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Abstract

Manipulation of complex objects as in tool use is ubiquitous and has given humans an evolutionary
advantage. This study examined the strategies humans choose when manipulating an tbbject wi
XQGHUDFWXDWHG LQWHUQDO G\QDPLFV VXFK DV D FXS Rl FRI
evolution complex, possibly even chaotic, and difficult to predict. Aaagtpendulum model, loosely
mimicking coffee sloshing in a cup, was implenaghin a virtual environment with a haptic interface.
Participants rhythmically manipulated the virtual cup containing a rolling ball; they could choose the
oscillation frequency, while the amplitude was prescribed. Three hypotheses were tested: 1) humans
decrease interaction forces between hand and object; 2) humans increase the predictability of the object
dynamics; 3) humans exploit the resonances of the coupled-blajedtsystem. Analysis revealed that
humans chose either a hiflequency strategy witlantiphase cugmndball movements or a low
frequency strategy with {phase cufandball movements. Counter Hypothesis 1, they did not decrease
interaction force; instead, they increased the predictalufityhe interaction dynamics, quantified by
mutualinformation, supporting Hypothesis 2. To address Hypothesis 3, frequency analysis of the coupled
handobject system revealed two resonance frequencies separated byrasardnce frequency. The
low-frequency strategy exploited one resonance, whileighefrequency strategy afforded more choice,
consistent with the frequency response of the coupled system; both strategies avoidedaberamice.

Hence, humans did not prioritizenallinteraction force, but rather strategies that rendered interaction
predictable. These findings highlight that physical interactions with complex objects pose control

challenges not present in unconstrained movements.

Key Words: motor skill, rhythmic movementspbject manipulation, prediction, interaction force,

impedance



New and Noteworthy

Daily actions involve manipulation of complex nrdgid objects which presents a challenge since
humans have no direct control of the whole object. We used a vigiély experiment and simulations

of a cartandpendulum systeronoupled to handhovements withimpedance to analyze the manipulation

of this underactuatedbject. We showed that participants developed strategies that increased the
predictability of the object behavior by exploiting the objgstsonance structure, bditl not minimize

the haneobject interaction force.



Introduction

Using tools has been essential in human evolution, and a large variety of tools now enhance and augment
our daily actions. Toesupported actions range from the simple swinging of a harmntecutting meat

with a knife to more complex or exotic actions, such as eating spaghetti and cracking a whip. The latter
tasks are challenging and require practice because the objects themselves, spaghetti and whip, are flexible
hence underactuatede. have internal degrees of freedom that are not directly controlled by the user.
Another seemingly mundane example is carrying a cup of coffee: the human manipulates the cup that, in
turn, exerts a force on the coffee that exerts forces back on the cupeamahtd. Complex interaction

forces arise between the hand, the cup and the coffee. Despite this complexity, humans are extremely
skilled at interacting with such underactuated objects. Our understanding of how humans achieve such
dexterity is still limitel and becomes an evgirowing barrier to current developments in prosthesis

control, braiamachine interfaces and robotic rehabilitation.

Despite the abundant literature on the control of-ga&icted uppelimb movements, most studies have
focused on e movements without physical interaction, such as reaching and pointing (Flash and Hogan
1985; Bhushan and Shadmehr 1999; Krakauer et al. 1999; Sabes 2000), or interactions with rigid objects,
such as grasping with isometric grip forces (Flanagan and Y9@g; Fu and Santello 2014). The control

Rl SFRPSOH[ REMHFWYV" ZKLF K uddéraettateadefinaDdynariicsi.el RdrngidZz L W K
objects, has been largely ignored. The few studies that examined the control of complex objects have
focused orthe two classic control models of balancing a pole and manipulating a lineasspnegs

system. For balancing a pole one needs to stabilize an inherently unstable inverted pendulum. Based on
kinematic measurements and mathematical modeling, differentamieois have been suggested, such

as intermittent, continuous or predictive control, with forward or inverse models (Mehta and Schaal 2002;



Gawthrop et al. 2013; Insperger et al. 2013). Another set of studies on the inverted pendulum system
focused on noisand delays to distinguish between the continuous vs. intermittent nature of control
(Cluff et al. 2009; Milton 2011; Milton et al. 2013). A linear magsing system has served as a model

to examine optimization criteria in human control, such as gepedatinematic smoothness (Dingwell

et al. 2014), effort and accuracy (Nagengast et al. 2009), or minimum acceleration with constraints on
the center of mass (Leib et al. 201Zyo studies compared the contributions of visual and haptic
feedback and theiresults highlighted the essential role of haptic feedback over visual feedback in
controlling the object (Huang et &007; Danion et al. 2012).astly, another set of studies looked at the
compression of a buckling spring, modeling the buckling behawtbra subcritical pitchfork bifurcation

of the nonlinear dynamic system, including integration of radtisory information with different time

delays (Venkadesan et al. 2007; Mosier et al. 2001).

All these studies examined poitttpoint movements, orhert sequences of discrete movements, in
which the full complexity of theV \ V W HyRgmics may not yet be fully manifest. A more extended
continuous interaction may reveal more of the challenges arising from conmglesactuatedynamics.

For instance, Wen a system is near an argsonance frequency, its evolution is very sensitive to small
changes in the input, rendering the system's behavior chaotic, and essentially unpredictable in the longer
term. Such small perturbations readily arise from the flaat human movements are intrinsically
variable. This presents a problem for the wieledyd assumption that humans rely on internal models of

the manipulated object to select and execute a movement policy (Flanagan et al. 2006; Dingwell et al.
2012 Danbon et al. 2012 How can humans learn an internal model of a complex underactuated object
that has a potentially unpredictable temporal evolutido® can humans control the behavior of such
objects? Relying on feedback control is largely insufficienttiermanipulation of objects with complex

dynamics due to neural transmission delay. Despite these challenges, humans skillfully manipulate



complex objects of all degrees of complexity. How humans achievis Hisopen question.

Extending previous workybSternad and colleagues (Hasson et al. 2012a; Nasseroleslami et al. 2014;
Sternad and Hasson 2Q1Bazzi et al. 2018 this paper investigates continuous manipulation of an
underactuatedbject with nonlinear internal dynamics. The task of moving a {sbesped cup with a

ball inside was implemented in a virtual environment, using aacekpendulum model to mimic the

ball rolling in the moving cup. Notably, one of our previous studies demonstrated that the continuous
evolution of this system shows featsiref deterministic chaos (Nasseroleslami et al. 2014). Using
mathematical modeling and simulation of the task dynamics, this previous study examined the strategy
that humans adopt when manipulating this complex object in continuous rhythmic fashion. &tanng
imposed frequency, participants chose movement amplitudes that made the interaction easier to predict.

Counter to expectatiomteraction forceand smoothness were not minimized.

The present study examined the same task, but extended the questonways. First, rather than
imposing a frequency for the oscillatory movement, the present study prescribed the movement
amplitude, leaving frequency free to choose. The task of choosing a frequency gave rise to new behaviors
and new questions, becau$e resonance structure of the system may now play a significant role in the
choice of strategy. Second, we extended the modeling of human control by including the mechanical
impedance of the hand. The previous study on the same system only conseldsaththics of the cart
andpendulum system (Nasseroleslami et al. 2014). However, the object is in continuous interaction with
the human, whose neuromechanical properties are likely to influence t@daegndulum dynamics.
Therefore, this study introded a simplified model of hand mechanical impedance interacting with the

cartandpendulum system.



Several studies on unconstrained movements have demonstrated that humans tend to move in a way tha
minimizes physical efforig.g.Alexander 2000; Prilutsy and Zatsiorsky 2002). Extending these findings

to the manipulation of complenMnderactuateabjects, our first hypothesis is that humans seek to
minimize the effort, or specifically the interaction fort¢¢ypothesis 1 We assessed this hypothesis by
guantifying the rooimeansquared value of the interaction force between the object and the hand.
However, while demonstrated for free movements, this principle may become less prominent when the
manipulated object presents additional challenges, spegifisdlen it develops increasingly erratic
behavior that becomes hard or impossible to predict. Therefore, we also tested the hypothesis that humans
adopt strategies that make the habject interaction more predictabldypothesis 2 When interactions
arepredictable it is easier for humans to anticipate the object motion and hence the force arising from
WKH REMHFWY{V LAWIHAIQDMXIGAGBRUMVXUELQJ” IRUFH VXEMHFW
appropriate interaction force to achieve the @esinovement. Conversely, unpredictable object behavior
requires continuous correction and adaptation of the hand movement, which may be tiring, both
physiologically and cognitively. Predictability of the object dynamics may therefore obviate
computationaleffort and afford simpler internal models to guide feedforward coniva.assessed
predictability by quantifying mutual information between the hang interaction force and the object

kinematics.

AddressingHypotheses Bnd 2 rendered insight into humamovement strategies (what do humans
optimize), but they did not inforrhow humans achieved these strategies. Such explanation required
closer analysis of the object dynamics. Numerous studies on rhythmic movements have provided
evidence that resonanceperties of the limbs or the object influence behavior. For example, in walking,

the preferred stepping frequency maps onto the resonance frequency of the leg modeled as a simple
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resonance frequency of the jolly jumper (Goldfield et al. 1993). Rhythmically swinginghwdahd
pendulums of different mass and length has demonstrated that humans have a tendency to oscillate at the
natural frequency of the haqpndulum system (Yu et al. 2003). One main advantage of moving at the
resonance frequency is its energetic efficiency: in oscillatory systems at resonance, the ratio between the
amplitude of the movement output and the force input is maxitmather featve of oscillating at
resonance has been shown by Goodman et al. (2000) in a study on rhythmic limb movements. Time
series analysis using phase space embedding revealed that the trajectories became more predictable whe
oscillating at resonance. Howeveratlstudy focused on pendular limb movements, and the applicability

of its findings to the manipulation of underactuated objects is unclear. We theestexdan additional
hypothesis that in complex underactuated object control, humans exploit thenoesstracture of the
manipulated objectHypothesis B As the analyses showed, the manipulated object together with the
hand not onlyhad one, but two resonance frequencies separated by anesotiance frequency, a

structure that will aid in interpretinthe results.

In the experiment, participants manipulated a virtual-aadpendulum system at their preferred
frequency with the movement amplitude prescribed. To evaluate the strategies that humans adopted we
mathematically examined the cartdpenddum system coupled to a simple model of hand impedance.
This modelbased analysis allowed us to assess alternative execution strategif$erent values of
frequency and hand impedance that could be used to perform the task. Interaction foroeslegibée

of predictability were calculated both experimentally and in simulation. Comparison of human behavior
with the mathematically derived results showed that participants did not minimize interaction force, but
favored strategies with high predictatyll In addition, frequency analysis of the coupled obfeutd

system showed that the degree of predictability was closely related to the resonancerasdraice

frequencies of the system.



Behavioral Experiment

Participants

Ten young adults with nself-reported neuromuscular pathology volunteered foettperiment (mean
age = 24.3+£1.8 yrs). All participants performed the task with their dominant hand. They wer® naive
the purpose of the study and gave written informed consent before the expehiingarocedures were

approved by the Northeastern University Institutional Review Board.

The Virtual Task

To test the three hypotheses, a virtual task mimicking the manipulation of shawdd cup with a ball

inside was developetimportantly, this gstem is underactuatesince moving the cup causes movements

of the ball, which simultaneously exerts forces on the cup: the person moving the cup has to take into
account these indirectgontrolled forces to obtain the desired movement of the cup. plifed model

of a cupandball was simulated in a virtual environment with visual and haptic feedback via a robotic
manipulandum. Participants were asked to move this virtual cup rhythmically between two specified

targets, but were allowed to choose tipeeferred frequency.

The Mechanical Model

Similar to (Hasson et al. 2012a, 2012b; Nasseroleslami et al. 2014; Sternad and Hasson 2016), the cup
andball system was modeled as a ball sliding in a sgraular cup (Fig 1A). The cup motion was
limited toone direction in the horizontal plane, without any friction. Under the assumption that the ball
does not roll, but only slides without friction between the cup and ball, tharalpall system was

mathematically equivalent to an undamped pendulum atlath@ moving cart (Fig 1B). The ball
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dynamics ofthe task could be computed more easily, without sacrificing the essential elements of the
dynamics: underactuated and nonlinétence, the equations of the eartdpendulum motion are

Kl 6E 1 50: 7L | ;@3 <aF al..‘a%E (yacda (60dR (Vacoa
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whereX s the cart position, is the pendulum angl&;jnteris the force applied by the human on the cart,
andFball is the force applied by the pendulum (the ball in the conceptual model) on the cart. Parameters
of the system are the mass of the caft mass of the pendulump, the pendulum lengtt, and the
gravitational acceleratiog. The following values were usen = 2.40 kg,mp = 0.60 kg,d = 0.45 m.

These values were chosen because they rendered resamarantresonance frequencies of the system

that were well within human motor capacities and within reach of participants. The cart and pendulum
masses were chosen to make the object light enough to avoid fatigue. The ratio of cart and pendulum
massesvas set to make the underactuated internal dynamics a prominent featpagticipants clearly

felt the forces generated by the ball. For lighter ball masses, thancHrall systemapproximatd a

rigid object.

x

= /

Fig 1. Model of the task A: Conceptual model of the ctgndball systemB: Mechanical model of cupndball

dynamics as aattandpendulum system.
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Apparatus and Data Acquisition

The dyramics of the ciyandball system were simulated in a virtual environment (Fig 2). Participants
were seated on an adjustable chair in front of a screen and interacted with the virtual environment via a
3-degreeof-freedom robotic manipulandum (HapticMaster@otekforce, Amsterdam, Netherlands)

(Van der Linde and Lammertse 2003). The force applied by the participants on the handle of the robotic
arm (Finter in Eq 1) controlled the position of the virtual cdpif Eq 1). The movements of the robotic

arm wererestricted to horizontal translations parallel to the participant's frontal plane to ensure a one
dimensional motion of the cup as in the model. Participants felt the interaction force (system inertia and
ball forceFball in Eq 1) via the force feedbackgwided by the robotic manipulandum. A custamtten

C++ program based on the HapticAPI (Moog FCS Control Systems) computed the ball kinematics and

controlled the virtual display as well as the force feedback.

Fig 2. Experimental setup of the ball-and-cup task using virtual reality and force feedback.A: Rendering

of the task in the virtual environment: the robotic manipulandum provided haptic feedback of the mechanical
interaction with the object, while the behavior of the system was displayed onlihe backprojection screen.

The physical model used the distances shown on the figure, while the distances displayed on the screen were
multiplied by a factor of 4 for visibility. The cup displayed was 7.5 times smaller than the physical arc determined
by the lengthd of the pendulumB: A participant using the HapticMaster to interact with the simulateeaadp

ball system. The position of the cup was controlled by the position of thefieatior of the robot.
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The cup and ball movements were displayed @40 m x 2.40 m baghrojection screen located 2.15

m in front of the participants. The display consisted of two green rectangular targets on a horizontal line
delimiting the displacement of the cup; a yellow seirtle represented the cup and a smlite circle
represented the ball (Fig 2). Although the cup was only displayed as-aisg&ithere was no restriction

on the ball angle and the pendular rotations could exceed 90° without the ball escaping the cup. The
visual translation of the cup wds0 times the physical displacement of the manipulandum. The cup
displayed on the screen was 7.5 times smaller than the physical dimension of the cup (set by the pendulum
lengthd), in order to have plausible dimensions and fit the display. The forceayl the participants

on the robotic armHinter), the cup kinematics (positioX, velocity : 6and acceleration )Y and the
computed ball kinematics (angular positionangular velocity 36and angular acceleratiod! were

recorded at 120 Hz.

Experimental Task and Instructions

Participants were asked to move the cup rhythmically betiveetargets located at a horizontal distance

of 16.5 cm from one another (physical distance between the center of each target, PaytdA)ants

were instructed to place the cup within the target rectangle at each excursion, so movement amplitude
wasprescribed. However, the scaled cup was 3 cm wide, while each target was 4.5 cm wide;-the peak
to-peak excursion of the physical cup oscillation could therefore range from 15 to 18 cm and still satisfy
the task. This tolerance gave participants some hkdwadevelop their preferred motion. Further,
participants were told that they could freely choose their frequency of oscillation and that they could
change it throughout the experiment to arrive at their most preferred frequency. Even though participants

did not receive explicit restrictions on the movement frequency, a demonstration of the task by the

12
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movements. Note that people do not necessarily prefer to mol@ndg as possible, even though this

may save effort\(an der Wel et al. 201®Rark et al. 2017). No instruction was given regarding the
position of the ball within the cup, but participants were informed that the ball could not escape the cup
(i.e. the belavior was that of a penduluntattached with a stringtrather than that of a loose ball).
However, due to the haptic feedback provided by the manipulandum, participants could not ignore the
movement of the ball: the ball movement affected the cart moveaseim a real system, and participants

felt and saw itNote that this experimental design intentionally refrained from specifying a single optimal
task performance, but rather aimed to give insight into what participants preferred to do, especially afte

some exploration and practice.

The experiment consisted of 5 blocks of 10 trials each. Each trial lasted 45 s. The trials within a block
were separated by a 15 s pause, and the blocks were separated by a break of several minutes. At the
beginning of eah trial, the cup was positioned at the center of the left target, and the ball rested at the

bottom of the cup.

Data Analysis

As the task could be achieved by multiple solutioms,it had redundancy, we distinguished between
execution and the outcormeresult of the movemerRerformancevas quantified by variables that fully
described the kinematics of the system,amplitude and frequency of cart and pendulwhile the
outcome was quantified by the task or result variaiiegactionforce, prelictability and resonance.

Result variables are metrics that explicitly tested the hypotheses.

Task Performance andKinematic Variables: The task instructions elicited trajectories close to a

13



sinusoid, therefore the movementstoé cart (cup) were chari@rized by the amplitudék and the
frequencyfk of each cyclé (i.e. each baclkandforth movement). The cart amplitude was defined as

the halfdistance between the minimum and the maximum of the cart position dydlek. The cart
period Tk was déined as the time between two successnaxima of the cart position; the oscillation
frequency wadk = 1/Tk. In addition, we quantified the relative phase between the cart and pendulum
movements by computing the time lag that maximized the -c@sslaton between the timeeries of

the cart position and pendulum angle. The resulting time lag was then converted into relative phase

In order to detecthe extrema in the cart position, the difference between successive dataimoints,
velocity, was compted. Extrema were detected as those values whergghechanged. In order to
ensure robust detection of the caxtrema, the cart position data were smoothed avithrephaselag,
fourth-order, lowpass Butterworth filter with a 3 Hz coff frequency Note that this smoothingas

used only for detecting the extrema.

Result Variables Hypothesis 1HMinimize Interaction ForceThe net forceequired to perform the task

was estimated by the root mean square of the continuous interactioRM8&fe
415 (:(vacok 1, (SacoR@P @)

whereT is the duration of the triaNote that this hypothesis is about the haad interaction force and

not the overall force exerted by the participants. In particular, musctdatr\ehs not evaluated.
Hypothesis 2 + Maximize Predictability Predictability is a mathematical concept that can be

operationalized in several ways. We opted to characterize the degree of predictability of the object

dynamics by the mutual informationtla@en the input and the output of the systesnthe cart trajectory

14



and the interaction fordéinter. Mutual informationis an informatiortheoretic metric thaguantifies the
statistical dependency between two variables, and thepeaytifieshow muchknowing one of the
variables reduces the uncertainty about the other. High mutual information indicates a small degree of
uncertainty(Cover and Thomas 2012 the present context, mutual information quantifies the degree

to which the longerm evolutimm of the interaction force can be expectee. predicted if the cart
trajectory is known. Unlike crossorrelation, which is limited to linear relations between variables,
mutual information assesses both linear and nonlinear dependency. It is thexafeuitable for this
nonlinear systemn particular, mutual information has been commonly used to quantify predictability

of weather and climate, which are modeled by chaotic dynamical systems (DelSole 2004; Kleeman

2011).

The cart trajectory, whiclvas close to sinusoidal, was represented by its phase in state ¥pace
arctan(? (2f _@X)). The interaction forc€inter(t) was used as defined above. The predictability measure

MI was therefore

/47 Qoasoh | LT Huacil) B 22200 1 @450 (3)
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where p denotes the probability density functions f&t) and Finter(t). Mutual information is a
dimensionless quantity, and its unit depends on the base of the logdnathis used. Here, the natural

logarithm was used, and the unit of mutual information istte

Hypothesis 3tExploit Resonancdetermining the resonance structure of the system requires analytical
or numerical analysis of the system dynamics amshatbe inferred from the behavioral data alone.

Therefore Hypothesis 3vill be addressed later in the modeling and simulation section.
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Data ProcessingFor all kinematic and result variables, only the data between t = 20 s and t = 40 s of
each trial wee analyzed to eliminate transients at the beginning and end of the trial. As the experimental
data were compared with model simulations described below, trials that significantly deviated from
periodicity needed to be excluded as the model assumed piyiddence, when the standard deviation

of the oscillation frequency exceeded 10% of its mean, the trial was excluded as this indicated significant
deviation from the instructed periodic movements. Similarly, a trial was excluded if the mean cart
excursionwas smaller than 12 cm or larger than 21 cm, as it did not satisfy the instructed excursion (15
to 18 cm), even allowing an additional 3 cm of tolerance. These relatively stringent inclusion criteria
were adopted in pogtrocessing only to enable meangtomparison with the simulation study
reported below (the simulation assumed constant movement frequency within a given amplitude range).
They were not success/failure criteria for the participants. One participant's majority of trials did not
satisfy ttese criteria and his entire data were eliminated from subsequent artaigsisthe remaining

450 trials of 9 participants, only 17 trials did not meet these criteria. These 17 trials were not at the
beginning of the experiment, but distributed across/eartl late trials. This indicated that the task did

not require practice, and performing with periodicity was not a challeagse

The data processing and analyses were performed with MATLAB® (The Mathworks Inc., Natick, MA)
and Gnumeric. The numericablues of theinteraction forceand predictability estimates for each
experimental trial were computed with Matlab from the experimental trajectories. Mutual information
was calculated with the Matlab MIToolb@x1.2. Statistical comparisons were perfodnusing ttests

since the measures were normally distributed (confirmeddbiyogoroviSmirnov tests)

Resuls

Task Performance and Kinematic Variables: As a first overview of participants' performance, Fig 3

16



shows the frequencids adopted by participastplotted as a histogram. To obtain a sufficiently large
number of data, each cyciee. one backandforth movementwas a data point. Two distinct strategies

were observed: frequencies were concentrated either between 0.4 and 0.7-feql@ncy stragy)

or between 0.9 and 1.8 Hz (hifflequency strategy). The low frequencies were densely concentrated
with a sharp peak at around 0.65 Hz, while the higher frequencies were distributed more broadly. These
two strategies were separated by a gap betw&ean@.0.9 Hz: only very few oscillations had a frequency
within this range. Four participants adopted the-foagquency strategy, and four participants chose the
high-frequency strategy. One participant used low frequencies for the first 35 trials, msavitebed to

high frequencies; his first 35 trials were therefore put in theftegquency strategy, and the subsequent
trials in the highfrequency strategy. All others were consistent in their choice throughout their 50 trials,

excluding the very firstrials that were exploration.

Fig 3. Distribution of frequencies adopted by all participants when manipulating the virtual cupand-ball

system.The histogram represents the frequentiie$ every single cycle of the 433 valid trials (total: 7350 cycles).

Note that the saxis is in log scale.
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Fig 4 depicts a lowand a highfrequency strategy with exemplary time series of the cart and pendulum
positions of two representative participants. For the-filequency strategy, the cart and pendulum
movements weain SKDVH WKH SHQGXOXPYV PD[LPXP DQJOH ZDV V\QFEK
position). In contrast, the cart and pendulum movements of thefreighency strategy were in anti

SKDVH UHODWLRQ WKH SHQGXOXP PD[LP XBninni@ posztibny. VIQFKU
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Fig 4. Experimental cart and pendulum trajectories.Representative trajectories of the cart (top panel) and
pendulum (bottom panel) from one participant who chose thdreyuency strategyN) and one participant who
chose the higffirequency strategyB). With the lowfrequency strategy the cart and pendulum movements were
in-phase, and the pendulum oscillations were large. With thefldghency strategy the cart and pendulum

movements were aAthase and the pendulum oscillatiavere smaller.

Fig 5 shows how the kinematic variabldsf andthe relative phase between the cart and pendulum
movementhanged over the 50 practice trials for the two grouestwo strategiesln overview, all

kinematic variables tended to show aitial transient and then reached a plateau relatively early on.

18



Fig 5. Evolution across trials of the experimental kinematic variables. AAmplitudeA of the cart oscillations.
B: Frequency of the cart oscillationsC: Relative phase between the cadvement and the pendulum movement.

Note that the amplitudais defined as the hatfistance between the cup extrema. Each of the 433 valid trials was

represented by one single value®of and &, 5sE\ DYHUDJLQJ DFURVYV DOO WKH F\FOHV
trial. The blue and red colors correspond to the two frequency groups. The thick lines denote the mean across

participants; the shaded areas denote the standard devaioss participants.

Cart Oscillation Amplitude (Fig 5A)fhe amplitudeA of the cart was relatively invariant throughout the
whole experiment in the lodrequency group, while for the highequency group it only stabilized in
approximately the last 2@als. The mean cart amplitude in the last 20 trials converged to similar values

in both frequency groups: 8.8 = 0.1 cm in the-loequency group and 8.9 £ 0.1 cm in the Higdguency

group. These values were within the instructed amplitude rarigeugh close to the higher limit
showing that both participant groups satisfied the task. The mean amplitudes over the last 20 trials were

not significantly different between groups (p = 0.47).

Cart Oscillation Frequency (Fig 5BAfter initial explorationin which all participants adopted relatively
low frequencies (around 0.5 Hz in the very first trials), the frequestapilized after approximately 15
trials in both groups. The lodvequency group arrived at a mean movement frequency of 0.65 + 0.01 Hz

(average and standard deviations across the last 35 trials). Thigdggbncy group adopted a mean
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movement frequency of 1.27 £ 0.04 Hz (average and standard deviations across the last 35 trials),
although the variability across participants was muchdrigas already indicated by the broad
distribution in Fig 3. The mean frequencies over the last 35 trials were significantly different between

groups p< 0.01).

Cart and Pendulum Synchronization (Fig 5@):the lowfrequency group, the relative phasetween

the cart and pendulum movements remained close to zero for all trials, indicgpingse movements
(average relative phase over all trials: 4.92 + 2.71 degrees). In th&dagiency group, after abruptly
transitioning from O to 180 degreesthre first 5 trials, relative phase stabilized at around 180 degrees,
indicating antiphase movements (average relative phase over the last 45 trials: 181.9 + 4.47 degrees).

No intermediate relative phase values were observed in any of the experimdstal tria

Result Variables and Hypothesis TestingFig 6A and C display the evolution of the result variables
interactionforceRMSFand mutual informatioMl, averaged over all participants across trials. The two
frequency strategies are again shown sepgra&@nilar to the kinematic variables, there is an initial
changdeading toa plateauelatively early To evaluate the hypotheses the initial 5 trials were compared

with the final 5 trials.
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Fig 6. Evolution across trials of the result variablesEvolution of the experimental({ C) and simulatedg, D)

result variables root mean squarderaction force RMSF and mutual informationM| across trials. The
experimental variables were computed from the measuredseén®es. The simulated variables were coragut

from time-series obtained by simulation of the coupled model (described below). The simulations were run using
the experimental values of the cart amplitude and frequency. The solid lines represent the average over all

participants in each of the twaefijuency groups, and the shaded areas represent one standard deviation.

Hypothesis ltinteractionForce: The root mean squaneteractionforce RMSFincreased from 2.57 +
0.56 Nt0 5.49 = 0.10 N in the lefkequency group, and from 5.48 + 1.59 N to 9.@38 N in the high

frequency group between early and late trials. The increase was significant in both groups (p < 0.001).
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This evolution suggests that participants did not minimize interaction force, courdgpathesis 1
Instead, with practice theygreased the exerteédteraction force. Further, 5 out of the 9 participants
chose the higlirequency strategy which was associated with significantly higgMBF values. If
minimization of interaction forces had been the criterion, all participants shau@converged to the

low-frequency strategy.

Hypothesis 2- Predictability: Mutual information Ml between the interaction force and the cart
kinematics of the lowrequency group increased from 1.25 = 0.05 nat in the first 5 trials to 1.44 + 0.06
nat inthe last 5 trials. In the higliequency group, mutual information increased from 1.36 + 0.08 nat to
1.53 + 0.03 nat between early and late trials. The increase was significant in both groups (p < 0.003)
supportingHypothesis 2Zhat participants sought tocrease predictability of the system they interacted

with. Note that though the increaseMi seemed modest, the maximum achievable valudloivas

around 1.8 nat (for achievable oscillation frequencies). Therefore, the observed relative increases were

important.

Simulations and Analysis of the Result Space

The results of the behavioral experiment provided suppolypothesis 2hat humans strive to increase

the predictability of the interaction when manipulating an inherently erratic or unpredistgiem.
Conversely, the interaction force was not minimized in this interactive task (countgrdthesis 1. To

further evaluate these findings and to telyipothesis 3 we compared the strategies adopted by
participants with possible alternatiegeationsto shed light on priorities in human control. To this end,
modelsimulationswere performed to compute the result variables for alternative executions that could

have achieved the task.
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A Coupled Model

In a previous study, the task dynamics waslyaea by consideringhe behavior of the caend
pendulum system alone without including the controlling hand (Nasseroleslami et al. 2014). However,
this uncoupled model only partly replicated our experimental data (see Appendix A). We therefore

extendedhe model to include the continuous coupling between the cart and the hand.

Mechanical Model and Forward Dynamics:To capture the dynamics of the task more accurately, the
cartandpendulum system was coupled to the hand dynamics (Fig 7). The hand dynsasc
represented by an ideal force generator (féiiggir) in parallel with a spring (stiffnes§) and a damper
(damping coefficienB). (y4s¢P Was the force required to follow a desired trajectory,P,. &% o :P). If

the full dynamics of the tasktincluding the pendulum forcewere perfectly anticipated, participants
would be able to generate an input foFaeut allowing the cart to exactly follow the desired trajectory
Xdeqt). In reality, howeverit was unlikelythat participants learrihe perfectmodeldue to the pendulum
force acting as a perturbation. Taemre themotion due to the generated input fofaeput(t) did not
exactly track the desired cart trajectory, so that the actual cart trajadfgred from Xdes The spring
and dampertwhich were a simplified model of hand impedanitken served to resist this perturbation.
Note that this model represented the impedance at the level of the limb: the skffmegslampindd
corresponded to limb featuraad not to properties of the involved muscldse equations of motion of

the coupled model are

Kl 6E 1 50: 7L | ;@& <aF al.. ‘a%E (pacda (60dk (acoa
aL F Y arYeca 4)

(vacda (UaaeE -1 FivgaF $::6 :6p5

Given the task instructions, the desired trajectory was a sin¥se{t) = A sin(2_CEt + @).
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Fig 7. Model used to analyze the dynamics of the task in simulationf-orward dynamics of the caand

pendulum system coupled to a model of hand impedance.

The coupled model was simulated with forward dynamiies,computing the system seawariables

. :R&* P& P&:P and interaction forcéinter(t) from a knownFinput(t). SinceFinput) could not be
measured experimentally, it was chosen to match the force required to manipulate a rigid object of similar
massj.e. (yaecP L kl 6E I 50: {5:P. Humans can manipulate rigid objects very accurately, suggesting
that they have a good model of the task dynamit®e hand impedance paramet&rand B were

considered constant during a trial.

Execution Variables: To evaluate the three hypotheses, one must first defirée W UDWHJI\" D VW
was defined by the set of execution variables that participants directly controlled and that fully
determined the task outcome (and hence referred to as result \&ridldle the cart oscillation
amplitudeA was prescribed in the experiment, participants could freely chooseviimiables of the

coupled model: the movement frequerfcythe hand stiffnes& and the dampind, referred to as

execution variables.

Unlike the movement frequengythe experimental hand stiffness and damping could not be measured

directly, but had to be estimated afford forward simulationsTo this end, an optimization was
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conducted which aimed to estimate the valuek ahdB for which the simulated cart and pendulum
trajectories best resembled the experimental trajectories. The optimization process and the cost criterion

C are detailed in Appendix B.

Simulation of Result Variables and Hypothesis TestingAs for the behavioral expenent, the
simulationtested the hypothesey evaluatingthe result variablesoot mean squareidteractionforce
RMSF(Eg. 2) and mutual informatiokll between the cart kinematics and the interaction force (Eq. 3).

To obtainthe space of all executiorsganned byexecution variable$, K and B forward dynamics
simulation of the coupled modelere run togeneratehe profiles of the cup kinematic§t) and the
interaction forceinter(t). Using Matlab6 LP XOLQN WKH VLPXODWLRQ WLPH ZDV
W " VZHUH DQDO\|HG WR HOLPLQDW M| &dRMOPWerel tQevwdalculated W Z R

with Matlab as for the experim&al dataThese results then served to tdgpotheses and2.

To evaluateHypothesis 3exploit resonance), a frequency response anabystsee coupled modetas
conducted in Matlab. Due to the nonlinearity of the coupledaratpendulum plus humamand system,

classic frequency response tools could not be used. However, the system could be linearized assuming
small pendulum angles. Although this approximation was not valid for all frequencies, the linear analysis
allowedfurther insight into the belvior of the system. In the frequency response analysis, only one of

the execution variables, the movement frequdnaas varied, while the hand stiffndsand damping

B werefixed to typical values: one corresponding to the mean valuksaofiB adoped by participants

in the lowfrequency group, and the other to the mean values in thereighency group (see Appendix

B for the identification procedure of experimental valuek ahdB).
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Simulation Results of the Coupled Model

Figs 8A and 9A displathe 3D execution space spanned by frequénstyffnessK and dampindg. For

each combination or point in this space the result vari#fddFandMI were calculated (resolution of

f: 0.005 Hz, resolution df: 2 N/m, resolution oB: 1 N.s/m). The greeshades denote the area of low

interaction forceRMSF(Fig 8A) and the pink shades denote the areas ofMigbr predictability (Fig

9A), the hypothesized strategies accordingdymothesis land 2, respectively. The blue dots are the

SDUWLFLSBQW\SSRGOWDRU HDFK WULDO 1RWH WKDW WKH SDUYV

the same to compatbemwith the twosimulatedresult variables. Figs 8B and 9B show a 2D contour

map of the samBMSFandMl, plotted for a constant value of handmgangB = 10 N.s/m. Hence, i
"VSDFH RQO\ VKRZV D VXEVHW R DOB< $2NkIW). FheSd3 @ dpece fa& D W D

MI contains one area of very low predictability for frequencies around 0.8 Hz (Fig 9). This area coincides

with an aea where the interaction forBMSFis low (Fig 8); therefore, the two hypotheses of interaction

force minimization and predictability maximization are mutually exclusive. Conversely, for frequencies

around 0.64 Hz and higher than 1.20 Hz, predictabilag Wgh, but interaction force was high as well.
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Fig 8. 3D plot and 2D contour map oRMSF in the space of the execution variableg\: 3D plot of the root
mean square interaction forBSFin the space spanned by the three execution varigi{esndB. The green
shading represents areas of lioeraction forceRMSF< 3 N.B: 2D map ofRMSFin the space spanned by two

of the execution variable$:andK. The hand damping was fixed at 10 N.s/mThe blue dots repsent the
strategiesf( K, B) adoptedy participants in the experiment. The dark blue dots correspond to trials for which the
impedance fit was good (caSt< 0.15, 80 % of trials); the lighter dots are trials where 0.05<<0.20 (12 % of
trials). The trials where the impedance fit was @@ 0.20) are not represented since they were not reliable (8 %

of trials). The cos€ is defined in Appendix B.
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Fig 9. 3D plots and 2D contour map oMl in the space of the execution variables. 8D plot of themutual
information Ml between the catrajectory and interaction forda the space spanned by the three execution
variablesf, K andB. The pink shading represents areas of high mutual informatibe, 1.2 natB: 2D map of

MI in the space spanned by two of the execution variabéesiK. The hand damping was fixed at 10 N.s/m
The blue dots represent the strategied<( B) adopted by participants in the experiment. The dark blue dots
correspond to trials for which the impedance fit was good €esh.15, 80 % of trials); the lightelots are trials
where 0.15 <€ < 0.20 (12 % of trials). The trials where the impedance fit was @wrQ(20) are not represented

since they were not reliable (8 % of trials). The ¢o& defined in Appendix B.

Hypothesis 1 tinteraction Force: As seerin Fig 8A, very few experimental trials overlapped with low
RMSFsolutions (indicated bgreen aregghat separated the two frequency groups. Very few trials were
centered in the lownteraction forcow predictability area, and two of these data poivese based on

only a moderately good impedance fit (light blue dot). The 2D section in Fig 8B shows the modulation
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of RMSFfor different frequency and stiffness combinations. Notably, thartevaction forcesolutions
are indicated at movement frequersciower than 0.5 Hz or between 0.7 and 0.9 Hz. The experimental

data points clearly were not in these regions and therefore did not sHgpothesis 1

In addition, the simulated time series of the model were analyzed in analogous fashion to the
expeimental time series. The simulatBiMSFwas computed from timseries obtained by simulation

of the coupled model initialized with the experimental values of the execution variables. Fig 6B displays
the evolution across trials of the simulat@SF averagd over all participants in each of the two
frequency groups. The significant increas&MSFfrom early to late trials in both groups was a further
indicator that low interaction force was not a priority. The simul&®$SFincreased from 2.35 + 0.51

N to 4.89 £ 0.07 N in the lovfrequency group and from 4.42 + 1.89 N to 7.44 £ 0.58 N in the high
frequency group (p < 0.001). Note that despite some discrepancies between the experimental and
simulatedRMSEF, the general trends in their evolution and evemthgnitudes were remarkably simijlar

supporting the adequacy of the coupled maael the estimated valueskfandB.

Hypothesis 2- Predictability: According to Fig 9A, none of the participants chose a strategy located in
the area of lowes¥ll, or low pedictability jonshaded areasThe two frequency groups were clearly
separated by the loMI area around 0.8 Hz. Fig 9B details the irregular patteriliofor different
frequencystiffness combinations, with adjacent regions of high andNdvbetween 6 and 0.8 Hz.

This fast change iMI was likely due to the resonance structure of the system detailed below. The more
intricate variation oMI at higher frequencies might be due to chaotic behavior. The data suggest that

participants adopted strategieghwrelatively highMI or high predictability.

Additionally, MI was computed from the time series of the simulated data and is presented in¥lg 6D.
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increased from 1.11 + 0.05 nat in the early (first 5) trials to 1.30 = 0.03 nat in the late (iatt b) tihe
low-frequency group (p = 0.003). In the hiffequency group, the simulatél increased from 1.21 +

0.07 nat to 1.29 = 0.02 nat (p = 0.0&pain, note that the maximum value ldl was about 1.8 nat.
Comparing this progression with the expegintal values (Fig 6C) shows that both the time course and
the magnitudes of th&ll simulated values were close to the experimental valsigsporting the
adequacy of the coupled model and the estimated values of stiffness and damping. This simulation resul

strengtheathe experimental results that predictability was increased with practice.

Hypothesis 3- Resonance:One essential feature of the task dynamics is its resonance structure: the
coupled system has two resonance peaks and onesmitiance figuency or dynamic zero between the
two resonance frequenciddg 10 displays Bode magnitude and phase plots of the linearized coupled
model for two representative values of hand impedance. System A was simulatéd-vli@l® N/m and

B = 10 N.s/m, valueshaat were typical for the loMrequency group. System B wikh= 200 N/m an®B

= 15 N.s/m was typical for the highequency group. As the responses of the two systems reveal, the
resonance peaks depend on the valu&saofdB. The panels for pendulum aeglhow one clear resonant

peak at 0.68 Hz for system A and at 0.71 Hz for system B.

Surprisingly at first sight, the second peakghe higher frequenciese hardly noticeable. This arises
from the fact that the simulation assumed that subjects gedasinusoidalpredictive forceFinput)
intended to produce the desireart motion Xqedt). This predictive force was based on an incomplete
model of the object dynamics which considered only its lodveguency mode of behaviokge. as
though the pedulum and the cart moved as one bagy:.t kl 6E | 50% gzl his imperfectpredictive

force only partially compensated for object dynamics, which was nevertheless sufficient to counteract

WKH REMHFWY{V UHVRQDQFHV HVSHFLDOQOly, Dhe/ prédicthe KokcéKHU |
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introduced complexalued zeros near the complealued poles that describe the highgquency
UHVRQDQFH 7KHVH JHURV WHQGHG WR FDQFHO RU pPDVNY WK

resonant peak into a broad ragiof nearlyconstant magnitude (see Footnote 1).

Importantly, the response of cup displacement for both systems shows a sharp valley, indicating the anti
resonance at 0.74 Hz between the two resonances. Note that #fesanéince frequencyidenticalin

system A and B, e.independent of the valuesl§éfandB. The phase plots in Fig 10 display the relative
phase between the input force and the cart movement (redhlivtedhe relative phase between the input

force and the pendulum movement (bluee)i Comparison between these two curkigghlights that for

low frequencies the cart and pendulum arphiase, while for frequencies higher than the-eegonance
frequency, cart and pendulum motions are-phtiseln addition, the relative phase beewvethe input

force and the cart movement (red line) reveals that for frequencies outside the two resonance frequencies,
the cart movement is afpphase with the input force. Conversalyer a small intervabetween the two

resonancérequencies, the relake phase between the input force and the cart movement is changing.

For comparison of theP R G H&dindnt peaks with the experimental data, the distrilubbrihe
observed frequencias participantsaareshown in grey (Fig 10). For the lefkequency goup (System

$ WKH SHDN LQ WKH GLVWULEXWLRQ LV YHU\ F@&&\eacygRupy KH V\
participants show a very broad distribution that matches with the sraatregsonance peak of System

B. Comparison between Fig 9 ah@ reveals that the two resonance frequencies of the system coincided
with areas of higiMI. This suggests that the behavior of the system is easily predictable when oscillating

at a resonance frequency. Conversely, therastinance frequency coincidegha region of lowMlI,

therefore the behavior of the system is hard to predict when oscillating at or around-tesaarance

frequency. These results are consistent Wigpothesis 3
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Fig 10: Bode amplitude and phase plots of the linearized coupled miel, for different values of hand
impedance.A: K=100 N/m and = 10 N.s/m¢typical for the lowfrequency groupB: K =200 N/m andB = 15
N.s/m,typical for the highfrequency groupNote that the pendulum amplitude plots have different scal&s in

and B. The phase plots of the cart and pendulum are superimposed to highlight the synchronization of their
movements. For comparison, the grey histogram represents the distribution of frequencies adopted by participants
in the experiment (identical to Fig 3)he part of the graph right (resp. left) of the aeBonance frequency is

greyed out because it is not relevant for system A (resp. B) with valesnalB for which the frequency analysis

was performed.

Discussion

This study examined strategies thatnans adopt when manipulating objects witbderactuated internal

dynamics. To date, the majority of research in motor neuroscience has examined unconstrained
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movements in highly controlled experimental tasks to render interpretable data; only refatively
studies have examined control of complex objects. However, everyday behavior is full of complex
manipulations that set humans apart from primates and other animals. The present study focused on
continuous physical interaction with a cartdpendulumsystem representing the simplified dynamics

of a moving a cup of coffe@articipants had to move with a prescribed amplitude, but could choose their
preferred frequency. Importantly, in continuous interaction with the complex object, the dynamics of this
system is underactuated and can exhibit erratic and unpredictable behavior. Such unpredictable dynamics

poses significant challenge to any internal model guiding thediaadted manipulation.

Using both behavioral data and numerical analysis of ttteacdpendulum system coupled to a model

of hand impedance, we tested three hypotheses: humans minimize the interaction force required to move
the systemHypothesis }; alternatively, they maximize predictability of the system behatdgpéthesis

1); ard/or they exploit the resonance structure of the syskypdthesis B Interaction forcebetween

hand and cart was quantified by its root mean squared value. Predictability was operationalized by the
mutual information between the kinematics of the cad #he interaction force. Exploiting resonance

was tested by comparing the chosen frequencies with the resonance structure of thdregstiksnof

the experiment showed that participants increased, not decreased, the interactiquofonter to
Hypothesis 1), while they also increased predictability of the system with practice (consistent with
Hypothesis 2 Half the participants chose a strategy that had significantly higher interaction forces, while

affording similarly high degree of predictability.

The results of the simulations gave further support that, among alternative strategies (defined by values
of movement frequency and hand impedance that humans could adopt), participants chose strategies with

high predictability, but not with lovinteraction force These results corroborate and generalize those
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obtained by Nasseroleslami et al. (2014) in a similar experiment that prescribed movement frequency,
but left amplitude free to choose. In addition, frequency response analysis of the linearized coupl
system showed that participants chose movement frequencies close to the resonance frequencies of the
system, while avoiding the afresonance frequency (consistent witlipothesis B These findings
demonstrate that predictability is a control prioityomplexunderactuatedbject manipulation, which

takes precedence over principles suclingeraction forceminimization. The fact that results support

both Hypothesis 2and Hypothesis3 suggests that predictability may be explained by the resonance
structure of the system. Therefore, manipulatiommderactuated objects cannot be understood simply

by extending principles of free movements or rigid object manipulation; underactuated object

manipulation constitutes a different class of tasks with diffecontrol challenges.

Assumptions of the Coupled Model

To provide an entry to a quantitative understanding of this complex task, an essential element in our
approach was simulation of the task dynamics with only minimal assumptions about the coltieller
therefore coupled a simplified model of hand impedance to thawedgendulum system. This coupled
model approximated the experimental data more accurately than a previous model with-dnhe cart
pendulum alone (Appendix A). However, as this modehtbeyond the physics of the task alone and

included the human controller, certain assumptions had to be made.

Invariance of Input Force: One first assumption was that the input force (Eq 4) was equal to the force
required to move a rigid object of teeme mass as the caridpendulum system; further, the amplitude,
frequency, and phase of this input foreas the same sinusoidal signal during and across trials. While
this is a reasonable initial assumption, it is likely that humans learned to lagiaptpput force, based on

the perceived interaction force and/or the cart displacement. As the simulation kept the input force
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invariant, the desired cart trajectory was not always accurately tracked, especially when the hand
impedance was low. A plauséhext modeling step would be to modulate the amplitude of the sinusoidal
input force based on the difference between the actual and desired cart amplitude. Even though it is
relatively straightforward to include such an adaptation of the input forceyahisl evidently make the

model more complex and not necessarily help to understand the data.

Invariance of Hand Impedance:A second simplifying assumption was that the hand impedance was
constant throughout one trial. Given the task instruction andrios@hisplay, the amplitude of the cart
movement was the main concern for participants, while the actual trajectory between the two targets was
secondary. Therefore, it could be speculated that participants may increase their arm impedance close to
the fargets to ensure accuracy in the amplitude, but decrease impedance during translation between
targets. A sinusoidally changing impedance might therefore better match experimental data. However,
as with the modulation of input force, the potential gaindaalism would be at the cost of more
parameters to identify. Therefore, constant impedance and constant input force is a reasonable

compromise between accurate replication of experimental data and transparency of the model.

Predictability, Muscular Effort and Antagonist Co-Contraction

The simulations reveal that high predictability and low interaction force ar@vertapping strategies

and the data provide evidence that it is predictability that determines the choice of control strategy. The
finding thathumans do not try to minimizeteraction forcanay seem to run counter to many studies on
unconstrained movements that have shown that humans favor -eoergifortefficient strategies
(Nelson 1983; Alexander 2000; Prilutsky and Zatsiorsky 2002). lildHze pointed out that our force
criterion only quantified the net external force. interaction force. Whil¢his externalforce increased,

it might be thahigherpredictability had a secondary effect on decreasing internal muscular effort: when
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the system dynamics is erratic, it is difficult to anticipate and preempt the perturbing force of the
pendulum by feedforward control. The user may then rely on his/her hand impedance to reject these
perturbations and maintain the desired cart trajectory. rEligires increasing the impedance through
co-activation of antagonist muscles, which resultiighermuscular effort without any consequences

on the net external force. Conversely, predictable object dynamics may enable participants to anticipate
the peturbing interaction force, and thereby reduce effort due toooraction. Predictabilitycan

therefore afford a way to minimize the overall muscular effort.

The strongest evidence that force minimization was not an objective was that half of thpapastic
chose the higlirequency strategy associated with higher forces than thérémuency strategy (Fig 6).

If effort were the main concern, all participants should have chosen the lower frequency and lower
impedance (Appendix B). As mutual informatiavas similar in both frequency groups, the dow
frequency solution would have decreased the overall effort and reconciled the predictability and
interaction force objectivesdowever, one point to note is that the task required only relatively low
forces,which may be one reason why optimizing effort was not a priority. Testing the same experiment

with different masses for the caahdpendulum system is a direction for future work.

Predictability, Error Correction and Computational Cost

Anotherfactor tha may have influenced participants' choices was that thdreguency strategy was

close to the boundary of the low predictability zone (starting around 0.7 Hz in Fig 9), compared to the
high-frequency solution that was more robust or tolerant to vaniathofrequency. With the low
frequency strategy, small variations could easily lead to erratic behavior and perturbations that require
correction. If such error corrections were executed by the CNS, then the computational cost would

increase. Computationaffort has been recognized and included as a cost in several optimization studies
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(Todorov and Jordan 2002; Ronsse et al. 2010). Yet in these modeling approaches, computational cost
terms have remained unspecified placeholders for unaccounted factorsutiont to human control
choices. A series of studies by Sternad and colleagues have argued that the human controller may exploit
the stability properties of a task to avoid computationally expensive corre(ltaraad 2017)Using

the task of rhythmidly bouncing a ball with a paddle, several experiments provided robust evidence that
human subjects learned to attain dynamic stability, such that small errors passively decayed, obviating
the need for explicit correctior($chaal et al. 1996; Sternad &€t2000; de Rugy et al. 20p3When

applying larger perturbations, additional corrections were evideatthdugh the signature of dynamic
stability was still visiblgSiegler et al. 2010/ ei et al. 2007, 2008In a similar spirit, mathematical and
emprical studies of a throwing task showed that humans seek solutions that are tolerant to error and
noise, therefore requiring fewer correctiof®ernad et al. 2001, 2014; Cohen and Sternad 2009)
Predictability of the interactive dynamics of complex objaanipulation may again be a manifestation

of human controllers seeking to simplify the control task.

Resonance/AntiResonance Structure, Effort and Predictability

Did participants choose to move at resonance peaks to reduce effort? As Fig 10A shdwegzhnar

who moved the cart and pendulum in phase could take advantage of tfredaency resonance to
reduce effort, but had to exert precise control of frequency to avoid the nearlssan&ance frequency.
Participants who chose the aptiase stragy expended more muscular effort due to the higher
frequency of antphase motion and to the elevated stiffness and damping they exhibited. However, the
antiphase motion was available over a much broader range of frequencies (Fig 10B) and therefore
requred much less precise control of frequency. Further, they were far away from thesanance

frequency or dynamic zero at 0.74 Hz.
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Did participants preferertain cugrequencies because they were associatedspéhific relative phases
between the c¢aand the pendulum movemenis between the input force and tbart movemerit
Several studies on rhythmic bimanual coordination have shown that humans ppasénand anti
phase relations between two limbs over other phase relations (Kelso 1984eiSahd Kelso 1988;
Sternad et al. 1992, 1996). In the present experiment, participants also oscillated the cartphitss in
(at low frequencies) or anphase (at high frequencies) with the ball movements and avoided
intermediate relative phasat the antiresonance frequency. However, this observation does not imply
that participants chose strategies for their relative phase values. Exceptras@amince, the task
dynamicsdid not allow other relative phasas the frequency response plots shoig (). The entire
frequency range below 0.65 Hz corresponds {phiase couplingyut participants of the loMrequency
group neverthelessll converged to a narrow area of high predictability (FigSmilarly, the high
frequency group favored those sebs of the frequency range with high predictability addition, a
large set of frequencies outside of the two resonance frequencies corresponepb@asmttoupling
between the input force and the cart movement (red line in Fig 10). It is reasondhiektthat
participants may prefer this afthase coupling between what they predict (input force) and what they
actually obtain (cart movemerayer any other relative phase. Indest}phase coupling between force
and movement is whaine gets in thgery common situation of manipulating a rigid object. However,
LI UHODWLYH SKDVH ZzDV WKH RQO\ FRQFHUQ SDUWLFLSDQWVY
with antiphase coupling, and not groupader a narrow frequency range. These obagons support

thatpotentialphase preferencedonedo not account for our observations.

Why did participants avoid the asmgsonance frequency? At antisonance, the force generated by the
pendulum movementfall in Eq 4) exactly opposes ti@eradion force exerted by the humahirter in

Eq 4), resulting in zero displacement of the cart. In addition, near theeaatiance frequency the
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relation between cart motion and input force undergoes a large andaiapidt discontinuougphase

shift, whereas the relation between pendulum motion and input force does not (phase plot in Fig 10).
Around the antresonance frequency, the oscillations of the cart and pendulum desynchronize very
quickly and small variations result in large changes in the dreaf the perturbing force due to
pendulum motionThis makes the compensatory input force that should be applied to obtain the desired
cart movement hard or impossible to predithe results clearly showed that subjects consistently

avoided the antiesonance frequencgnd, implicitly, favored predictability

A Task-Dynamic Approach, Internal Models and Predictability

Most computational studies on movement control start with a hypothesis about the human controller. For
example, several studies of thelgsbalancing task investigated specific hypotheses about the neural
control system, ranging from different control models to the role of noise or sensory feedback (Mehta
and Schaal 2002; Venkadesan et al. 2007; Milton 2011; Milton et al. 2013; Gawthabp261.3;
Insperger et al. 2013). In contrast, our tdgkamic approach shifted the emphasis to first understand
the task and its affordance, while minimizing assumptions about human neuromotor (8iatred

2017) Starting with a mathematical moddltbe task and analysis of its dynamics, the solution space
can be derived and human solutions can be evalubbechake this mathematical approach transparent

a simplified model is advantageous. Here, we reduced the fluid dynamics of the coffee te degjreg

of freedom. As with any virtual implementation, this may raise the question whether the problem has
become too simple and results will generalize to the real cup of coffee. Recently, two theoretical studies
have indeed analyzed tleap of coffeesystem in its full physical complexity (Mayer & Kretchetnikov
2012, Han 2016). Comparison of thes® ourstudies may reveal the advantages and disadvantages of

the realistic versus computationally simplified approach.
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Our taskbased approach does not tadict, but complement controlddased approaches. When for
example Nagengast et al. (2009) studied optimal control for the manipulation of a virtuapmags

damper system, they assumed that participants had complete knowledge of the system dynamics.
Similarly, Dingwell et al. (2002, 2004) showed that participants manipulating a linearsprass

system displayed behavior compatible with learning an internal model of the object dynamics. However,
underactuatedbjects such as our cupndpendulum sgtempose a significant challenge due to their
possibly unpredictable dynamilesading tcan apparent absence of correlation between the human action
and the resulting behavior of the system. Increasing the predictability of object dynamics might therefore

be a way to increase the chance of acquiring an internal model.

Footnotes
Footnote 1: With K = 100 N/m and B = 10 N.s/m, the Higdguency poles ard.87 +/ 6.72i and the
zeros arel.67 +£ 5.53i (in rad/s). With K = 200 N/m and B = 15 N.s/m, thehHiggquency poles are

-3.06 +£ 8.95i and the zeros af2.50 ++ 7.77i (in Hz).

Appendix A: Limitations of a Model without Hand Impedance

In a previous study, the dynamics of the -amutball task was analyzed by looking at the behavior of

the cartandpendulum system alone without the controlling hand (Nasseroleslami et al. 2014). This
uncoupled model is depicted in Fig A1 and the motion of the system is described solely by Eq 1. It is
straightforward to simulate this uncoupled model using inverse dgeacalculations: if the cart
trajectory X(t) and initial conditions of the cart and pendulum & &,4,) are given, the pendulum
trajectory (t) and the interaction forcésnter(t) can be computed using Eq 1 and a numerical integrat
scheme for . This uncoupled model has the advantage that it does not require any assumptions about

control by the human (contrary to the coupled model). The only assumption is about the movement of
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the cart, which could reasonably be modeled by assidX(t) = Asin 2 @&t + @) given the task

instructions.

Fig Al. Model of the dynamics of the taskinverse dyamics model of the cagndpendulum system alone.

A first approach used this simple model to analyze the task in this imaskder to test to what degree

this model faithfully reproduced human behavior, we ran inverse dynamics simutatampute (t)
andFinter(t). A separate simulation was run for each experimental trial bas€d@md initial conditions

taken from experimental values of,&? &, &, and cart amplitud& and frequency. This afforded direct
comparison ofhie experimental and simulated trajectories of cart and pendulum and the interaction
forces. The cart initial conditior’s and )o were fixed by the assumed sinusoidal shap&(Df Xo = A

and )o = 0. Although all experimental trials started with the sanominal conditions (immobile
pendulum at zero angle), trials contained a transient before participants settled onto their approximate
steadystate with their chosen frequency. Initial transients were excluded, because the oscillation
frequency varied swdbantially during this stage. Therefore, the values of the amplAuftequencyf,

and pendulum initial conditiong,and 4, ZHUH WKH H[SHULPHQWDO DYHUDJHV DF
K V DV LQ WKH H[SHULPHQWDO GDWD DQDO\VLV 7KH VLPXOL
compared with the experimental tirseries of the corresponding triAl. simulation was run for each of

the 433 experimental trials with their respective values.
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Fig A2 displays one representative example of cart and pendulum traject@jiesnd (t) and the
interaction forceFinter(t) from the two frequency strategieorRhe highfrequency strategy, all three
simulated timeseries (cart posiin, pendulum angle, interactioforce) closely matched their
experimental counterparts. For the lowquency strategy, the experimental cart trajectory closely
resembled the simaled trajectory, but the pendulum trajectory and the interaction force diverged after
a few cycles. The experimental profiles were close to periodic, whereas the simulated profiles differed

at each oscillation, developing complex, erratic (possibly chamditterns.

Fig A2. Comparison of experimental and simulated trajectories and force timseries for the uncoupled
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model. Experiment (red) and simulation (blue) profiles of the cart trajectory, pendulum trajectory and interaction
force for one trial of edcfrequency strategy. Experimental data correspond to one representative trial in each of

the two frequency strategies. Simulation data were computed from inverse dynamics of the uncoupled model,
initialized with the experimental values &ff, and &, A: High-frequency strategfA = 8.9 cmf = 1.182 H,
=-0.31 rad, &, = -0.05 rad/s)B: Low-frequency strategfA = 8.8 cmf = 0.655 H, =0.79 rad,&, =-0.08

rad/s)

To quantify the divergence, the remeansquareerrors (RMS) between the experimental and simulated
trajectories were computed. Table A1 summarizes RMS error for each gqugnjity, land Finter,
expressed as percent of its respective maximum value in the corresponding experimental trial. In the
high-frequency group, the RMS error was small and fairly consistent across variables (median RMS error
around 10% of the variable maximum experimental value), indicating a reasonably good match between
the experimental and simulated profiles. This uncoupiedel was therefore a competent representation

of the cupandball task for the higtirequency strategy. With the lefrequency strategy, however, the

RMS error varied greatly and reached up to 30 % of the maximum value for the experimental pendulum
angle and angular velocity (and interaction force to a lesser extent). These discrepancies between
experimental and simulated data demonstrate that the uncoupled model did not represent the execution

strategies adopted by the ldvequency group sufficiently aacately.

Table Al. RMS error between experimental and simulated trajectories and force timseries for the
uncoupled model.Ratio of RMS error between experimental and simulated data normalized by the maximum
value for the cart and pendulum trajectoried anteraction force in both subject groups. The simulated data were
obtained from inverse dynamics simulation of the uncoupled model. The median and interquartile range were

computed over all 433 valid trials.
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Low-frequency group High-frequency group
Median IQR Median IQR
NIO:2F: 2
_—— 0.10 0.04 0.08 0.02
2y
NI1@&*?F %0
— 0.13 0.06 0.08 0.03
S
N1 Qa%2F a%
_— 0.29 0.52 0.13 0.09
1392 ¢
N1®E?F &%
—— 0.31 0.39 0.11 0.07
¥ 2
1
NTO(scda(Face
Ug@d:a 22¢8 g2 0.29 0.12 0.04
'(Uégﬂﬁ

A likely reason for the divergence between experimental and simulated data is the assumption of a
perfectly sinusoidal cart trajectory in the simulations, wheeegoerimental trajectories exhibited small
deviations from this ideal shape. Given the sensitivity of thearakpendulum dynamics to initial
FRQGLWLRQV VPDOO FKDQJHV LQ WKH SDUWLFLSDQWYTV PRYHPF
evolution. These deviations of the experimental cart trajectories from a perfect sinusoid could have two
main causes: the intrinsic variability of human movements, and the perturbations caused by the internal
dynamics of the object. The first cause results floenetverpresent human variability: even if the object

was rigid, or if there were no object at all, humans are unable to repeat the same exact movements. While
present in both frequency strategies, this variability could have different consequenceshesince

sensitivity of the system to initial conditions is not constant.

44



The second causethe perturbation forces created by the pendulum movemeatfected the cart
trajectory because the human hand is not an ideal position generator. Unexpectedpéoidelsi
disrupted hand and hence cart movement. Though this is again true for both frequency strategies, the cart
trajectory was likely less perturbed in the higbquency strategy, because hand movements were faster,
which is often associated with a h&g hand impedance; higher impedance would result in better

resistance to external perturbations and lower RMS error (Table Al).

Furthermore, the interaction foréenter results from two different forces (Eq 1): one is the -azud
pendulum inertial faze Finertia = (Mmc + mp) + and the other is the pendulum foFeeil. The average ratio
EHWZHHQ WKH 506 SHQGXOXP IRUFH DQG WKH 506 LQHUWLDO |
0.16 in the lowfrequency group and 0.32 + 0.05 in the kiglguencygroup (averaged across all trials

of all participants in each of the two groups). Relative to the expected f@aedquired to accelerate

the total system inertia, similar to the manipulation of a rigid object), the magnitude of the unexpected
perturkation (the pendulum force) was thus much higher in theflequency group and was therefore

less likely to be resisted. Hence, the current study included the effect of hand impedance on the dynamics

of the cartandpendulum system.

Appendix B: Estimation of Hand Impedance in the Coupled Model

Unlike the movement frequendy the experimental hand stiffneBsand dampingB could not be
measured directly, but had to be estimated from the human data. To this end, an optimization was
conducted which aimed &nding the values oK andB for which the simulated cart and pendulum
trajectories most resembled the experimental trajectories. For each combinKtenmi&fa 45 s forward
dynamics simulation of the coupled model was performed and compared wittortiesponding

experimental trial. The continuous variations in the cart amplitude and/or frequency in the experimental
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trials were evidently not captured in the simulation as constant desired cart amplitude/frequency was

assumed. The simulations used thierage experimental values Afandf across all cycles of the trial
"W V. WR GHILQH Wdéd) ﬂrsi\d(zl_ﬁﬁﬂ{ﬁwyammwemﬁwmrmnpm(t) =

(mc + nmp) +weqt). However, the average amplitude and frequency were only representative of the

experimental trial if they did not vary significantly throughout the trial. This motivatedttimgent

inclusion criteria in the analysis of the behavioral data.

$00 FRPELQDWLCRQVLRI VWHS VL]H BT P DQ® VWHS VL]H 1V
tested to find the best fit. The difference between the experimental and simulggetbriess was

guantified by the cost of the normalized root mean square errors of the four quariiigs)(t), (),

®

o SNIOPF:® NI®¥F *_NIOa°Fa® _NIGE°F &%
v ol . E 1391, o ! @
where the superscriptsande stand forsimulationandexperimentalrespectively. Only the data within
"W V ZHUH LQFOXGHG WR DY R Lt foF &gerim@nfaCab@simiaated/ U D Q

trials).

While the movement frequenéwas fixed in the simulations, experimental frequencies were not exactly
constant within trials. Such variations of the experimental frequency created a temporal offset between
the xperimental and simulated trajectories, which could lead to high RMS errors even when the two
profiles were similar. To limit this artifacC was computed cycle by cyclee. the RMS errors were
computed for each cyclke by timealigning the experimentadnd simulated trajectories of cydke

Subsequently, they were averaged over all cycles.
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Across all trials, the median caStmeasured for the best impedance fit of each trial was 0.104 with an
interquartile range of 0.051. Table B1 gives the ratio betviee RMS error between experimental and
simulated timeseries and the maximum experimental value of the corresponding trial for the state
variablesk: a*@a&oas well as for the interaction for€enter. The median value of the RMS error was
between 9 and 13% of the maximum value, depending on the variable. Importantly, the error was

consistently low in both groups, unlike for the uncoupled model above (see Table Al in Appendix A).

Table B1: RMS error between experimental and simulated trajectoes and force timeseries for the coupled

model. Ratio between root mean square error RMS between experimental and simulated data and the maximum
value for the cart and pendulum trajectories and interaction force. The results are separated for thestvey frequ
groups. The simulated data were obtained with forward simulation of the coupled model, using the optimized

values ofK andB for each trial i.e. the values for which the co&twas minimum).

Low-frequency group | High-frequency group
Median IQR Median IQR
NIQ:2F: &
— 5 0.09 0.04 0.09 0.02
.. . 1’[
N1@&*F %%
— 0.11 0.05 0.08 0.03
R
N10Qa%F a®
_— 0.11 0.07 0.12 0.07
139l ¢
N1®E?F %
— 0.12 0.07 0.10 0.05
&2
1
N1O(Esca(Face
“%9&5‘ 228 013 0.05 0.13 0.04
(Gacoa
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The values of hand impedance were different between groups. The comparison of stiffness and damping
values between the two frequency groups was performed witthcaxdh signed rank test because the

data were not normally distributed. Both the stiffnkéssnd dampindd were significantly lower in the
low-frequency group, with p = 16E0 and p = 1043 respectively. This is consistent with the known

fact that, for asimilar task accuracy, limb stiffness usually increases with movement speed.

These results are the basis for characterizing experimental trials with hand impedance. The coupled
model with optimizedK and B reproduced experimental trajectory and forceetseries much more
accurately than the uncoupled model (especially for theflegquency group), thus confirming its better

competence to analyze the experimental task.
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