I. B. Beech, Corrosion of technical materials in the presence of biofilms-current understanding and state-of-the art methods of study, Int. Biodeterior. Biodegrad, vol.53, pp.177-183, 2004.

W. Lee, Z. Lewandowski, P. H. Nielsen, and W. A. Hamilton, Role of sulfate-reducing bacteria in corrosion of mild steel: a review, Biofouling, vol.8, pp.165-194, 1995.

R. Javaherdashti, R. K. Singh-raman, C. Panter, and E. V. Pereloma, Microbiologically assisted stress corrosion cracking of carbon steel in mixed and pure cultures of sulphate reducing bacteria, Int. Biodeterior. Biodegrad, vol.58, pp.27-35, 2006.

C. Xu, Y. Zhang, G. Cheng, and W. Zhu, Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria, Mater. Charact, vol.59, pp.245-255, 2008.

C. Xu, Y. Zhang, G. Cheng, and W. Zhu, Localized corrosion behavior of 316L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria, Mater. Sci. Eng, vol.443, pp.235-241, 2007.

J. Duan, S. Wu, X. Zhang, G. Huang, M. Du et al., Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater, Electrochim. Acta, vol.54, pp.22-28, 2008.

R. Avci, B. H. Davis, M. L. Wolfenden, I. B. Beech, K. Lucas et al., Mechanism of MnSmediated pit initiation and propagation in carbon steel in an anaerobic sulfidogenic media, Corros. Sci, vol.76, pp.267-274, 2013.

L. D. Silva-muñoz, A. Bergel, and R. Basséguy, Role of the reversible electrochemical deprotonation of phosphate species in anaerobic biocorrosion of steels, Corros. Sci, vol.49, pp.3988-4004, 2007.

W. P. Iverson, Mechanism of anaerobic corrosion of steel by sulfate reducing bacteria, Mater. Perform, vol.23, pp.28-30, 1984.

I. B. Beech and C. W. Cheung, Interactions of exopolymers produced by sulphatereducing bacteria with metal ions, Int. Biodeterior. Biodegrad, vol.35, pp.59-72, 1995.

E. Miranda, M. Bethencourt, F. J. Botana, M. J. Cano, J. M. Sanchez-amaya et al., Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator, Corros. Sci, vol.48, pp.2417-243, 2006.

R. Javaherdashti, Impact of sulphate-reducing bacteria on the performance of engineering materials, Appl. Microbiol. Biotechnol, vol.91, pp.1507-1517, 2011.

Z. H. Dong, T. Liu, and H. F. Liu, Influence of EPS isolated from thermophilic sulphatereducing bacteria on carbon steel corrosion, Biofouling, vol.27, pp.487-495, 2011.

D. Enning and J. Garrelfs, Corrosion of iron by sulfate-reducing bacteria: new views of an old problem, Appl. Environ. Microbiol, vol.80, pp.1226-1236, 2014.

H. Venzlaff, D. Enning, J. Srinivasan, K. J. Mayrhofer, A. W. Hassel et al., Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria, Corros. Sci, vol.66, pp.88-96, 2013.

R. , Involvment of sulfidogenic bacteria in iron corrosion, Oil Gas Sci. Technol, vol.54, pp.649-659, 1999.

W. A. Hamilton, Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis, Biofouling, vol.19, pp.65-76, 2003.

K. Mori, H. Tsurumaru, and S. Harayama, Iron corrosion activity of anaerobic hydrogenconsuming microorganisms isolated from oil facilities, J. Biosci. Bioeng, vol.110, pp.426-430, 2010.

R. D. Bryant, W. J. Jansen, J. Boivin, E. J. Laishley, and W. Costerton, Effect of hydrogenase and mixed sulphate-reducing bacterial populations on the corrosion of steel, Appl. Environ. Microbiol, vol.57, pp.2804-2809, 1991.

C. Chatelus, P. Carrier, P. Saignes, M. F. Libert, Y. Berlier et al., Hydrogenase activity in aged, nonviable Desulfovibrio vulgaris cultures and its significance in anaerobic biocorrosion, Appl. Environ. Microbiol, vol.53, pp.1708-1710, 1987.

A. V. Kumar, R. Singh, R. K. Nigam, A. V. Kumar, R. Singh et al., Mossbauer spectroscopy of corrosion products of mild steel due to microbiologically influenced corrosion, J. Radioanal. Nucl. Chem, vol.242, pp.131-137, 1999.

D. J. Evans and C. J. Pickett, Chemistry and the hydrogenases, vol.32, pp.268-275, 2003.

F. A. Armstrong, Hydrogenases: active site puzzles and progress, Curr. Opin. Chem. Biol, vol.8, pp.133-140, 2004.

R. Mertens and A. Liese, Biotechnological applications of hydrogenases, Curr. Opin. Biotechnol, vol.15, pp.343-348, 2004.

A. Pardo, A. L. De-lacey, V. M. Fernadez, H. J. Fan, Y. Fan et al., Density functional study of the catalytic cycle of nickel-ion [NiFe] hydrogenased and the involvement of high-spin nickel(II), J. Biol. Inorg. Chem, vol.11, pp.286-306, 2006.

E. J. Lyon, S. Shima, G. Buurman, S. Chowdhuri, A. Batschauer et al., UV-A/blue-light inactivation of "the metal-free" hydrogenase (Hmd) from methanogenic archaea, Eur. J. Biochem, vol.271, pp.195-204, 2004.

M. Frey, Hydrogenases: hydrogen-activating enzymes, Chem. Biochem, vol.3, pp.153-160, 2002.

M. D. Yates, M. Siegert, and B. E. Logan, Hydrogen evolution catalyzed by viable and nonviable cells on biocathodes, Int. J. Hydrog. Energy, vol.39, pp.16841-16851, 2014.

R. D. Bryant and E. J. Laishley, The role of hydrogenase in anaerobic corrosion, Can. J. Microbiol, vol.36, pp.259-264, 1990.

R. D. Bryant and E. J. Laishley, The effect of inorganic phosphate and hydrogenase on the corrosion of mild steel, Environ. Biotechnol, vol.38, pp.824-827, 1993.

S. Dasilva, R. Basseguy, and A. Bergel, Electrochemical deprotonation of phosphate on stainless steel, Electrochim. Acta, vol.49, pp.4553-4561, 2004.

S. Dasilva, A. Bergel, and R. Basseguy, Hydrogenase-catalysed deposition of vivianite on mild steel, Electrochim. Acta, vol.49, pp.2097-2103, 2004.

O. A. Zadvorny, N. A. Zorin, and I. N. Gogotov, Transformation of metals and metal ions by hydrogenases from phototrophic bacteria, Arch. Microbiol, vol.84, pp.279-285, 2006.

A. Nedoluzhko, I. A. Shumilin, L. E. Mazhorova, V. O. Popov, and V. V. Nikandrov, Enzymatic oxidation of cadmium and lead metals photodeposited on cadmium sulphide, Bioelectrochem, vol.53, pp.61-71, 2001.

J. S. Deutzmann, M. Sahin, and A. M. Spormann, Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis, MBio, vol.6, pp.496-511, 2015.

M. J. Lukey, A. Parkin, M. M. Roessler, B. J. Murphy, J. Harmer et al., How Escherichia coli is equipped to oxidize hydrogen under different redox conditions, J. Biol. Chem, vol.285, pp.3928-3938, 2010.

S. D. Silva, R. Basséguy, and A. Bergel, Electron transfer between hydrogenase and 316L stainless steel: identification of a hydrogenase-catalyzed cathodic reaction in anaerobic mic, J. Electroanal. Chem, vol.561, pp.93-102, 2004.

M. Mehanna, R. Basséguy, M. L. Délia, L. Girbal, M. Demuez et al., New hypotheses for hydrogenase implication in the corrosion of mild steel, Electrochim. Acta, vol.54, pp.140-147, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00475993

L. Girbal, G. Von-abendroth, M. Winkler, P. M. Benton, I. Meynial-salles et al., Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified Clostridial and algal Fe-only hydrogenases with high specific activities, Appl. Environ. Microbiol, vol.71, pp.2777-2781, 2005.

B. Elsener, Corrosion rate of steel in concrete-measurements beyond the Tafel law, Corros. Sci, vol.47, pp.3019-3033, 2005.

M. Stern and A. L. Geary, Electrochemical polarization, J. Electrochem. Soc, vol.104, issue.1, p.56, 1957.

G. Mcgowan and J. Prangnell, The significance of vivianite in archaeological settings, Geoarchaeology, vol.21, pp.93-111, 2006.

D. Glindemann, F. Eismann, A. Bergmann, P. Kuschk, and U. Stottmeister, Phosphine by bio-corrosion of phosphide-rich iron, Environ. Sci. Pollut. Res, vol.5, pp.71-74, 1998.

W. P. Iverson and G. J. Olson, National Measurement Lab, issue.1, 1982.

J. J. Robin, J. Duran, L. Cot, A. Bonnel, M. Duprat et al., Physicochemical and electrochemical study of the protection of a carbon-steel by monofluorophosphates. 1. Influence of a chemical conversion treatment, Appl. Electrochem, vol.12, pp.701-710, 1982.

E. M. Martini, S. T. Amaral, and I. L. Müller, Electrochemical behaviour of invar in phosphate solutions at pH = 6, Corros. Sci, vol.46, pp.2907-2115, 2004.

W. Rausch, Die Phosphatierung Von Metallen, Leuze Verlag, Saulgau, Germany. The Phosphating of Metals English Electronic Version, 1988.

H. Harms, H. Volkland, G. Repphun, A. Hiltpolt, O. Wanner et al., Action of chelators on solid iron in phosphate-containing aqueous solutions, Corros. Sci, vol.45, pp.1717-1732, 2003.

Y. Gourbeyre, E. Guilminot, and F. Dalard, Study of the corrosion layer on iron obtained in solutions of water-polyethilene glycol (PEG400)-sodium phosphate, J. Mater. Sci, vol.38, pp.1307-1313, 2003.

C. A. Borrás, R. Romagnoli, and R. O. Lezna, In-situ spectroelectrochemistry (UV-visible and infrared) of anodic films on iron in neutral phosphate solutions, Electrochim. Acta, vol.45, pp.1717-1725, 2000.

A. Paszternák, I. Felh?si, Z. Pászti, E. Kuzmann, A. Vértes et al., Surface analytical characterization of passive iron surface modified by alkylphosphonic acid layers, Electrochim. Acta, vol.55, pp.804-812, 2010.

H. Volkland, H. Harms, B. Müller, G. Repphun, O. Wanner et al., Bacterial phosphating of mild (unalloyed) steel, Appl. Environ. Microbiol, vol.66, pp.4389-4395, 2000.

C. Cote, O. Rosas, and R. Basséguy, Geobacter sulfurreducens: an iron reducing bacterium that can protect carbon steel against corrosion?, Corros. Sci, vol.94, pp.104-113, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02134806

M. Demuez, L. Cournac, O. Guerrini, P. Soucaille, and L. Girbal, Complete activity of Clostridium acetobutylicum [FeFe]-hydrogenase and kinetic parameters for endogeneous redox partners, FEMS Microbiol. Lett, vol.275, pp.113-121, 2007.

I. Frateur, L. Lartundo-rojas, C. Méthivier, A. Galtayries, and P. Marcus, Influence of bovine serum albumin in sulphuric acid aqueous solution on the corrosion and the passivation of an iron-chromium alloy, Electrochim. Acta, vol.51, pp.1550-1557, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00080432

J. C. Fontecilla-camps, A. Volbeda, C. Cavazza, and Y. Nicolet, Structure/function relationships of [NiFe] and [FeFe]-hydrogenases, Chem. Rev, vol.107, pp.4273-4303, 2007.

J. W. Peters, W. N. Lanzilotta, B. J. Lenon, and L. C. Seefeldt, X-ray crystal structure of the Feonly hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution, Science, vol.282, pp.1853-1858, 1998.

I. Dupont-morral, Les bactéries sulfato-réductrices et la corrosion bactérienne, Bull. Soc. Fr. Microbiol, vol.19, pp.108-115, 2004.

R. A. King and J. D. Miller, Corrosion of mild steels by iron sulphides, Br. Corros, vol.8, pp.137-141, 1973.