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Abstract In this paper, we present a model describing the dynamics of a population of ice floes with
arbitrary shapes and sizes, which are exposed to atmospheric and oceanic skin drag. The granular model
presented is based on simplified momentum equations for ice floe motion between collisions and on the
resolution of linear complementarity problems to deal with ice floe collisions. Between collisions, the
motion of an individual ice floe satisfies the linear and angular momentum conservation equations, with
classical formula applied to account for atmospheric and oceanic skin drag. To deal with collisions, before
they lead to interpenetration, we included a linear complementarity problem based on the Signorini condi-
tion and Coulombs law. The nature of the contact is described through a constant coefficient of friction l,
as well as a coefficient of restitution 0 � e � 1ð Þ describing the loss of kinetic energy during the collision. In
the present version of our model, this coefficient is fixed. The model was validated using data obtained
from the motion of interacting artificial wood floes in a test basin. The results of simulations comprising few
hundreds of ice floes of various shapes and sizes, exposed to different forcing scenarios, and under different
configurations, are also discussed. They show that the progressive clustering of ice floes as the result of
kinetic energy dissipation during collisions is well captured, and suggest a collisional regimes of floe disper-
sion at small scales, different from a large-scale regime essentially driven by wind forcing.

1. Introduction

When considering large scales (>10 km2) and large sea ice concentrations ð> 80%Þ, it is reasonable to use a
continuum mechanics description of sea ice [e.g., Feltham, 2008], as long as the sea ice rheology used is
appropriate [Girard et al., 2011]. Such continuous description facilitates coupling with ocean and atmos-
pheric models. In contrast, when considering small scales (’ 10 km2 or less) and/or regions with a lower sea
ice concentration, such as the marginal ice zone (MIZ), the discontinuous nature of the ice cover cannot be
ignored when considering sea ice mechanics and kinematics. These scales and conditions are important for
industrial, shipping, and operational forecasting purposes. Indeed, the decline of Arctic sea ice cover
[Stroeve et al., 2012b] had led to a new scramble for territory and resources. If sea ice conditions become
less hazardous, some shipping routes may become more negotiable. Moreover, the Arctic is one of the few
regions in the world where the hydrocarbon resources are virtually untouched. The decline in sea ice may
make it less hazardous to exploit these resources. In this context, improving the accuracy of mechanical
models for sea ice is essential, from the aspect of ice/offshore-structure interactions to the aspect of ship-
ping route management and/or operational forecasting. In these conditions, a description in terms of an
assembly of individual sea ice floes in mechanical interaction should be favored for an accurate description
of the fine-scale structure of sea ice drift and internal forces. The numerical cost of these modeling
approaches and the challenges posed by the modeling of floe-floe interactions (collisions) or how they can
be combined with atmospheric as well as oceanic continuous models has resulted in them being much less
developed so far than continuum mechanic models. The first attempts were proposed by Hopkins [1996]
and Hopkins et al. [2004], and interest was recently renewed by Herman [2011] and Wilchinsky et al. [2010].
This type of method has also been used at very small scales (<100 m2) to simulate the formation of ice
ridges [Hopkins, 1998], or ice/structure interactions [e.g., Paavilainen et al., 2011]. However, these granular
sea ice models consider simplified floe geometries and are based on a molecular dynamics scheme [Tsai
and McNamara, 2011]. Thus, these models estimate floe-floe contact forces based on an interpenetration
scheme (either linear or Hertzian) which represents a gross approximation if it is applied to a broad range of
floe sizes and complex floe geometries. For example, in Wang and Derradji-Aouat [2010], ice floes are
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squares of the same size; in Metrikin et al. [2013], ice floes are quadrangles of different sizes; in Herman
[2013], ice floes are disks of different sizes; while in Hopkins et al. [2004], the model pack was constructed
from a Delaunay triangulation. In this last case, as the total surface is initially paved with polygons, the intro-
duction of cohesive forces between the discrete elements allows sea ice fracturing and fragmentation to be
described. Hence, the discrete-element method is used as a mathematical representation of the ice pack,
and floes of various shapes and sizes can be represented as aggregations of discrete polygonal elements
[Hopkins et al., 2004].

Regarding the description of floe/floe collisions, in Herman [2013], the normal force at contact is the sum of
a Hertzian contact force and a damping force. In Hertzian mechanics, the normal force is null when the dis-
tance d between the edges of the neighboring floes is positive, and scales as jdj3=2 when d � 0 (interpene-
tration case). Similarly, the tangential force is the sum of a shear force and a damping force. The Hertzian
contact model is suitable for systems consisting of disks or spheres, but is not appropriate for arbitrary con-
tact geometries. Wang and Derradji-Aouat [2010] presented a model based on a penalty method and con-
sidered contact between bodies as spring and damper systems. The normal force is equal to zero when
d > 0, and increases monotonically as interpenetration increases d � 0ð Þ. Typically, the normal force is
modeled as a linear spring force 2Kd, where K is the spring constant as in the classical molecular dynamics
method. Although successfully used to simulate granular flows with many contacts, this method introduces
artificial stiffness or heuristic parameters.

The approach we present here is different: we consider the dynamics of assemblies of individual ice floes of
any shape and/or size; instead of molecular dynamics, it is based on an event-driven algorithm and particu-
lar focus is placed on collisions between floes, while avoiding interpenetration.

Between collisions, the motion of individual floes satisfies the linear and angular momentum conservation
equations, with classical formulations for the Coriolis effect as well as atmospheric and oceanic skin drags. To
detect future collisions, bounding volume hierarchy algorithms were adapted to our framework, with disks
approximating the boundary shapes for the ice floe. To deal with collisions before they lead to interpenetra-
tion, a linear complementary problem was written based on the Signorini condition and Coulombs law for fric-
tional contact. In this framework, the normal and tangential impulses are the unknowns, rather than the
contact forces as would be the case in molecular dynamics. The nature of the contacts was described through
a constant coefficient of friction and a coefficient of restitution describing the loss of kinetic energy during
the collision due to damage to and fracturing of the floes in the vicinity of the zone of contact. Each individual
floe was meshed with finite elements, allowing a precise description of any floe geometry and of collision sce-
narios. This precise management of the contacts also minimizes the numerical dispersion and diffusion during
simulations. It is worth mentioning here that, at its present stage, our model does not consider ice rheology:
floes are purely rigid bodies; that is, do not deform either elastically or inelastically, and kinetic energy dissipa-
tion during collisions was described using a purely an empirical parameter.

This paper is organized as follows: section 2 presents our model in detail. First, the motion of a single ice
floe is described, then the geometry discretization, followed by the collision detection between ice floes
and, finally, collision processing. Section 3 presents how the model was validated using algorithmic, numeri-
cal, and experimental data. Section 4 presents the simulations of ice floes drifting across a channel, with var-
ious values for the restitution coefficient and the friction coefficient as well as ice floes drifting under
varying wind and current in an open ocean. Finally, section 5 concludes the paper.

2. Model

We considered an ensemble of n polygonal ice floes X1; . . . ;Xnf g, with, for all i 2 f1; . . . ; ng, masses Mi,
centers of mass Gi, and m contact points p1; . . . ; pmf g, with their orthonormal frame:

Rp1 5 p1; T1;N1ð Þ; . . . ;Rpm 5 pm; Tm;Nmð Þ
� �

where, for all j 2 f1; . . . ;mg; Nj is directed outward, normal to the surface and Tj represents the vector tan-
gential to the contact (see Figure 1).

Movement of an ice floe is determined by surface forces: the Coriolis effect, atmospheric and oceanic skin
drags, and floe/floe interaction forces. This model has two goals:
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1. To describe the motion of individual ice floes between
collisions.

2. To describe floe/floe interactions due to collisions.

The present model treats ice floes as rigid bodies with
masses. In our model, the mass M is a linear function of
the surface S (m2) of the ice floe and its thickness h (m) (in
the version of the model presented here, h has been set
constant over each ice floe). Thus, M5qSh, where q is the
ice’s density (kg=m3) (see section 2.3.1).

2.1. External Forces
The dominating forces acting on the surfaces of an ice floe
are the result of atmospheric and oceanic skin drags. Our
model is built as a sea-ice only model that is not coupled
dynamically or thermodynamically to the ocean. We wrote
these atmospheric and oceanic skin drags per unit area sa

and sw, respectively, on a classical quadratic form [McBean,
1986; McPhee, 1986].

sa5qaCajjuajjua

sw5qw Cw jjuw2Vjj uw2Vð Þ

where ua; uw , and V are the air velocity, water velocity, and ice floe velocity, respectively. The Coriolis effect,
Fc , acts perpendicularly to the center of mass motion, such that Fc52f k�V, where f is the Coriolis parame-
ter and k5 0; 0; 1ð ÞT is a vector pointing vertically upward. The different constants and parameters of the
model are given in Table 1.

With this quadratic ocean drag formulation, the ocean current acts as a force on the ice floe surface, but
drifting floes do not affect the ocean boundary layer. The coupling between the population of ice floes and
the oceanic boundary layer is left for future work.

2.2. Momentum Equations
Between collisions, the motion of the ith ice floe Xi, satisfies the linear momentum conservation equation
and the angular momentum conservation equation:

Mi
dVi

dt
5MiFc1

ð
Xi

sa1sw linear momentum

Ii
dxi

dt
5

ð
Xi

rij� sa1swð Þ angular momentum

(1)

where Mi is the mass matrix, Ii is the moment of inertia, Vi is the velocity of center of mass of Xi, xi is the angu-
lar velocity, and rij is a vector pointing from the center of mass of the ith ice floe Xi, to a mesh point j 2 Xi .

2.3. Geometrical Description of the
Assembly of Ice Floes
Unlike most of the models previously
developed, we considered ice floes of any
size and shape. To do so, individual ice
floes were discretized with finite elements.
Realistic configurations could be retrieved
from, e.g., aerial or satellite images (see
Figure 2).
2.3.1. Ice Floe Discretization
To discretize each individual ice floe, we
used the finite element method (FEM)
associated with the three-point Gauss-

Figure 1. Contact point with its contact frame.

Table 1. Physical Model Parameters Used in the Simulations

Constant Parameters Symbol Value Units

Earth’s angular velocity VX 7:29231025 s21

Latitude / Variable rad
Coriolis parameter f 2VXsin / s21

Air density qa 1.341 kg=m3

Ice density q 917 kg=m3

Water density qw 1024.071 kg=m3

Atmospheric skin drag coefficient Ca 1:731023

Oceanic skin drag coefficient Cw 531023

Ice floe velocity V Variable m/s
Surface current velocity uw Variable m/s
Wind velocity ua Variable m/s
Mesh size sm S=25 m2
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Legendre quadrature method [Rathod et al., 2004]. Thus, external forces were applied to each element of
the mesh and the integration of atmospheric and oceanic skin drags can be performed over the whole ice
floe area (see equation (1)). The ice floe thickness can vary from one element of the mesh to another for the
same floe. However, this possibility was not considered in the present version of our model (h constant
over S for each ice floe). As FEM models are generally computationally expensive and as our model aimed
to simulate the motion of several thousands of ice floes, we used the following idea: we defined the size of
the mesh element sm, according to the ice floe surface area S (see Table 1). Thus, each floe, whether small
or large, was meshed with the same number of finite elements—around 25 per floe. In section 2.4.1, we will
see that this leads to a definition of collision based on ice floe size. Oceanic skin drag was applied as an
external force on each element of the ice floe mesh (see Figure 3).
2.3.2. Time Discretization
To simulate ice floe motion, we used linear and angular momentum conservation and applied an explicit
scheme for temporal discretization. We considered that the mass matrix Mi , and the moment of inertia Ii, to
be constant (Si and hi do not change over time). In addition, as ice floes are rigid, the vector rij is fixed, this
produces:

Mi Vi t1Dtð Þ5MiVi tð Þ1MiDtFcðtÞ1Dt
ð

Xi

sa1swðtÞ

Iixi t1Dtð Þ5Iixi tð Þ1Dt
ð

Xi

rij� sa1swð ÞðtÞ

Generally, implicit integration is preferred to ensure stable behavior for any time step. However, in our
model, as we have adjusted the time step according to ice floe velocities and the distance between ice floes
(see section 2.5), the explicit integration has been chosen. For this integration scheme, to remain stable, the
time step should be small. For example, in the simulations detailed in section 4, the time step should not
exceed 30 s to ensure stability. Moreover, with the geometric characteristics of the collision zone, there
exists a theoretical minimum time step equal to 0.075 s (see section 4.1). This minimum time step is reached
when the ice floes enter the collision zone with the maximum (free drift) speed. This case is a rare event.
Indeed, as soon as collisions occur, the speed decreases due to the restitution coefficient <1 and so the
time step increases again. In the simulation of section 4, the minimum time step was around 0.1 s and the
average was around 3.5 s.

Figure 2. Realistic configuration based on an aerial image of the Roberson channel (Northwest Greenland).
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2.4. Modeling Ice Floe
Interactions
Our model is based on an event-
driven algorithm [McNamara,
2011]. To deal with collisions, we
started by a detection stage. First,
the minimum distance dij,
between two ice floes Xi and Xj

for all pairs (i, j), where
i 6¼ j 2 1; . . . ; nf g, was computed.
Then, knowing ice floe velocities
and positions, an estimation of

future position was made. This made it possible to predict the potential contact points and the time step
could be adjusted to avoid interpenetration. Finally, we built the contact frames associated with each con-
tact point (see Figure 1). Then, in a second step, we dealt with the collisions obtained from the previous
step. This consisted in writing a linear complementarity problem (LCP) [Cottle et al., 1992] with constraints
derived from the geometrical data relating to collisions. These constraints are: a noninterpenetration con-
straint and a friction constraint based on Coulomb friction. In this framework, the normal and tangential
impulses are the unknowns (see section 2.4.2).
2.4.1. Collision Detection
The collision detection problem has been extensively studied over the last few decades. A multitude of
algorithms have been proposed to deal with this problem. Some are based on the extrusion operation
[Cameron, 1990], others on the spatial partitioning representations [Hadama and Hori, 1996], or on bound-
ing volume hierarchies (BVH) [Quinlan, 1994; Hamlin et al., 1992]. We adapted the BVH algorithm to our
framework using disks to approximate the ice floe shapes. The disks were described by their center and
radius.

We built two levels of disks. The ensemble of level 1 disks entirely covers the mesh border of the ice floe
and the associated collision zone Z. This collision zone serves to define the contact between two ice floes
(see below). Moreover, the center of each level 1 disk is a vertex of the ice floe border mesh and the radius
of each disk can be different. The level 0 disk covers all the level 1 disks (see Figures 4 and 5). Level 0 and
level 1 disks are noted D0 and D1, respectively.

The levels of disks were built based on two concepts: the collision zone Z and the threshold distance g. We
started by defining the threshold distance. g is defined according to the surface area S of the ice floe,
g5

ffiffiffi
S
p
=100. Then, we defined the collision zone Z associated with ice floe X. Z is the set of points p, such

that p 62 X, and the minimum distance between p and X is smaller than g (see Figure 5).

Let Z i and Z j be the collision zones associated with Xi and Xj, respectively. Collision between Xi and Xj

occurs if and only if Ej \ Z i 6¼1 or Ei \ Z j 6¼1, where Ei Ej is the set of vertices of the mesh border of
Xi Xj. If Ei \ Z j 6¼1 then there exists a point p 2 Ei such that p 2 Z j . In this case, p is called a contact
point and the set of contact points belonging to ice floe Xi is denoted P i

c . The main property of the level
1 disks is that if p 2 Xi is a contact point, then at least one disk D1

j of the level 1 of Xj exists such that
p 2 D1

j .

The algorithm used to compute the minimum distance dij, between two ice floes Xi and Xj, such that D0
i \ D0

j

6¼1 is presented in Figure 6. The overlap of the level 0 disks between Xi and Xj was denoted Oij . First, we
checked, for all level 1 disks for the two floes, whether the disk belonged to the overlap Oij . Then, we selected
the points along the mesh border for these level 1 disks and tested whether they belonged to the collision
zone. Thus, we computed the minimum distance d pi;Xj

� �
, between a point pi 2 Ei \ D1

j and the other floe
Xj. Finally, the minimum distance between two ice floes Xi and Xj could be defined by:

dij5min pi2Pc
i

pj2Pc
j

d pi;Xj
� �

; d pj;Xi
� �� �

Then, for each contact point p, we determined the contact frame Rp5 p; Tp;Np
� �

(see Figure 1). To build
Rp, we first define the normal Np, directed outward to the surface at p. Considering any shapes, there exists

Figure 3. Ice floe meshed with external forces applied on each element of the mesh.
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configurations where the normal to the surface is ill defined. An example is a convex corner, whereas for a
concave corner the normal is the null vector. This kind of configuration occurs in cases where the contact is
node to node. When contact is node to segment, the normal Np is well known as the normalized vector equal
to pq0, where q0 2 X such that d p;Xð Þ5dðp; q0Þ and d p; q0ð Þ is a Euclidean distance between points p and
q0. In the case node to node, we defined the normal Np, as the normalized vector equal to pq where q 2 E

such that d p;Xð Þ5dðp; qÞ (see Figure 7).
2.4.2. Collision Processing
In simulations of multibody rigid dynamics based on the Coulomb friction model, it is impossible to accu-
rately describe how the contact forces change during contact. Indeed, during contact many complex and
brief interactions occur between the bodies. It is therefore common to consider the collision time as infini-
tesimally small. Thus, we considered that over the collision time interval, the integrals of the external forces,
called impulses, to be negligible except for the contact forces. Collisions are rapid events characterized by
large contact forces, we therefore considered the impulse of a contact force to be a finite quantity I .

The problem of multiple contacts where the unknowns are the impulses was first studied by Delassus
[1917]. Later, Moreau proposed an approach based on a linear complementarity problem [Moreau, 1963;
Pfeiffer and Glocker, 1996]. More recently, several extensions and proofs of existence and convergence have
been proposed [Stewart and Trinkle, 1996; Stewart, 2000; Anitescu and Potra, 1997; Anitescu et al., 1999]. We
solved this linear complementarity problem using Lemke’s algorithm [Cottle et al., 1992, Alg. 6.3.1] and the
impulses found made it possible to determine the ice floes velocities after the contact.

The impulse applied to Xk due to a contact at point pj was
denoted I kj , while the collision time interval was denoted
t�2n; t�1n½ �, where n! 0. The momentum equations for

the motion of ice floe Xi can therefore be written as
follows:

MiVi t1ð Þ5Mi Vi t2ð Þ1
X
j2Pi

c

I ij

Iixi t1ð Þ5Iixi t2ð Þ1
X
j2Pi

c

rij�I ij

where t15 lim n!0 t�1nð Þ and t25 lim n!0 t�2nð Þ

(2)

The decomposition of I kj into Rpj was noted bj; kj
� �

. bj is
called the tangential contact impulse and kj is called the
normal contact impulse. We built two matrices D 2 R3n3m

and J 2 R3n3m, containing the coordinates of the normal

a b

Figure 4. Bounding hierarchy.

Figure 5. Level 1 disks.
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and the tangent of the contacts, respectively. Matrices D and J satisfy the two following properties:

ðiÞ8j 2 1; . . . ;mf g;Dðk;jÞbj1Jðk;jÞkj5

I kj

rkj�I kj

0
@

1
A

ðiiÞ8j 2 1; . . . ;mf g; pj is associated with Xl;Xkð Þ;

ðDT Þðj;fl;kgÞ

Vl

xl

Vk

xk

0
BBBBBBBB@

1
CCCCCCCCA

5vR
j :Tj

and ðJT Þðj;fl;kgÞ

Vl

xl

Vk

xk

0
BBBBBBBB@

1
CCCCCCCCA

5vR
j :Nj

where vR
j is the relative velocity of contact point pj 2 Xl in the frame associated with Xk.

Combining equation (2), we can write the following system for ice floe Xi:

Mi 0

0 Ii

0
@

1
A Vi

xi

0
@

1
A t1ð Þ5

Mi 0

0 Ii

0
@

1
A Vi

xi

0
@

1
A t2ð Þ1

X
j2Pi

c

Dði;jÞbj1Jði;jÞkj (3)

Then, we can combine this equation (3) for each ice floe to obtain a global system:

MWðt1Þ5Jk1Db1MWðt2Þ 2 R3n (4)

where

Figure 6. Algorithm used to compute the minimum distance between Xi and Xj.
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M 5
Mi 0

0 Ii

 !
1�i�n

; W5
Vi

xi

 !
1�i�n

and

k5 kj
� �

1�j�m; b5 bj

� �
1�j�m

where the ice floe velocities after collisions Wðt1Þ,
and the impulses k and b are the unknowns. To
determine the ice floe velocities after collision, we
added two complementarity constraints to the sys-
tem 4: a noninterpenetration constraint and a fric-
tion constraint.

We refer to the Signorini condition [Signorini, 1933]
to establish the noninterpenetration constraint.
Signorini studied an elastic body which is unilaterally

supported by a rigid foundation. He looked for a displacement field which is a state of equilibrium with a
body force. This physical situation can be expressed by the classical unilateral boundary conditions of the
Signorini type:

un � 0; Fn � 0; un:Fn50 on C

where un and Fn denote the normal components of displacements and stresses, respectively, and C denotes
the rigid foundation. For our noninterpenetration constraint, instead of establishing a link between dis-
placements and stresses, we make a link between the relative velocities and impulses. Specifically, we made
a link between the normal contact impulse kj, applied to the contact point pj, and the normal relative veloc-
ity vR

j :Nj , of pj. First, as contacts were only associated with compressive forces (no cohesion between ice
floes), we have kj � 0. Second, as there is no interpenetration, we have vR

j :Nj � 0. In case of takeoff, we
have vR

j :Nj > 0 and no contact force kj50. In case of adhesion, we have vR
j :Nj50 and a nonzero normal

contact impulse kj > 0. These conditions generate a complementarity condition for each contact point pj,
and we can write an overall complementarity condition:

w5JT Wðt1Þ � 0; k � 0; wT :k50 (5)

To describe friction, we need to know the direction of slip. In the 2-D case, for each contact point pj, there are
only two possible directions: Tj or 2Tj . We based our complementarity condition on the work of Stewart and
Trinkle [1996] which establishes a link between the tangential contact impulse bj, applied to contact point pj, the
normal contact impulse kj, the tangential relative velocity vR

j :Tj , of pj and the friction coefficient l, as follows:

cj5

vR
j :Tj

2vR
j :Tj

0
@

1
A1aj

1

1

0
@

1
A � 0; ~bj � 0; cT

j :
~b j50

rj5lkj2

1

1

0
@

1
A

T

~b j � 0; aj � 0; rT
j :aj50

8>>>>>>>><
>>>>>>>>:

where aj can be seen as an approximation of the magnitude of the relative contact velocity and ~b j is a vec-
tor containing the component for each direction Tj and 2Tj of the tangential contact impulse.

These complementarity constraints behave like the Coulomb friction model. Indeed, if lkj2 1; 1ð Þ~b j > 0;

that is, the contact impulse is inside the Coulomb cone, then aj50 and therefore vR
j :Tj;2vR

j :Tj

� �T
� 0.

Hence, the tangential relative velocity is zero.

In contrast, when lkj2 1; 1ð Þ~b j50, then there exists a direction dslip 2 Tj;2Tj
� �

, such that the component
of the tangential contact impulse associated with this direction bj is strictly positive. Therefore,
aj1vR

j :dslip50. For aj 6¼ 0, we have bj v
R
j :dslip < 0, causing the friction force to exhibit negative work, as

expected. Therefore, in the other direction 2dslip; aj2vR
j :dslip > 0, the component of the tangential contact

impulse associated with this direction will be zero.

Figure 7. Possible contact configurations.
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We can write this type of friction condition for each contact point to generate a global complementarity
condition:

c5DT Wðt1Þ1Ha � 0; ~b � 0; cT :~b50

r5lk2HT ~b � 0; a � 0; rT :a50

(
(6)

where

HT 5 eij
� �

1�i�m;
1�j�2m

~b5 ~b j

� �
1�j�m

eij5
1 if j52 i21ð Þ11 or j52 i21ð Þ12

0 otherwise

(

It is not straightforward to determine the tangential impulse. Indeed, Coulombs friction model gives a local rela-
tionship between the tangential and the normal impulse, meaning that this model describes the contact behav-
ior for only one contact point; this is not sufficient to describe the overall behavior. Indeed, the contact
behaviors of all contact points taken individually are not sufficient to describe the motion of a group of floes in
interaction with each other, as this depends on the overall floe configuration. For this reason, we deal with all
contact points pj, for all j 2 1; . . . ;mf g, simultaneously. This is an approximation to reality. Indeed, in the case of
contact chains, e.g., the Newton’s cradle problem, we have to be careful with the temporal consistency (see sec-
tion 3.1.2). Another method is to consider only the contact points leading to an interpenetration, i.e., the points
pj 2 InðtÞ, where InðtÞ5f8j 2 f1; . . . ;mg; pj = vR

j :NjðtÞ < 0g. At step 0, we deal with the contact points belong-
ing to I0

n5Inðt2Þ with the two constraints (noninterpenetration and Coulomb’s friction). We continue this process
while In 6¼1, i.e., until step r, such that Ir

n5Inðt1Þ51. The treated contact points at step k satisfy the Signorini
constraint. Therefore, they do not belong to Ik11

n . However, contact points that do not belong to Ik
n can belong

to Ik11
n . The main drawback of this method is that the termination of this iterative process remains an open

question [Smith et al., 2012]. Nevertheless, this iterative process terminated for all the simulations performed in
this work. In section 4.2, we describe simulation results obtained for the drifting configuration (2) using the two
methodologies: dealing with contact points simultaneously, or not. Particularly, we describe the floe trajectories
and we show that when dealing with only contact points leading to an interpenetration with the iterative pro-
cess above, the floe trajectories remain close to that obtained with the first methodology.

From equation (4) and the two complementarity constraints (5) and (6) we can write the linear complemen-
tarity problem as follows:

w

c

r

0
BBBB@

1
CCCCA 5

JT M21J JT M21D 0

DT M21J DT M21D H

l 2HT 0

0
BBBB@

1
CCCCA

k

~b

a

0
BBBB@

1
CCCCA1

JT Wðt2Þ

DT Wðt2Þ

0

0
BBBB@

1
CCCCA

w

c

r

0
BBBB@

1
CCCCA � 0;

k

~b

a

0
BBBB@

1
CCCCA � 0;

w

c

r

0
BBBB@

1
CCCCA

T

:

k

~b

a

0
BBBB@

1
CCCCA50

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(7)

We use a restitution coefficient denoted e 2 0; 1½ � to describe the dissipation of kinetic energy during a colli-
sion. The contact can be inelastic with little or no bounce and extensive loss of kinetic energy, or elastic
with considerable bounce and little or no loss of kinetic energy. For e50, the contact is purely inelastic while
for e51, the contact is purely elastic. Different approaches can be used to apply the restitution coefficient,
e.g., Newton’s law or Poisson’s law. Newton’s law defines e as equal to the ratio between the normal relative

Journal of Geophysical Research: Oceans 10.1002/2015JC010909

RABATEL ET AL. DYNAMICS OF RIGID ICE FLOES 5895



velocity at a contact point
before and after a collision, i.e.,
for a contact point pj,
jvR

j :Njðt1Þj5ejvR
j :Njðt2Þj. In con-

trast, Poisson’s law considers
that collisions have two phases:
a compression phase and a
decompression phase, and
establishes a relationship
between the normal contact
impulse in the decompression
phase kd , and the normal con-
tact impulse in the compres-
sion phase kc

kd5ekc

We opted to use Poisson’s law.
We will see later that this
option makes it possible to
establish the existence of a

solution for the two phases. In addition, for the compression phase, the solution does not lead to an
increase in kinetic energy.

We established a linear complementarity problem (LCP) 7ð Þ for each phase. After solving the LCP for the
compression and the decompression phases, we computed the ice floe velocities after the compression
and the decompression phases WðtcÞ and WðtdÞ, respectively. With this computing scheme, the kinetic
energy after the decompression phase Ed is not always smaller than the kinetic energy before collision E–,
which is a physical impossibility. In this case, we compute the ice floe velocities using this following
equality:

~W5 11eð ÞWðtcÞ2eWðt2Þ (8)

The solution given by ~W does not satisfies the Coulomb’s law meaning that a sliding contact might become
a rolling contact or vice versa. However, this solution ensures the noninterpenetration between the ice floes;
hence, a contact cannot become a sliding contact if this leads to interpenetration. Moreover, this solution
ensures that kinetic energy is not increased after the collision. We chose this solution to give priority to the
conservation of kinetic energy. This collision processing is summarized in Figure 8.

At the end of the collision processing, the normal component of the relative velocities of the contact point
is w5JT :W t1ð Þ. For two ice floes Xi and Xk in contact at the contact point pj, either w(j)> 0, meaning that
the contact is broken and we have a takeoff case, or w(j) 5 0; that is, the two ice floes remain in contact and
the ice floes may slid against each other, i.e., vR

j :Tj 6¼ 0. The configuration (sliding or takeoff) remains
unchanged over the time interval t1; t11Dt½ � where Dt > 0 (see section 2.5). At the time t11Dt, the con-
tact is dealt with again and a new relative normal velocity w(j) is computed. So, the contact can persist over
time.

2.5. Main Algorithm
At initial time t 5 0, we assume that there is no interpenetration between ice floes. The main algorithm for
our model is presented in Figure 9 and described below. The first two stages of this algorithm have been
previously described (see sections 2.4.1 and 2.4.2). After the collision processing stage and knowing their
center of mass and angular velocities, it is easy to compute the appropriate time step to avoid interpenetra-
tion between ice floes. For all Xi, we built the time step Dti , such that the maximal distance traveled by Xi

during this time step would be smaller than dij=2 for all Xj, j 6¼ i.

From the time steps associated with ice floes, we defined the time step Dt, as follows:

Figure 8. Collision processing algorithm.
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Dt5 min
i2 1;...;nf g

Dti

In the case of a collision between Xi and Xj,
we do not need to use the minimum dis-
tance dij. Indeed, the motion of the contact
points cannot lead to interpenetration
based on the Signorinis condition (see sec-
tion 2.4.2). Therefore, we selected the time
step Dti , such that the maximal distance
traveled by Xi during this time step would
be smaller than min gi; gj

� �
=2.

3. Model Validation

To validate our model and particularly the
collision algorithm, a two-step strategy was
used. First, we tested our model with typical
collision scenarios, e.g., Bernoulli’s problem,
Newton’s cradle, or the sliding box. This

made it possible to verify that our model respects different classical conditions for collisions, such as: preser-
vation of symmetry, no increase in kinetic energy, break away (ice floes that were previously in contact may
break away from each other as a result of impact) and friction satisfies Coulomb’s model. The various tests
are presented in section 3.1. We next tested our model using measurements taken in a test basin where
pieces of wood with a circular shape were substituted for ice floes.

3.1. Algorithm Validation
After the compression phase, the ice floe velocities found using the LCP satisfied the property of no
increase in kinetic energy. However, after the decompression phase, configurations existed where this prop-
erty was not satisfied. When this was the case, we computed the ice floe velocities using equation (8), which
ensures that there will be no increase in kinetic energy.

For the other conditions, we tested our model with classical collision scenarios (see sections 3.1.1–3.1.3).
The numerical tests detailed below were performed without Coriolis effect, atmospheric or oceanic skin
drags.

3.1.1. Bernoulli’s Problem
To test for symmetry conservation, we vali-
dated our model against the Bernoulli
problem. This problem consists in simulat-
ing the collision between three balls B1, B2,
and B3 on the plane where B2 and B3 are
initially at rest and B1 has an initial velocity
v1, along the symmetry line directed
toward B2 and B3 (see Figure 10). h is the
angle formed by the mass centers of the
balls at the moment of collision.

The configuration of the test was as fol-
lows: the B1 velocity was v15 1; 0ð ÞT m/s,
the ball mass was m 5 1 kg, and the resti-
tution coefficient was the same for all con-
tact points, e51. We focused on the
evolution of velocities with an angle h.
Theoretical results are presented in Liu
et al. [2008] for a frictionless and Hertzian
contact between balls. As our model is dif-
ferent from the Hertz model, we obtained

Figure 9. Main algorithm.

Figure 10. Bernoulli’s problem.
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different results. However, the symmetry is preserved; that is, the trajectories of B2 and B3 are symmetric.
Moreover, for h5p=4, we obtained the same results as with the Hertz model:
v1ðt1Þ5 0; 0ð ÞT ; v2ðt1Þ5 0:5; 0:5ð ÞT , and v3ðt1Þ5 0:5;20:5ð ÞT . For e 6¼ 1, we observed that the configuration
was still symmetric.
3.1.2. Newton’s Cradle
To investigate shock propagation, we focused on the Newton’s cradle problem. This is one of the simplest
multiimpact problems that could be considered. It consists in simulating the collision between three identi-
cal aligned balls B1, B2, and B3 where B2 and B3 are initially at rest and B1 has an initial velocity v1 along the
alignment (see Figure 11).

Many studies have been performed to describe the dynamic behavior of the balls during this collisional sce-
nario [see e.g., Nguyen and Brogliato, 2014]. The results of these studies showed that the conservation of linear
and angular momentum, as well as of kinetic energy, is not sufficient to allow a comprehensive description of
the dynamics of the Newton’s cradle problem. Indeed, the dynamics of a chain of balls involves two main col-
lisional phenomena: energy dissipation and dispersion. Dissipation is due to plasticity or damage at the con-
tact points. Our model takes dissipation into account through the restitution coefficient e, but does not
consider dispersion, which is due to vibrational and wave effects throughout the whole chain.

The configuration of the test was as follows: the B1 velocity was v151 m/s, the ball mass was m 5 1 kg, and the
restitution coefficient was the same for all contact points, e51. There exists an infinity of solutions for ball veloc-
ities after collisions, between (1) v1ðt1Þ50; v2ðt1Þ50, and v3ðt1Þ51 and (2) v1ðt1Þ521=3; v2ðt1Þ52=3, and
v3ðt1Þ52=3 [Nguyen and Brogliato, 2014]. The solution obtained depends on the energy dispersion. The first
solution corresponds to the case of zero dispersion; that is, all the kinetic energy of B1 is transferred to B3 after
the collision. The second solution corresponds to the case of maximum dispersion.

As stated in section 2.4.2, we
dealt with all contact points pj,
for all j 2 1; . . . ;mf g, simultane-
ously. In the Newton’s cradle
problem, this means that the
contacts between balls B1 and B2

in one hand and between B2 and
B3 on the other hand are dealt
with together. This means that
we did not take into account that
the shock propagation starts by
the contact between B1 and B2

and extends to the contact
between B2 and B3. This approxi-
mation ensures the existence of
a solution for the linear comple-
mentarity problem (7) and takes
into account accurately the
Coulomb’s friction (see section
2.4.2). This way we obtained a
unique solution of the Newton’s
cradle problem, i.e., the solution

Figure 11. Newton’s cradle problem.

Figure 12. Results for the sliding box scenario, for different values of the friction
coefficient.
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(2) v1ðt1Þ 521=3; v2ðt1Þ52=3, and
v3ðt1Þ52=3 corresponding to the
case of the maximum dispersion. To
capture another solutions such as the
solution (1) corresponding to zero dis-
persion, we should take into account
the temporal consistency, i.e., dealing
with the contact between B1 and B2

independently and before the contact
between B2 and B3.
3.1.3. Sliding Box
To validate our model’s handling of
frictional collision, we focused on a
sliding box scenario. This collision
scenario consists in simulating the
motion of a box, initially at rest,
pushed across a plane. We used a

similar configuration to that used by Drumwright and Shell [2011]: from t 5 1 s to t 5 5 s, a 1 N force parallel
to the plane was applied to the box, the box is a square (1 m2) of unit mass (1 kg), the acceleration due to
gravity was g59:81 m/s2, and the restitution coefficient was 0.

Unlike Drumwright and Shell [2011], we tested different friction coefficients (see Figure 12). Coulomb’s
model states that, for this configuration, the friction coefficient from which the unit box starts to move is
lcrit51=9:81. The results obtained for different friction coefficients are presented in Figure 12 and show
that Coulomb’s model is obeyed.

3.2. Experimental Validation
We validated our model based on collision experiments performed in a test basin. These experiments consisted in
collisions between two identical disks of wood D1 and D2 with the same weight 14 kg, in the absence of wind and
current (see Figure 13). They consisted in pushing one disk toward the other disk, which was initially floating at
rest and repeating this a number of times to explore different conditions. Nine collisions were performed and their
effects were recorded with a camera. Image processing was performed to extract the positions and velocities of
the mass centers of the two disks as a function of time, according to Dumont et al. [2013]. In collisions 1–3, D1 was
pushed toward the mass center of D2. In collisions 4–6, D1 was pushed as illustrated in Figure 14. Finally, in colli-
sions 7–9, a significant rotation was induced of D1 before the collision was effected.

From the initial positions and the initial velocities, we used our model to rebuild the trajectories of the floes.
We compared the simulated trajectories (illustrated in red) to the trajectories measured according to
Dumont et al. [2013] (illustrated in blue). The restitution coefficient was adjusted to minimize the difference
between the simulated and extracted trajectories. The best choice was found to be e50:35 and the results
presented in Figure 15 are for three different collisions using this value. The agreement between the mod-
eled and the observed trajectories is good, hence our collision modeling scheme is further validated.

4. Simulations

We presented above in full details the structure of the model as well as its validation from simple, well-
characterized collisional or frictional scenarios, and from experiments in a test basin. To illustrate the capa-
bility of our model to simulate more realistic configurations, we describe below simulation results obtained
for two drifting configurations:

1. Ice floes pushed by a constant wind toward a narrow channel (see corresponding movie in supporting
information material 1).

2. An assembly of floes drifting in an open ocean under time varying wind and current (see corresponding
movie in supporting information material 2).

A more thorough, quantitative analysis of floe drift characteristics for a large population of floes under realistic
wind and ocean forcing and with improved coupling with the ocean boundary layer, will be published later.

Figure 13. Profile view of the setup used for collision tests between D1 and D2.

Figure 14. Test configurations.
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4.1. Ice Floes Drifting Across a Channel
For this first configuration, we performed simula-
tions in the following configuration. We used aer-
ial images taken in the Roberson channel (81�N,
Northwest Greenland) at the end of summer (see
Figure 2). Using image analysis, we generate real-
istic geometries for 100 ice floes with an area
greater than 10 m2 and with a constant thickness
over their surface area h 5 1 m.

These floes are pushed toward an 850 m width
and 2 km long channel by a constant wind with
a speed of 10 m/s directed downward at 108 to
the vertical (see Figure 16); the ocean is at rest.
The simulation time was T 5 5 h, the maximum
time step was DT55 s, the boundary conditions
were two free edges and a channel on either
side. The ice floes were initially at rest. The
channel played the role of a rigid obstacle,
modeled as a body of infinite mass. Tests were
performed varying the friction coefficient, the
restitution coefficient, and introducing (or not)
a Coriolis effect (calculated for a Latitude of
81�N) (see Table 2). The friction coefficient was
the same between the ice floes and between
the ice floes and the obstacles.

We have previously seen that the time step
adapts for each collision to avoid interpenetra-
tion of the floes. In the tests presented below,
the time step varied between 5 and 0.1 s. This
minimum time step was set by the maximum
floe speed and the minimum threshold dis-
tance g. As the area of the smallest floes was
10 m2, the minimum value of g was 0.03 m. To
avoid interpenetration, ice floes must not move
beyond g=2. With the quadratic form of the
external forces and the skin drag coefficients
given in Table 1, we obtained a Nansen number
equal to 0.021. Thus, the maximum (free drift)
speed for ice floes should ’ 2% of the wind
speed [Nansen, 1902; Weiss, 2013]. Therefore,
the minimum time step was set to 0.075 s.
4.1.1. Qualitative Description
The configurations of the ice floe assembly
obtained at two different times for several sim-
ulations with different setups are presented in
Figures 17–19. In some cases, a proportion of
the ice floes remain jammed at the channel’s
entrance (tests 1, 2, and 5). In tests with a
higher restitution coefficient, or a lower friction
coefficient, this does not occur (tests 3 and 4).
The Coriolis force is generally considered as
playing a second-order role on the momentum
balance of sea ice [Hunkins, 1975], and it might

a

b

c

Figure 15. Comparison between simulated trajectories (in red) and
measured trajectories (in blue).
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have been expected to play a negligi-
ble role in determining the dynamics
of the floe assembly when considering
time scales shorter than the inertial
period (’ 12 h in the Arctic). However
and despite the fact that the oceanic
skin drag formulation might damp sea
ice motion at inertial frequencies (see
section 2.1), comparison of the results
from tests 1 and 5 revealed significant
differences, indicating that the overall
dynamics of the floe assembly might
be sensitive to small changes in the
momentum balance of individual floes,
through modification of the collisional
scenarios. On Figure 20, we drew the
center of mass trajectories for all floes
of test number 5.
4.1.2. Quantitative Description
How the total kinetic energy of the floe
assembly changes over time is shown
in Figure 21. The horizontal black line
at the top of the graph represents an
upper bound corresponding to a pure
free drift for each individual floe, at a
speed of about 2% of the wind speed.
At the start of the simulation, the
kinetic energy first grew rapidly up to
about 90% of this upper bound. Then,
floes started to interact and the kinetic

energy decreased due to energy dissipation through frictional contacts and/or collisions (if e < 1). For the
partly jammed configurations (tests 1, 2, and 5), the energy stabilized toward a low value corresponding to
the free drift of the unjammed floes.

Figure 22 shows the variations in normal contact impulses for tests 1 and 3. As indicated above, the contact
impulse is a contact force multiplied by a time. The signal is highly intermittent, with each peak correspond-
ing to one or more collisions occurring at a given time. In the case of partly jammed configurations, the
total impulse stabilizes toward a nearly constant value corresponding to the impulse needed to keep the
floes jammed.

4.2. Drift of an Assembly of Floes Under Varying Wind and Current
We consider an assembly of 350 ice floes of various shapes and sizes drifting in an open ocean under spa-
tially constant but varying in time wind and ocean surface current (see Figure 23). Wind forcing has been
obtained from a time interpolation of the ERA interim dataset sampled in February 2008 in the Barents
sea at 80:2�N; 36:8�Eð Þ. This position is close to the ice edge at that time. Surface current has been

obtained from the TOPAZ ocean-sea ice model [see Sakov
et al., 2012] at the same time and place. The initial configu-
ration is as follows: the floe shapes are randomly chosen
within a catalog of shapes extracted from aerial images,
whereas the floe sizes sf 5

ffiffiffiffiffiffiffiffi
S=p

p
are set to be distributed

according to a power law Pð> sf Þ � s2a
f , with a51:5, in

agreement with classical observed values [see e.g., Weiss,
2003], and with an upper cutoff of 250 m. The individual
floe thicknesses are chosen randomly (uniform distribution)
between 0.25 and 0.38 m. The ice floes are then assembled

Table 2. Variation of the Parameters Between Tests
for Simulation Setup 3.1

Test
Number Friction l Restitution �

Coriolis
Parameter f

1 0.7 0.35 0
2 0.7 0.6 0
3 0.7 1 0
4 0.5 0.6 0
5 0.7 0.35 1:4431024s21

Figure 16. Simulation sketch 3.1.
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to reach an average sea ice concen-
tration of 60%, typical of the MIZ,
over a square of 1.2 3 1.2 km2.

Initially, the ice floes are at rest. The
trajectories of the ice floes during the
week-long simulation are shown in
Figure 24. From this large-scale per-
spective, the ice floes remain grouped
together and drift over large distances
(km s) in response to the varying wind
forcing. On the other hand, at the
scale of the assembly, several phe-
nomena are observed:

1. During the first 2 days of simula-
tion, when both wind and current
directions are roughly constant, the
ice floes disperse and the concen-
tration within the initial square
decreases to 45% (see Figures 23
and 25). However, following brutal
rotations of the forcing, the ice
floes reassemble partially and the
concentration rise up again until
54%.

2. During the simulation, the ice floe
form progressively groups (or clus-
ters) of floes separated by open
water (see Figure 25). This cluster-
ing process is well known [Toyota
et al., 2011] and has been studied
from a molecular dynamics sea
model with perfectly circular ice
floes [Herman, 2011]. It results from

the size-dependent equilibrium velocity of the floes [Herman, 2011] and from the dissipation of kinetic
energy during the collisions.

3. The number of collisions per hours rises during the first 2 days to reach an average value of about 105

when clusters of floes are formed (see Figure 23). This simulation possibly suggests different drift and dis-
persion regimes: a large-scale regime essentially driven by the forcing, and a collisional regime at small
scales. A thorough statistical analysis of floes trajectories [see Rampal et al., 2008, 2009] obtained from
different simulations would be needed to explore this in details.

With this drifting configuration, we tested the sensitivity of our model to the methodology used to deal
with the contact points; that is, if we deal with all contact points simultaneously or only the contact points
leading to an interpenetration (see section 2.4.2). We simulated the same assembly of 350 floes and with
the same atmospheric and oceanic conditions, changing only the manner to deal with the contact points.
From the large-scale perspective of Figure 24, the results of the two simulations are nearly indistinguishable.
At the scale of individual floes, some differences are perceptible, but the pattern of floes clusters remains
similar (see Figure 26).

5. Discussion and Conclusions

The model presented in this paper was built to describe the dynamic behavior of a large number of ice floes
of any size and geometry, while keeping within a reasonable processing time. Although our model does
not consider the energy dispersion due to vibrational and wave effects, it accurately describes a large range

Figure 17. Simulation 3.1 images (variation of the restitution coefficient e).
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of collisional behaviors (see section 3.1). In addition, the linear and angular momentums as well as the
kinetic energy are conserved when elastic collisions are considered.

The next step will be to better estimate the restitution coefficient e, and to further validate the model either
using more realistic experiments performed in ice test basins, or using in situ observations. With in situ
observations, the trajectories of ice-tethered buoys drifting within, for example, the marginal ice zone would

Figure 18. Simulation 3.1 images (variation of the friction coefficient l).

Figure 19. Simulation 3.1 images (with or without the Coriolis effect Fc).
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Figure 20. Center of mass trajectories for test 5 of simulation setup 3.1.

Figure 21. Variation of the kinetic energy (3.1).
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be an important source of information. However, a direct, deterministic comparison of modeled trajectories
with observed trajectories will be difficult, especially because the geometrical characteristics of the floe
assembly (size, shape, thickness, and spatial arrangement of the floes) are rarely known. Instead, a

Figure 22. Variation of the normal impulse (3.1).

Figure 23. Simulation 3.2: wind and surface current characteristics over the 7 days; number of collisions per hour, and ice concentration.

Journal of Geophysical Research: Oceans 10.1002/2015JC010909

RABATEL ET AL. DYNAMICS OF RIGID ICE FLOES 5905



comparison in terms of statistical properties of the velocities [see e.g., Rampal et al., 2009] might be more
promising.

As stressed in section 1, in the present version of the model, the main simplifications are the absence of ice
rheology and the use of a constant and universal coefficient of restitution. To improve this aspect in the
future, it will be necessary to combine this model with a rheological as well as a damage model within each
ice floe to provide a more physical and detailed description of kinetic energy dissipation during collisions.

Figure 24. Simulation 3.2: ice floes trajectories during 7 days.

Figure 25. Simulation 3.2: configuration of ice floes at different times.
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The coupling with a simplified ocean model considering an oceanic boundary layer homogeneous over the
simulated domain (uw spatially constant) will represent another improvement. Finally, in terms of comput-
ing optimization, one important direction of research will be the parallel implementation of our model on
GPU. To do this, a structure of clusters will be developed. This structure will consist in gathering ice floes
interacting with each other into the same cluster. In a cluster, the ice floes will evolve with the same time
step and each cluster will follow its own rhythm. Indeed, not all the floe/floe interactions need to be
described with the same time step. The main advantage of this approach is that it can deal with each cluster
in parallel, thus making it possible to handle a very large number of ice floes within a reasonable computing
time.

Notation

AT transpose of matrix A.
dslip sliding direction.
d p;Xð Þ minimum distance between a point p and an ice floe X.
D matrix containing the coordinates of the tangent of the contacts.
Dk disk of level k.
E kinetic energy of ice floes.
E– kinetic energy of ice floes before collisions.
Ed kinetic energy of ice floes after a decompression phase.
E set of vertices for the mesh border of an ice floe.
Fc Coriolis effect.
G mass center of an ice floe.
h thickness of an ice floe.
I moment of inertia of an ice floe.
I impulse.
I kj impulse applied to ice floe Xk due to a contact at contact point pj.
J matrix containing the coordinates of the normal of contacts.
m number of contact points.
M mass of an ice floe.
M matrix containing the mass and the moment of inertia of ice floes.
n number of ice floes.
N normal of a contact.

Figure 26. Simulation 3.2: difference between the clusters of floes according to the methodology used to deal with the contact points at
84 h (3.5 days).
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p contact point.
Pc

i set of contact points for ice floe Xi.
rij vector pointing from the mass center of the ice floe Xi to a mesh point j 2 Xi .
R contact frame.
S surface of an ice floe.
t time during the simulation.
t� timing of a contact.
t– time before a contact.
t1 time after a contact.
tc time after a compression phase.
td time after a decompression phase.
T tangent of a contact.
vR

j relative velocity of contact point pj.
V velocity of the mass center of an ice floe.
W vector of the mass center and angular velocities of ice floes.
Wi mass center and angular velocities of ice floe Xi.
~W linear combination between WðtcÞ and Wðt2Þ.
Z collision zone.
a vector of aj.

aj magnitude of the relative contact velocity vR
j .

ac vector of aj after a compression phase.
ad vector of aj after a decompression phase.
b vector of bj.
bj tangential contact impulse of contact point pj.
bc vector of bj after a compression phase.
bd vector of bj after a decompression phase.
~b vector of ~b j .
~b j vector containing 2bj and bj.
d minimum distance between two ice floes.
Dt time step.
Dti time step associated with ice floe Xi.
DT time step for the simulation.
e restitution coefficient.
g threshold distance.
k vector of kj.
kj normal contact impulse for contact point pj.
kc vector of kj after a compression phase.
kd vector of kj after a decompression phase.
l friction coefficient.
sa atmospheric skin drag per unit area.
sw oceanic skin drag per unit area.
x angular velocity of an ice floe.
X ice floe.

References
Anitescu, M., and F. A. Potra (1997), Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementar-

ity problems, Nonlinear Dyn., 14(3), 231–247.
Anitescu, M., F. A. Potra, and D. E. Stewart (1999), Time-stepping for three-dimensional rigid body dynamics, Comput. Methods Appl. Mech.

Eng., 177, 183–197.
Cameron, S. A. (1990), Collision detection by four-dimensional intersection testing, IEEE Trans. Robotics Autom., 6(3), 291–302.
Cottle, R. W., J.-S. Pang, and R. E. Stone (1992), The Linear Complementarity Problem, Siam, Philadelphia.
Delassus, E. (1917), M�emoire sur la th�eorie des liaisons finies unilat�erales, Ann. Sci. Ecole Normale Super., 34, 95–179.
Drumwright, W., and D. Shell (2011), An evaluation of methods for modeling contact in multibody simulation, IEEE Trans. Robotics Autom.,

1695–1701.
Dumont, D., Y. L�evesque, A. Bihan-Poudec, and E. Bismuth (2013), Image processing report, CITEPH 64–2012 project, BGO First, Oceanide,

report.
Feltham, D. L. (2008), Sea ice rheology, Annu. Rev. Fluid Mech., 40, 91–112.

Acknowledgments
The financial support of TOTAL E&P
RECHERCHE DEVELOPPEMENT is
gratefully acknowledged. The collision
tests on wood floes were performed
within the framework of a CITEPH
project. D. Dumont is acknowledged
for providing the trajectories of the
wood floes whereas J. Bergh and P.
Rampal are acknowledged for the
wind and current time series used in
simulation 3.2. A. Audibert-Hayet, E.
Coche, P. Lattes, and K. Riska are
thanked for valuable suggestions and
comments. Proprietary data ownership
prevents the data associated to this
work being made available.

Journal of Geophysical Research: Oceans 10.1002/2015JC010909

RABATEL ET AL. DYNAMICS OF RIGID ICE FLOES 5908



Girard, L., S. Bouillon, J. Weiss, D. Amitrano, T. Fichefet, and V. Legat (2011), A new modeling framework for sea-ice mechanics based on
elasto-brittle rheology, Ann. Glaciol., 52(57), 123–132.

Hadama, K., and Y. Hori (1996), Octree-based approach to real-time collision-free path planning for robot manipulator, in Proceedings of
1996 4th International Workshop on Advanced Motion Control, ACM96-MIE, vol. 2, pp. 705–710, IEEE.

Hamlin, G. J., R. B. Kelley, and J. Tornero (1992), Efficient distance calculation using the spherically-extended polytope (s-tope) model, IEEE
Trans. Robotics Autom., 3, 2502–2507.

Herman, A. (2011), Molecular-dynamics simulation of clustering processes in sea-ice floes, Phys. Rev. E, 84, 056104.
Herman, A. (2013), Numerical modeling of force and contact networks in fragmented sea ice, Ann. Glaciol., 54(62), 114–120.
Hopkins, M. A. (1996), On the mesoscale interaction of lead ice and floes, J. Geophys. Res., 101(C8), 18,315–18,326.
Hopkins, M. A. (1998), Four stages of pressure ridging, J. Geophys. Res., 103(C10), 21,883–21,891.
Hopkins, M. A., S. Frankenstein, and A. S. Thorndike (2004), Formation of an aggregate scale in arctic sea ice, J. Geophys. Res., 109, C01032,

doi:10.1029/2003JC001855.
Hunkins, K. (1975), Oceanic boundary layer and stress beneath a drifting ice floe, J. Geophys. Res., 80(24), 3425–3433.
Liu, C., Z. Zhen, and B. Brogliato (2008), Frictionless multiple impacts in multibody systems. I. Theoretical framework, Proc. R. Soc. A, 464,

3193–3211.
McBean, G. (1986), The atmospheric boundary layer, in The Geophysics of Sea Ice, pp. 283–338, Springer-Verlag, N. Y.
McNamara, S. (2011), Molecular dynamics method, in Discrete Numerical Modeling of Granular Materials, pp. 1–25, Wiley-ISTE, N. Y.
McPhee, M. (1986), The upper ocean, in The Geophysics of Sea Ice, pp. 339–395, Springer-Verlag, N. Y.
Metrikin, I., S. Løset, N. A. Jenssen, and S. Kerkeni (2013), Numerical simulation of dynamic positioning in ice, Mar. Technol. Soc. J., 47(2),

14–30.
Moreau, J. J. (1963), Les liaisons unilat�erales et le principe de gauss, C. R. Hebd. Seances Acad. Sci., 256, 871–874.
Nansen, F. (1902), Oceanography of the north polar basin: The Norwegian north polar expedition 1893–96, Sci. Results, 3(9), 427.
Nguyen, N. S., and B. Brogliato (2014), Multiple Impacts in Dissipative Granular Chains, vol. 72, Springer, Berlin Heidelberg.
Paavilainen, J., J. Tuhkuri, and A. Polojarvi (2011), 2d numerical simulations of ice rubble formation process against an inclined structure,

Cold Reg. Sci. Technol., 68(1–2), 20–34.
Pfeiffer, F., and C. Glocker (1996), Multibody Dynamics With Unilateral Contacts, John Wiley and Sons, N. Y.
Quinlan, S. (1994), Efficient distance computation between non-convex object, IEEE Trans. Robotics Autom., 4, 3324–3329.
Rampal, P., J. Weiss, D. Marsan, R. Lindsay, and H. Stern (2008), Scaling properties of sea ice deformation from buoy dispersion analysis, J.

Geophys. Res., 113, C03002, doi:10.1029/2007JC004143.
Rampal, P., J. Weiss, D. Marsan, and M. Bourgoin (2009), Arctic sea ice velocity field: General circulation and turbulent-like fluctuations, J.

Geophys. Res., 114, C10014, doi:10.1029/2008JC005227.
Rathod, H. T., K. V. Nagaraja, B. Venkatesudu, and N. Ramesh (2004), Gauss Legendre quadrature over a triangle, Short Commun. Indian Inst.

Sci., 84, 188–193.
Sakov, P., F. Counillon, L. Bertino, K. A. Lisæter, P. R. Oke, and A. Korablev (2012), Topaz4: An ocean-sea ice data assimilation system for the

north Atlantic and Arctic, Ocean Sci., 8(4), 633–656.
Signorini, A. (1933), Sopra Alcune Questioni di Elastostatica, Atti Soc. Ital. per il Prog. delle Sci., Roma.
Smith, B., D. M. Kaufman, E. Vouga, R. Tamstorf, and E. Grinspun (2012), Reflections on simultaneous impact, ACM Trans. Graph., 31(4), 106:

1–106:12.
Stewart, D. (2000), Rigid-body dynamics with friction and impact, SIAM Rev., 42, 3–39.
Stewart, D., and J. Trinkle (1996), An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction,

Int. J. Numer. Methods Eng., 39, 2673–2691.
Stroeve, J. C., V. Kattsov, A. P. Barrett, M. C. Serreze, T. Pavlova, M. M. Holland, and W. N. Meier (2012b), Trends in arctic sea ice extent from

CMIP5, CMIP3 and observations, Geophys. Res. Lett., 39, L16502, doi:10.1029/2012GL052676.
Toyota, T., C. Haas, and T. Tamura (2011), Size distribution and shape properties of relatively small sea-ice floes in the Antarctic marginal

ice zone in late winter, Deep Sea Res., Part II, 58(9–10), 1182–1193.
Tsai, V. C., and D. E. McNamara (2011), Quantifying the influence of sea ice on ocean microseism using observations from the bering sea,

Alaska, Geophys. Res. Lett., 38, L22502, doi:10.1029/2011GL049791.
Wang, J., and A. Derradji-Aouat (2010), Ship Performance in Broken Ice Floes—Preliminary Numerical Simulations, Inst. for Ocean Technol.,

Natl. Res. Counc., St. John’s, NL.
Weiss, J. (2003), Scaling of fracture and faulting in ice on earth, Surv. Geophys., 24, 185–227.
Weiss, J. (2013), Drift, Deformation and Fracture of Sea Ice—A Perspective Across Scales, Springer, Netherlands.
Wilchinsky, A. V., D. L. Feltham, and M. A. Hopkins (2010), Effect of shear rupture on aggregate scale formation in sea ice, J. Geophys. Res.,

115, C10002, doi:10.1029/2009JC006043.

Journal of Geophysical Research: Oceans 10.1002/2015JC010909

RABATEL ET AL. DYNAMICS OF RIGID ICE FLOES 5909

http://dx.doi.org/10.1029/2003JC001855
http://dx.doi.org/10.1029/2007JC004143
http://dx.doi.org/10.1029/2008JC005227
http://dx.doi.org/10.1029/2012GL052676
http://dx.doi.org/10.1029/2011GL049791
http://dx.doi.org/10.1029/2009JC006043

