ0 − γ0)‖2S2(L2

#), (6.6)

and
‖A1/2(γΨ0 − γ0)‖2S2(L2

#) ≤
(

1 + 2
maxk=1,...,N µk

mini∈N∗ µi

)
‖A1/2(Ψ0 − Φ0)‖2L2

#
. (6.7)

Proof. On the one hand, using that the (φ0
i )i=1,...,N are eigenvectors of the operator A with eigenvalues µi,

and that (φ0
i )i=1,...,N and (ψ0

i )i=1,...,N are orthonormal, we obtain

‖A1/2(Ψ0 − Φ0)‖2L2
#

=

N∑
i=1

〈ψ0
i |Aψ0

i 〉+

N∑
i=1

〈φ0
i |Aφ0

i 〉 − 2

N∑
i=1

〈φ0
i |Aψ0

i 〉

=

N∑
i=1

〈ψ0
i |Aψ0

i 〉+

N∑
i=1

µi〈φ0
i |φ0

i 〉 − 2

N∑
i=1

µi〈φ0
i |ψ0

i 〉

=

N∑
i=1

〈ψ0
i |Aψ0

i 〉 −
N∑
i=1

µi + 2

N∑
i=1

µi
(
1− 〈φ0

i |ψ0
i 〉
)

=

N∑
i=1

〈ψ0
i |Aψ0

i 〉 −
N∑
i=1

µi +

N∑
i=1

µi‖φ0
i − ψ0

i ‖2L2
#
.

On the other hand, by cyclicity of the trace, noting that A is a self-adjoint operator, then using that 1−γΨ0

is an orthogonal projector, and that (1− γΨ0)ψ0
i = 0 for i = 1, . . . , N , we obtain

‖A1/2(γΨ0 − γ0)‖2S2(L2
#) = Tr (γΨ0AγΨ0) + Tr (γ0Aγ0)− 2Tr (γ0AγΨ0)

=

N∑
i=1

〈ψ0
i |Aψ0

i 〉+

N∑
i=1

〈φ0
i |Aφ0

i 〉 − 2

N∑
i=1

〈φ0
i |AγΨ0φ0

i 〉

=

N∑
i=1

〈ψ0
i |Aψ0

i 〉+

N∑
i=1

µi〈φ0
i |φ0

i 〉 − 2

N∑
i=1

µi〈φ0
i |γΨ0φ0

i 〉

=

N∑
i=1

〈ψ0
i |Aψ0

i 〉 −
N∑
i=1

µi + 2

N∑
i=1

µi〈φ0
i |(1− γΨ0)φ0

i 〉

=

N∑
i=1

〈ψ0
i |Aψ0

i 〉 −
N∑
i=1

µi + 2

N∑
i=1

µi‖(1− γΨ0)φ0
i ‖2L2

#

=

N∑
i=1

〈ψ0
i |Aψ0

i 〉 −
N∑
i=1

µi + 2

N∑
i=1

µi‖(1− γΨ0)(φ0
i − ψ0

i )‖2L2
#
.
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Therefore, noting again that γΨ0 and 1− γΨ0 are orthogonal projectors,

‖A1/2(Ψ0 − Φ0)‖2L2
#
− ‖A1/2(γΨ0 − γ0)‖2S2(L2

#) =

N∑
i=1

µi‖φ0
i − ψ0

i ‖2L2
#

− 2

N∑
i=1

µi‖(1− γΨ0)(φ0
i − ψ0

i )‖2L2
#

(6.8)

≤
N∑
i=1

µi‖φ0
i − ψ0

i ‖2L2
#
−

N∑
i=1

µi‖(1− γΨ0)(φ0
i − ψ0

i )‖2L2
#

=

N∑
i=1

µi‖γΨ0(φ0
i − ψ0

i )‖2L2
#

≤ max
k=1,...,N

µk

N∑
i=1

‖γΨ0(φ0
i − ψ0

i )‖2L2
#

= max
k=1,...,N

µk

N∑
i,j=1

〈φ0
i − ψ0

i |ψ0
j 〉〈ψ0

j |φ0
i − ψ0

i 〉.

From [3, Lemma 4.3], the overlap matrix with entries (〈ψ0
i |φ0

j 〉)i,j=1,...,N is symmetric, hence for i, j =

1, . . . , N, i 6= j, noting that (ψ0
i )i=1,...,N and (φ0

i )i=1,...,N are orthonormal,

〈ψ0
j |φ0

i − ψ0
i 〉 = 〈ψ0

j |φ0
i 〉 = 〈ψ0

i |φ0
j 〉 =

1

2
(〈ψ0

j |φ0
i 〉+ 〈ψ0

i |φ0
j 〉) =

1

2
〈ψ0
j − φ0

j |φ0
i − ψ0

i 〉.

Since for i = 1, . . . , N, 〈ψ0
i |φ0

i − ψ0
i 〉 = − 1

2‖φ
0
i − ψ0

i ‖L2
#
, we obtain that for any i, j = 1, . . . , N,

〈ψ0
j |φ0

i − ψ0
i 〉 =

1

2
〈ψ0
j − φ0

j |φ0
i − ψ0

i 〉.

Hence,

‖A1/2(Ψ0 − Φ0)‖2L2
#
− ‖A1/2(γΨ0 − γ0)‖2S2(L2

#) ≤
1

4
max

k=1,...,N
µk

N∑
i,j=1

‖ψ0
i − φ0

i ‖2L2
#
‖ψ0

j − φ0
j‖2L2

#

=
1

4
max

k=1,...,N
µk

(
N∑
i=1

‖ψ0
i − φ0

i ‖2L2
#

)2

=
1

4
max

k=1,...,N
µk ‖Ψ0 − Φ0‖4L2

#

≤ 1

4
max

k=1,...,N
µk ‖γΨ0 − γ0‖4S2(L2

#),

where we have used (3.4) for this last line. Finally, noting that the lowest eigenvalue of A is mini∈N∗ µi > 0,
there holds

‖γΨ0 − γ0‖2S2(L2
#) ≤

1

mini∈N∗ µi
‖A1/2(γΨ0 − γ0)‖2S2(L2

#).

The estimation (6.6) is obtained by bounding the density matrix error ‖γΨ0 − γ0‖2S2(L2
#)

by 4N . Let us now
prove (6.7). Starting from (6.8), using that 1− γΨ0 is an orthogonal projector, hence of operator norm less
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than 1, and noting that mini∈N∗ µi > 0 is the lowest eigenvalue of A, we obtain

‖A1/2(γΨ0 − γ0)‖2S2(L2
#) − ‖A

1/2(Ψ0 − Φ0)‖2L2
#

= 2

N∑
i=1

µi‖(1− γΨ0)(φ0
i − ψ0

i )‖2L2
#
−

N∑
i=1

µi‖φ0
i − ψ0

i ‖2L2
#

≤ 2

N∑
i=1

µi‖(1− γΨ0)(φ0
i − ψ0

i )‖2L2
#

≤ 2 max
k=1,...,N

µk

N∑
i=1

‖φ0
i − ψ0

i ‖2L2
#

= 2 max
k=1,...,N

µk ‖Ψ0 − Φ0‖2L2
#

≤ 2
maxk=1,...,N µk

mini∈N∗ µi
‖A1/2(Ψ0 − Φ0)‖2L2

#
,

which proves (6.7).

This lemma shows that there exist c, C > 0 such that

c‖|H0 − εF |1/2(Ψ0 − Φ0)‖L2
#
≤ ‖|H0 − εF |1/2(γ0

Ψ − γ0)‖S2(L2
#) ≤ C‖|H0 − εF |1/2(Ψ0 − Φ0)‖L2

#
.

Combining this with (6.5) finishes the proof of Lemma 3.1.

Remark 6.1. Lemma 6.1 can more generally be shown to hold for any elliptic self-adjoint positive definite
operator A with compact resolvent. Moreover, if Tr (γΨ0AγΨ0) ≥ Tr (γ0Aγ0), which is satisfied if γΨ0 is the
solution of a variational approximation of the linear eigenvalue problem with operator A, we can obtain in
this case the improved bound

‖A1/2(γΨ0 − γ0)‖2S2(L2
#) = Tr (γΨ0AγΨ0)− Tr (γ0Aγ0) + 2

N∑
i=1

µi‖(1− γΨ0)(φ0
i − ψ0

i )‖2L2
#

≤ 2 (Tr (γΨ0AγΨ0)− Tr (γ0Aγ0)) + 2

N∑
i=1

µi‖φ0
i − ψ0

i ‖2L2
#

= 2‖A1/2(Ψ0 − Φ0)‖2L2
#
.

Proof of Theorem 3.1. First, Equation (3.6) is obtained by combining [3, (4.27)] with (3.5). To show (3.7),
we start from [3, (4.83), α > 0] which reads

‖Φ0
Nc
− Φ0‖L2

#
≤C
(
N−1

c ‖Φ0
Nc
− Φ0‖H1

#
+ ‖Φ0

Nc
− Φ0‖2L2

#
+ ‖Φ0

Nc
− Φ0‖1+α

L2
#

+ ‖Φ0
Nc
− Φ0‖3/2

L2
#
‖Φ0

Nc
− Φ0‖3/2

H1
#

+ ‖Λ0
Nc
− Λ0‖F‖Φ0

Nc
− Φ0‖L2

#

)
.

Noting that ‖Λ0
Nc
−Λ0‖F, ‖Φ0

Nc
−Φ0‖H1

#
and ‖Φ0

Nc
−Φ0‖L2

#
converge to zero when Nc → +∞, the last four

terms in the right-hand side are of higher order, which leads to

‖Φ0
Nc
− Φ0‖L2

#
≤ CN−1

c ‖Φ0
Nc
− Φ0‖H1

#
.

Then, from [3, (4.89), r = −1] we obtain

‖Φ0
Nc
− Φ0‖H−1

#
≤C
(
‖Φ0

Nc
− Φ0‖2L2

#
+N−2

c ‖Φ0
Nc
− Φ0‖H1

#

+ ‖Φ0
Nc
− Φ0‖H−1

#
‖Φ0

Nc
− Φ0‖H2

#
+ ‖Λ0

Nc
− Λ0‖F‖Φ0

Nc
− Φ0‖H−1

#

)
.
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Noting that ‖Λ0
Nc
− Λ0‖F and ‖Φ0

Nc
− Φ0‖H2

#
converge to zero when Nc → +∞, the last two terms in the

right-hand side are of higher order, from which we deduce

‖Φ0
Nc
− Φ0‖H−1

#
≤ CN−2

c ‖Φ0
Nc
− Φ0‖H1

#
.

Combining this last estimate with (3.5) leads to (3.7).
Equation (3.8) comes from [3, (4.28) with s = 0] and (3.4). Equation (3.9) is derived combining [3, (4.28)

with s = 1] and (3.5). Finally, from [3, (4.86) with r = −1], (3.5) and (3.7), we obtain (3.10).
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