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DIFFERENTIAL SYMMETRY BREAKING OPERATORS.

I. GENERAL THEORY AND F-METHOD.

TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

ABSTRACT. We prove a one-to-one correspondence between differential symmetry
breaking operators for equivariant vector bundles over two homogeneous spaces
and certain homomorphisms for representations of two Lie algebras, in connection
with branching problems of the restriction of representations.

We develop a new method (F-method) based on the algebraic Fourier transform
for generalized Verma modules, which characterizes differential symmetry breaking
operators by means of certain systems of partial differential equations.

In contrast to the setting of real flag varieties, continuous symmetry breaking
operators of Hermitian symmetric spaces are proved to be differential operators in
the holomorphic setting. In this case symmetry breaking operators are character-
ized by differential equations of second order via the F-method.

Key words and phrases: branching laws, F-method, symmetric pair, invariant the-
ory, Verma modules, Hermitian symmetric spaces.
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1. INTRODUCTION

Let W - Y and V - X be two vector bundles with a smooth map p:Y — X.
Then we can define “differential opergforsy, D : C=(X,V) - C=(Y, W) between the
spaces of smooth sections (Deﬁnition%.ﬁ

Suppose that G’ ¢ GG is a pair of Lie groups acting equivariantly on W — Y
and V — X, respectively, and that p is G'-equivariant. The object of the present
work is the study of G’-intertwining differential operators (differential symmetry
breaking operators). If W is isomorphic to the pull-back p*V, then the restriction
map f ~ fly is obviously a G’-intertwining operator (and a differential operator
of order zero). In the general setting where there is no morphism from p*V to W,
non-zero G’-intertwining differential operators may or may not exist.

Suppose that G acts transitively on X and G’ acts transitively on Y. We write
X (respectively Y) as a homogeneous space = G/H (respectively Y = G’/H'). The
first main result is a duality theorem that gives a one-to-one correspondence between
G’-intertwining differential operators and (g’ I—QT ! g—homomorphisms for induced rep-
resentations of Lie algebras (see Corollary E! i()] for the precise notation):

Theorem A. Suppose H' ¢ H. Then there is a natural bijection:
(11) Dx_,y : Hom(g/’H/)(indg:(WV), md‘;(Vv)) SN DiffG/ (Vx, Wy) .

This generalizes a well-known result in the case where G ap ! are the same
reductive group and where X and Y are the same flag variety ( , [HJI82]).
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By a branching problem we mean a problem of understanding how a given rep-
resentation of a group GG behaves when restricted to a subgroup GG’. For a unitary
representation m of G, branching problems concern a decomposition of 7 into the
direct integral of irreducible unitary representations of G’ (branching law).

More generally, for non-unitary representations m and 7 of G and G’, respectively,
we may consider the space Homer (|cr, 7) of continuous G'-homomorphisms. The
right-hand side of @chrns branching probl ms:sﬁgk respect to the restric-
tion from G to G’, whereas the left-hand side of concerns branching laws of
“generalized Verma modules”.

If Differ (Vx, Wy) in @%me—dimensional, we may regard its generator as
canonical up to a scalar and be tempted to find an explicit description for such a
natural differential symmetry breaking operator. It should be noted that seeking ex-
plicit formulae of intertwining operators is much more involved than finding abstract
branching laws, as we may observe with the celebrated Rankin—Cohen brackets which
appear as symmetry breaking operators in the decomposition of th Bgr_lggﬁ,rgroduct
of two holomorphic discrete series representations of SL(2,R) (see [DPU7, KP15-2]
for a detailed discussion).

The condition dim Diffe (Vx, Wy) < 1 is gften fulfilled when b is a parabolic
subalgebra of g with abelian nilradical, (see [K14, Theorem 2.7]). Moreover, finding
all bundles Wy for which such nontrivial intertwining operators exist i§ apart of the
ﬁ'gaitg% problem, which reduces to abstract branching problems (see [KPT5-2, Fact

We propose a new method to find explicit expressions for differential symmetry
breaking operators appearing in this geometric setting. We call it the F-method,
where F stands for the Fourier transform. More precisely, we consider an “algebraic
Fourier transform” of generalized Verma modules, and characterize symmetry break-
ing operators by means of certain systems of partial differential equations. If b is a
parabolic subalgebra with abelian nilradical, then the system is of second order al-
though the resulting differential symmetry breaking operators may be of any higher
order. The charac erization is performed by applying an algebraic Fourier transtorm . a4
(see Definition -y dgtailed recipe OE the F'-method is described in Section ﬁf
relying on Theorem and Proposition !

In general, symmetry breaking operators between two principal series representa-
tions of real reductive Lie groups G’ c G are given by integro-differential operators in
geometric models. Among them, equivariant differential operators are very special
(e.g. [EnSTI[ Tor G’ = G and [KS14] for G’ ¢ G). However, in the case where X
is a Hermitian symmetric space, Y a subsymmetric space, G' ¢ G are the groups
of biholomorphic transformations of ¥ < X, respectively, we prove the following
localness and extension theorem:
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Theorem B. Any continuous G'-homomorphism from O(X,V) to O(Y, W) is given
by a holomorphic differential operator, which extends to the whole flag variety.

See Theorem '%r the precise statement. Theorem %ﬁl%%s the case of the
tensor product of two holomorphic discrete series representations corresponding to
the setting where G ~ G' x G’ anfm{gf Y xY as a special case.

In the second part of the work [KPT5-2] we apply the F-method to Hermitian sym-
metric spaces to find explicit formulee of differential symmetry breaking operators
in the six parabolic geometries arising from symmetric pairs of split rank one.

The authors are grateful to the referee for enlightening remarks and for suggesting
to divide the original manuscript (old title “Rankin-Cohen operators for symmetric
pairs”) into two parts and to write more detailed proofs and explanations in the
first part, not only for specialists but also for a broader audience. We would like
to extend a special thanks to Dr. T. Kubo for providing valuable and constructive
suggestions in respect to its legibility.

Notation: N ={0,1,2,---}.

2. DIFFERENTIAL INTERTWINING OPERATORS

In this section we discuss equivariant differential operators between sections of
homogeneous vector bundles in a more general setting than the usual. Namely,
we consider vector bundles admitting a morphism between their base spaces. In
this generality, we establish a natural bijection between such differential operators
(differential symmetry breaking operators) and certain homomorphisms arising from

the branching E%ogggms for infinite-dimensional representations of Lie algebras, see
Theorem ualily theorem).

2.1. Differential operators between two manifolds. We understand the notion
of differential operators between two vector bundles in the usual sense when the
bundles are defined over the same base space. We extend this terminology in a more
general setting, where there exists a morphism between base spaces. Let V — X
be a vector bundle over a smooth manifold X. We write C*~(X,V) for the space of
smooth sections, which is endowed with the Fréchet topology of uniform convergence
of sections and their derivatives of finite order on compact sets. Let W — Y be
another vector bundle, and p:Y — X a smooth map between the base spaces.

Definition 2.1. We say that a continuous linear map 7' : C*°(X,V) - C~(Y, W) is
a differential operator if T satisfies

(2.1) p(SuppT'f) c Supp f forany f e C*(X,V).
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We write Diff (Vx, Wy ) for the vector space of differential operators from C*~(X,V)
to C=(Y,W).

:suppT
The condition @_SE%}]\TVS that T is a local operator in the sense that for any open
subset U of X, T induces a continuous linear map:

Ty : C*(UV|y) — C= (p(U), W) -

:suppT
Remark 2.2. If X =Y and p is the identity map, then the condition @Ts%%uivalent
to T' beipg a differential operator in t uspal sense owing to Peetre’s celebrated
theorem [[Peeb9]. Our proof of Lemma in this special case gives an accoynt, of
this classical theorem by using the theory of distributions due to L. Schwartz [[S66].

Let Qx = | AP TV (X)| be the bundle of densities. For a vector bundle ¥V - X, we
set V= [l,cx VY where VY := Hom¢(V,, C), and denote by V* the dualizing bundle
VY ® Qx. In what follows D/(X,V*) (respectively, £'(X,V*)) denotes the space of
V*-valued distributions (respectively, those with compact support). We shall regard
distributions as generalized functions a la Gelfand rather than continuous linear
forms on C'°(X) or C*(X). In particular, we sometimes write as

(2.2) E'(X,Qx)—C, w»[w,
b

to denote the natural pairing (w,1x) of w with the constant function 1x on X.
(E?) with t

Composing he contraction on the fiber, we get a natural bilinear map

(2.3) (X, V) x £(X,V*) > C, (f,w)H(f,w):/;(fw.

Let V*® W denote the tensor product bundle over X x Y of the two vector bundles
V* - X and W — Y. Then for any continuous linear map 7' : C=(X,V) —» C=(Y, W)
there exists a unique distribution K € D'(X x Y, V* ®8 W) such that the projection
on the second factor pry: X xY — Y is proper on the support of Kr and such that

(TH) (W) = (Kr(y), f()) forany f e C=(X,V),

by the Schwartz kernel theorem.
Given a map p:Y — X, we set

A(Y)={(p(y),y) :yeY}c X xY.

The following lemma characterizes differential operators by means of the distribution
kernels K.

Lemma 2.3. Letp:Y — X be a smooth map. A continuous opera ri{’Qth“(X,V) -
C>(Y,W) is a differential operator in the sense of Deﬁmtion%ﬁand only if
Supp K7 c A(Y).
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Proof. Suppose Supp K1 ¢ A(Y). Let (x,,%,) € A(Y) and take a neighborhood U
of x, = p(y,) in X and a neighborhood U’ of y, in Y such that U’ c p=1(U). We
trivialize the bundles locally as V|y ~ UxV and W|y» ~ U'xW. Let (xy,-, x,,) be the
coordinates in U. Accordine to the structural theory of distributions supported on a
submanifold AY ¢ X xY [[S66, Chapter I1I, Théoreme XXXVII]|, there exists a unique
family h,(y) € D'(U’) @ W for a finite number of multi-indices o = (o, -+, ) € N™
such that (Krp, f) e D'(U") ® Homc(V, W) is locally given as a finite sum

(2.4) Y. ha(y)gljf (p(¥)),

for every f e C~(X,V). Hence (E%Efﬂy/ =0 1if fly = 0. Thus T is a differential

operator in the sense of Definition [2.1]
Conversely, take any (z,,v,) € Supp Kr. By the definition of the distribution
kernel K, for any neighborhood S of z, in X there exists f € C*~(X,V) such that

zu%pguc 2 and (20,Yo) € Supp f x SuppT'f. If T is a differential operator then by

p(SuppT'f) c Supp f c S.

Since S is an arbitrary neighborhood of x,, p(y,) must coincide with z,. Hence
Supp K1 c A(Y). O

:halpha 121
By @,_ﬂ?%_ferminology “differential operators” in Definition ﬁﬁjustiﬁed as
follows:

Example 2.4. (1) Let p : Y > X be a submersion. Choose an atlas of local
coordinates {(x;,z;)} on'Y in such a way that {z;} form an atlas on X.
Then, every T € Diff(Vx, Wy ) is locally of the form

lof
Y ha(z, z)% (finite sum),

aeNdim X
where ho(x,z) are Hom(V, W')-valued smooth functions on'Y .
(2) Leti:Y < X be an immersion. Choose an atlas of local coordinates {(y;,z;)}

on X in such a way that {y;} form an atlas onY. Then, every T € Diff (Vx, Wy')
18 locally of the form

> o) Blal+I8] (it :

W) m5—a5 nite sum),
(a,ﬁ)eNdimxg N 8yaazﬁ

where g 5(y) are Hom(V, W)-valued smooth functions on'Y .

Next, suppose that the two vector bundles V - X and W — Y are equivariant
with respect to a given Lie group GG. Then we have natural actions of G on the Fréchet
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spaces C*(X,V) and C*(Y, W) by translations. Denote by Homg(C=(X,V),C>(Y,W))
the space of continuous G-homomorphisms. We set

(2.5)  Diffa(Vx, Wy) = Diff (Vx, Wy') n Homg(C™ (X, V), C=(Y,W)).

Example 2.5. Suppose X and Y are both Fuclidean vector spaces with an injec-
tive linear map p : Y - X. If G contains the subgroup of all translations of Y
then Diff¢(Vx, Wy) is a subspace of the space of differential operators with constant
coefficients.

An analogous notion can be defined in the holomorphic setting. Let V — X and
W — Y be two holomorphic vector bundles with a holomorphic map p : ¥ - X
between the complex base manifolds X and Y. We say a differential operator T :
C>(X,V) - C>(Y,W) is holomorphic if

Ty (O(U,V|y)) € O(p (U)Wl (v))

for any open subset U of X. We denote by DiﬂhOI(Vx,Wy) the vector space of
holomorphic differential operators. When a Lie group G acts biholomorphically on
the two holomorphic vector bundles V - X and W - Y, we set

Diff! (Vx, Wy) := Diff™ (Vx, Wy ) n Homg(C< (X, V), C= (Y, W)).

2.2. Induced modules. Let g be a Lie algebra over C, and U(g) its universal
enveloping algebra. Let h be a Lie subalgebra of g.

Definition 2.6. For an h-module V', we define the induced U(g)-module ind{ (V) as
ind?(V) = U(g) By V.

If b is a Borel subalgebra and dim V' =1, then the g-module indg(V) is the Verma
module.

For later purposes we formulate the following statement in terms of the contragre-
dient representation VV. Let h’ be another Lie subalgebra of g.

Proposition 2.7. For a finite-dimensional b'-module W we have:
(1) Homg(indg,(WV),indg(VV?) ~ Homy (WY, ind§ (VV)).
(2) If b' ¢ b, then Homy (WY, indy(VV)) = {0}.
Proof. The first statement is due to the functoriality of the tensor product.
For the second statement it suffices to treat the case where §’ is one-dimensional.

Then the assumption b’ ¢ b implies that h’ nh = {0}, and therefore there is a direct
sum decomposition of vector spaces:

g=b"+q+b,
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for some subspace q in g. We fix a basis X,---, X,, of q, and define a subspace of
U(g) by
U'(q) := C-span { X{"- X : (o, -+, a0,) € N}
Then, by the Poincaré-Birkhoff-Witt theorem we have an isomorphism of h’-modules:
indg(VV) ~U(h)ecU'(q) ®c V.

In particular, indg (V") is a free U(h’)-module. Hence there does not exist a non-zero
finite-dimensional h’-submodule in the g-module indg (V). O

Remark 2.8. We shall see in Theoremd@;fsl%e%limc Homyg (ind% (WV), indg (V")) is
equal to the dimension of the space of differential symmesry breaking pergtors from
C>(X,V) to C=(Y,W) when H' is connected. In IfK‘P‘lB—Z Section [77], we give a
family of sextuples (g, g’,h,b’,V, W) such that this dimension is one.

2.3. Duality theorem for differential operators between two homogeneous
spaces. Let G be a real Lie group, and g(R) := Lie(G). We denote by U(g) the uni-
versal enveloping algebra of the complexified Lie algebra g := g(R) ®g C. Analogous
notations will be applied to other Lie groups.

Let H be a closed subgroup of G. Given a finite-dimensional representation A :
H — GL¢c(V) we define the homogeneous vector bundle Vx =V := G xg V over
X :=G/H. As a G-module, the space C*°(X,V) of smooth sections is identified with
the following subspace of C*°(G,V) ~ C>(G)® V:

C=(G, V)" :={feC™(G,V): f(gh) = A(h)' f(g) forany g e G,h e H}
~{FeC*(G)®V :Ah)F(gh)=F(g) forany geG, he H}.
In dealing with a representation V' of a disconnected subgroup H (e.g. H is a
parabolic subgroup of a real reductive Lie group G), we notice that the diagonal

H-action on U(g) ®c V' defines a representation of H on indy(V¥) = U(g) ®, V¥ and
thus indg (V") is endowed with a (g, H)-module structure.

Theorem 2.9 (Duality theorem). Let H' ¢ H be (possibly disconnected) closed sub-

groups of a Lie group G with Lie algebras b’ c by, respectively. Suppose V- and W are
finite-dimensional representations of H and H', respectively. Let G' be any subgroup
of G containing H', and Vx = G xg V and Wy := G' xg: W be the corresponding
homogeneous vector bundles. Then, there is a natural linear isomorphism:

eqn:DXYH (26) Dx_y: HOIHH/(WV, 1ndg(VV)) — Diff o (Vx, Wy) ,
or equivalently,

Dxy : Homg g (ind, (W), ind? (V")) = Diffe: (Vx, Wy) .
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For ¢ € Hompy (WY, indf(VV)) and F' € C=(X,V) =~ C=(G,V)#, Dx.y(p)F ¢
C=(Y, W) =~ C=(G',W)H" is given by the following formula:

(27) (DX—>Y((10)F7 w\/) = Z(dR(UJ)F, U}/>|G’ fOT' w € WV>
j
where p(w") = ¥ ujvy €indg(VY) (u; € U(g), vj e V).

:DXYH
When H’ is connected, we can write the left-hand side of @_W means of Lie
algebras.

:surject
Corollary 2.10. Suppose we are in the setting of Theorem iéiﬁ Assume that H' is
connected. Then there is a natural linear isomorphism:

(28) DX—>Y : HomhI(WV, 1ndg(VV)) - DiHGI(VX, Wy),
or equivalently,
EF7° Dy : Homg (ind% (W), ind3(V¥)) —> Diffe (Vx, Wy).

:D
The construction of alﬂg the fact that the formula I}S( well-defined will
be explained in Section

Remark 2.11. (1) Corollary 21559k1[10vvn when X =Y, ie Gi=f(qud H'=H,
especially in the setting of complex flag varieties, see e.g. m HIS2).

(2) When g’ is a reductive subalgebra and b’ is a parabolic s balggzlsogg, the exis-
tence of an h’-module W for which the left-hand Side of 1@ﬁon—zero is
closely related to the “discretely deco osagél ¥ of the g-module mdg(VV)
when restricted to the subalgebra g’ HF K93, [K12]). This relatlonshlp will
be used in Section 1n proving that any Contlnuous symmetry breaking op-
erator in a holomorphic setting is given by a differential operator (localness
theorem). . »

(3) Owing to Proposition ﬁ%ﬁ% left-hand side of @L’%oonon—zero only when
b’ c h. Conversely, if H' ¢ H nG’, then there is a natural morphism Y =
G'|H" — X = {7/H and therefore “differential operators” (in the sense of
Definition 2. 1jj from C'=(X,V) to C=(Y, W) are defined.

(4) We shall n§isqllelzrr. et(l:lte case where H' = H nG" in later applications, however,
Theorem %E\S_OJWGYS the cases where the natural morphism Y — X is not
injective, i.e. where H' ¢ HnG".

An analogous result to Theorem %‘%ﬂ_ﬁn the holomorphic setting as well.
To be precise, let G¢ be a complex Lie group, G, Hc and H{ be closed complex
subgroups such that H. ¢ Hc n Gi.. We write g, b, ... for the Lie algebras of the
complex Lie groups G¢, Hc, ..., respectively. Given finite-dimensional holomorphic

representations V' of Hc and W of H{,, we form holomorphic vector bundles V :=
Ge xpu. V over X¢ = Ge/He and W := G, <, W over Ye = Gr/H¢.
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eqn:gHhom

subsec:DXY

10 TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

For simplicity, we assume that H{. is connected. (This is always the case if Gf
is a connected complex reductive Lie group and H{. is a parabolic subgroup of Gf..)
Then we have:

Theorem 2.12 (Duality theorem in the holomorphic setting). There is a canonical
linear isomorphism:

Dy : Homg (ind§, (W), ind$(V") ) > Diffg) (Vx., Wrz,).

Suppose furthermore that G, G’, H and H' are real forms of the complex Lie groups
Gc, G, He and H{,, respectively. We regard V and W as H- and H’-modules by the
restriction, and form vector bundles V = G xyg V over X = G/H and W = G' xy0 W
over Y =G'[H'.

We ask whether or not all symmetry breaking operators have holomorphic exten-
sions. Here is a simple sufficient condition:

Corollary 2.13. If H' is contained in the connected complexification H{., then we
have a natural bijection:

Diffe (Ve Wye) = Differ (Vx, Wy ).
: ject :2.10 -hol 1
Proof. Comparing Theorem %%%eorem ﬁfﬂ@proof of Corollary iéi 3 e

duces to the surjectivity of the inclusion

(2.9)  Homg g (indd,(W"),ind$ (V")) = Homg (ind, (W), ind¢ (V")).

We note that Homy, Hé)(indg:(WV), indf(Vv)) is a subspace of the left-hand side of
( " because H' c H! V\:fhﬁfrlg%s' it .coincides with the right-hand side of @"Eﬁﬂ
is connected. Hence (E:?i is surjective. Thus Corollary is proved. U

. . . :surject :2.10
The rest of this section is devoted to the proof o dheorem iétﬁ For Theorem El iﬁ,
‘%%ﬁ, W

since the argument is parallel to that of Theorem e omit the proof.

2.4. Construction of Dx_,, This subsection gives the definition of the linear map
Dx_.y in Theoremr%._J;

Consider two actions dR and dL of the universal enveloping algebra U(g) on
the space C*°(G) of smooth complex-valued functions on G induced by the regular
representation L x R of G x G on C*(G):

(2.10) (dR(Z)f)(:v):%Lof(ﬂcetz) and  (dL(Z)f)(x) =

for Z € g(R). ‘R
The right differentiation ﬁ defines a bilinear map

O:C*(G)xU(g) > C*(G), (F,u)rdR(u)F,

4

—tZ
gl )
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with the following properties
(2.11) (L(g)F,u)
(2.12) O(F,u'u)

for any g € G and u,u’ € U(g).
Combining ® with the canonical pairing V x VvV — C, we obtain a bilinear map

By C=(G) eV xU(g) 8c VY - C=(G).

Then we have the following;:

L(g)®(F,u),
dR(u)B(F, ),

Lemma 2.14. The map Py induces a well-defined diagram of maps:

Co(@Q) @V xU(g) ®c VY % C=(Q)
) ¥ [
C=(X,V) xindg(V¥) - C=(G).

Proof. Denote by AV the contragredient representation of the representation (A, V')
of H, and by d\v the infinitesimal representation of . The kernel of the natural
quotient map U(g) ®c V'V - indg(VV) is generated by

—uY @ v +u®d\(Y)vY
with uw € U(g),Y € b and vV € VV. Hence it suffices to show
Oy (f,-uY ®@v ' +u®d\(Y)v')=0
for any feC=(X,V)~C>(G, V).
Since f e C=(G,V)H satisfies dR(Y) f = —d\(Y') f for Y € b, we have

Oy (f,uY ®@v") (dR(u)dR(Y) f,v")
(dR(u)f,dX"(Y)v")
Oy (fiu®d\ (Y)vY).

Thus the lemma is proved. [l

Lemma 2.15. 1) The bilinear map
(2.13) (X, V) xindS (V) > C, (f,m) > By (f,m)(e)

is (g, H)-invariant.

2) If meindg (V) satisfies @y (f,m)(e) =0 for all f € C=(X,V) then m = 0.

Proof. 1) Let f € C*(X, V) and m ¢ ind%(V"). It follows from (1) and (ET2 that
By (dL(Z),m) =dL(Z)Dy (f,m)
Sy (f, Zm) =dR(Z)Py(f,m)
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for any Z € g. Since
(dL(Z)+dR(Z))F(e) =0
:CVind
for any F' e C*(G), we have shown the g-invariance of the bilinear map @7
Oy (dL(Z)f,m)(e) + Py (f, Zm)(e) = 0.

. . CVind |
The proof for the H-invariance of is similar.

2) Take a basis {vy,---,vx} of V, and let {vY,--,v)} be the dual basis in VV. Choose
a complementary subspace q of b in g, and fix a basis {X7,---, X,,} of q. Then by the
Poincaré-Birkhoff-Witt theorem, we can write m € indf (V") as a finite sum:

k
m=Yy Y g XXy

j=1 a:(a17...7an)

If m is non-zero, we can find a multi-index § and j, (1 < j, < k) such that ag;, # 0

and that a,j, = 0 for any multi-index « satisfying |af > |ﬁ_| and for any j. Here
lo| = ¥ oy for a e N*. We take fe C~(G,V)H ~C>~(X,V) such that f is given in
a right H-invariant neighborhood of H in G by

f (exp (Z :L‘Z'Xi) h) =2°A(h) v, forz = (zy,-,2,) e R"and h e H.
=1

Then ®y (f,m)(e) = agj,B1!--Bi! # 0. The contraposition completes the proof. [

We regard C*°(G) as a G x g-module via the (L x dR)-action. Then the space
Homg(C=(X,V),C=(G)) of continuous G-homomorphisms becomes a g—maduh&ﬁglinear
the remaining dR-action on the target space. By (2-I1]J, (212 and Lemma [2.14] we

get the following g-homomorphism:
(2.14)  indf(VY) — Homg(C*(X,V),C*(G)), u®v'w (f = (dR(u)f,v")).

Furthermore, it is actually a (g, H)-homomorphism, where the group H acts on
indg (V) = U(g) ®u(y) V" diagonally and acts on Homg(C>(X,V),C=(G)) via the
R-action on C*(G).

Let H’ be a connected closed Lie subgroup of G. Given a finite-dimensional repre-
sentation W of H', we form a homogeneous vector bundle W, =W = G xg W over
Z:=G[H'"

-1234

Taking the tensor product of the (g, H)-modules in @Wh the H'-module W,
we get an (H’ x (g, H))-homomorphism:

Home (WY, indy (V")) — Home(C*(X, V), C*(G,W)).

Let A(H') be a subgroup of H' x H defined by {(h,h): h e H'}. Taking A(H')-

invariants, we obtain the following C-linear map:

(2.15) Homg (WY, ind{ (V")) — Homg(C™(X,V),C%(Z,W)), ¢+ D,
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where D, satisfies

(216) (Dlpfuwv) :CDV(f,go(wv))
for any feC>~(X,V) and any w¥ e WV.

-morf
Remark 2.16. If H' is connected, then we can replace Hompys by Homy in -

:morf
Lemma 2.17. The map @I‘Tinjective.
:Dfw -Din,
gro%.l dﬁyi (%Lemma @Dl_s%erived from the second statement of the Lemma

O

Take any subgroup G’ of GG containing H’ and form a homogeneous vector bundle
Wy = G' xgo W over Y = G'/H'. Then, the vector bundle Wy is isomorphic to the
restriction Wyly of the vector bundle Wy to the submanifold Y of the base space Z.
Let

RZ—>Y . COO(Z, Wz) - OOO(Y, Wy)

be the restriction map of sections. For ¢ € Homy (WY, indj(VV)) we set

(2.17) Dx_y(¢):=Rz.y o D,.
Then Dx_y(p) : C~(X,V) - C>(Y, W) is a G’-equivariant differential operator, j.e
Dx_y defines a linear map Homy (W",indg (V")) - Diffe:(Vx, Wy). Theorem
describes explicitly the image Dx_y when H' ¢ H n G’, namely, when the following
diagram exists:

h:surject

Z=G|H'

N

Y =G'/H' X =G/H

:isoo
Remark 2.18. The left-hand side of @_d%s not depend on the choice of G’. This
fact is reflected by the commutativity of the following diagram.

qn:DXYdiag| (2.18) Homy (W, indg (V")) - Diff¢(Vx, W)

Diff o (Vx, Wy')

thm:surject -Din
2.5. Proof of Theorem izgp We have already seen in Lemma %Qfﬁét Dx_y is

injective. In order to prove the surjectivity of the linear map Dy _y, we realize the
induced U(g)-module indf (V) in the space of distributions.

We recall that V* = VY ® (0x is the dualizing bundle of a vector bundle V over X.
For a closed subset S and an open subset U in X containing S, we write D (U, V*) for
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the space of V*-valued distributions on U with support in S. Obviously, Dy (U, V*) =
DL(X,V*). If S is compact, then Dy (U,V*) is contained in the space £'(U,V*)
of distributions on U with compact support, and thus coincides with EL(U,V*) :=
Dy(U,V*)n&'(U, V). N
i :surject . . .

We return to the setting of Theorem 2.9, where V is a G-equivariant vector bundle
over X = G/H. Then the Lie group G acts on C*°(X,V) and £'(X,V*) by the
pull-back of smooth sections and distributions, respectively. The infinitesimal action

defines representations of t%e Lie algebra g on C(U,V) and E(U, V*).

The “integration map”
(2.19) £(X,0x) > C, we fxw
is G-invariant. Composing this with the G-invariant bilinear map (contraction):
CH(X V)< &(X, V) — &(X,Qx),  (f,h) = ([,h),

we obtain the following G-invariant bilinear form

(2:20) C(XV)xE(XV) T (f) [ ()
Similarly, we obtain the following local version:

Lemma 2.19. Let S be a closed subset of X and U an open neighborhood of S in
X. Then, we have the natural g-invariant bilinear form:

C=(U, V) x E4(U,V*) — C, (f,h)»/[](f,h).

Moreover, if S c U are both H-invariant subsets in X, then the bilinear form is also
H -invariant.

. L. ;indP :EHom .
We write o = eH € X for the origin. By Lemmas % have obtained
two (g, H)-invariant pairings:

C=(X,V) xindg(V¥) — C, (f,m) = @y (f,m)(e),
C=(X, V) x (X, V') — C  (f.h)~ fX(f,h).
Let us show that there is a natural (g, % ?—_iisr(l)épl(l)irphism between indy (V") and

5{0}()(, V*). In fact, it follows from Lemma at there exists an injective (g, H )-
homomorphism

A: indg(VV) — 5{0}(X,V*)
such that

@V(f,m)(e):fx(f,A(m)) for all m € ind?(V") and f € C*(X, V).
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For a homogeneous vector bundle V = G xz V we define a vector-valued Dirac
d-function § @ v¥ € £, (X, V"), for v e V¥ by

(2.21) (f,00vY)=(f(e),v") for feC®(X,V)~C>(G, V).
By the definition of ®y,, we have
Py (f,1@v")(e) = (f(e),v").

eltaV
Hence A(1®vY) =6 ®v by -~ oince A is a g-homomorphism, we have shown

that
A(uevY) =dL(u)(d®vY), forueU(g),veV".

Lemma 2.20. The (g, H)-homomorphism

(2.22) A indp(VY)—&,, (X, V"), u®v' ~dL(u)(d®vY),

15 bijective.

Proof. By Lemma %%ap @%ﬂjective. Let us show it is also sur-
jective. By the structural theorem of (scalar-valued) distributions%S@gfi, Chapter III,
Théoreme XXXVII], distributions supported on the singleton {o} are obtained as
a finite sum of derivatives of the Dirac’s delta function. An analogous statement
holds for vector-bundle valued distributions supported on {0}, as we can see by triv-
ializing the bundle near the origin 0. Choose a complementary subspace q(R) of
H(R) = Lie(H) in g(R) = Lie(G). Since dL(Z)(Z € q(R)) spans the tangent space
T,(G/H) ~ q(R), any derivative of the vector-valued Dirac’s delta function is given
as a linear compination, of elements of the form dL(u)(0 ® v¥) (u € U(g),v" € V).
Thus the map (2. 1S surjective. 0

Let Cy, denote the one-dimensional representation of H defined by

hoe |det(Adg/u(h) - g/b — g/b)| ™"

If H is a parabolic subgroup of G with Langlands decomposition P = M AN, then the
infinitesimal representation of Cs, is given by the sum of the roots for n, = Lie(V,).
The bundle of densities (¢, is given as a G-equivariant line bundle,

QG/H ~ G xpg |det_1 Adg/H| ~G xy (C2p-

For an H-module (A, V'), we define a “twist” of the contragredient representation
Ay, on the dual space V' (or simply denoted by VQVP) by the formula

A=A, = A @ Cop = A @ |det ! Adgyp .

Then the dualizing bundle V* = VY ® Qg g of the vector bundle V = G'xy V' is given,
as a homogeneous vector bundle, by:

(2.23) Vi =Vy, =G xy Vi,
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Then D'(X,V*) is identified with
(D'(G) e Vy )2 = {FeD'(G)® V" : Ay, (h)F(-h) = F(-) for any he H}.

:surject
Now let us consider the setting of Theorem &% where we have a G'-equivariant
(but not necessarily injective) morphism from Y = G’/H’ to X = G/H.

Lemma 2.21. Suppose that G' is a subgroup of G. Then the multiplication map
m:GxG =G, (9,9) ()9,
mduces the isomorphism:
m*: (DX, V) e W) L D/(X x Y,V g W)AE),

Proof. The image of the pull-back m* : D'(G) - D'(GxG') is D'(GxG')AE), where
G’ acts diagonally from the left. Thus, considering the remaining G x G’ action
from the right, we take H x H'-invariants with respect to the diagonal action in the
(G x G' x H x H")-isomorphism:

m*®id®id: D'(G) & Vy,@ W — D'(Gx G e Vy e W,
and therefore we get the lemma. 0

:21
We recall from Section ﬁ_ﬂiat any continuous linear map 7 : C>*(X,V) -

C>=(Y,W) is given by a unique distribution kernel Ky € D'(X x Y, V*® W). The
following lemma gives a necessary and sufficient condition on the distribution K for
the linear map 7' to be a G'-equivariant differential operator.

Lemma 2.22. There is a natural linear isomorphism:
(2.24) Differ(Vx, Wy) — (D}, (X, V") @ W)2H) - T (m*) " (K7p).

Proof. First, we show that the map d%{_fs well-defined. Suppose T" € Diff o/ (Vx, Wy ).
Since K is uniquely determined by 7', the operator 7" is G'-equivariant, i.e. L(g) o

O.Q(g‘l) =T for all g € G’ if and only if KpeD'(X xY,V*mW)AE), By Lemma

The distribution kernel K is supported on the diagonal set A(Y) = {(p(v),y) :
yeY}cX xY. Via the bijection m* given in Lemmaa%ﬂwe thus have
Supp((m*)~' Kr) c {o}.
KT KT

Hence the map is well-defined. The injectivity of @(ﬁs clear.

Conversely, take any element k € (D}, (X,V*) ® WHAU) - We set K = m*(k) ¢
D'(X xY,V*®W)AE) | and define a linear map

T:C%(X,V) —DYW), fr [ @)K,

Then T is G'-equivariant because K is A(G')-invariant.
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Let us show that T'f € C(Y,W) for any f € C~(X,V). To see this, we take
neighborhoods U,U’ and U" of z, = p(y,) in X, y, in Y, and e in G’, respectively,
such that gU’ c p~!1(U) for any g € U”. Since the kerpel K is supported on,the,

diagonal set A(Y'), TF|y is locally of the form @W}fﬁthe proof of Lemma ﬁ*
Since T is G'-equivariant, we have
0

>, ha(y)% (9p(y)) = D" ha(gy) (;zf (p(y)),

for any y e U',g € U", and f e C>=(U) ® V. By taking f(z) = z®*® v (o € N* and
veV) as test functions, there are some o5 € C=(U" x U') for |B] < |a| such that

ha(gy) = ha(y) + | |§|: Iwaa(g,y)hﬁ(y)-
Bl<|e
Therefore we see inductively on |a| that h,(y) € C°(U’) ® Hom(V,W) for all «
because G’ acts transitively on Y. Hence T'f|y € C~(U') @ W. Thus we have shown
that 7" maps C=(X,V) into C*(V. WY).
Finally, it follows from Lemma at T is a differential operator because Supp K c
A(Y). Now we have proved the lemma. O

:surject -isoMh
Proof of Theorem i?ﬁ Iallilng the tensor product of each term in @Wh the

finite-dimensional representation W of H', we get a bijection between the subspaces
of b’-invariants:
Homy (WY, indf (V¥)) — (D}, (X, Vy) @ )2,

312
Composing this with the bijection in Lemma @ﬁve obtain a bijection from
Homy (WY, ]'I%dg? (S‘Q Qctfo Diff o (Vx, Wy ), which is by construction nothing but Dx_y

in Theorem [ O

3. ALGEBRAIC FOURIER TRANSFORM FOR GENERALIZED VERMA MODULES

:surject
The duality theorem (Theorem states that, to obtain a differential symmetry

breaking operafor [ ¢ Diffe:(Vx, Wy ), it suffices to find ¢ € Hompy: (WY, indj(V")).
In Section %evx'fﬂlﬁﬂ’present a new method (F-method) which characterizes the “al-
gebraic Fourier transform” of ¢ as a solution to a certain system of partial differential
equations.

In this section we introduce and study the “algebraic Fourier transform” of gener-
alized Verma modules. Proposition is particularly important to the F-method.

3.1. Weyl algebra and algebraic Fourier transform. Let E be a vector space
over C. The Weyl algebra D(FE) is the ring of holomorphic differential operators on
E with polynomial coefficients.
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Definition 3.1. We define the algebraic Fourier transform as an isomorphism of
two Weyl algebras on F and its dual space EV:

D(E)»D(EY), T~T,

induced by
ICh _ 0 . :
(31) a—zj:Z _Cj’ ZJ = a—é_j’ 1S]Sn:d1mE
where (z1,...,2,) are coordinates on E and ((y,...,(,) are the dual coordinates on
EVv.

Example 3.2. Let E, = ¥7 4 Zjaizj be the Fuler operator on E. Then, by the com-
mutation relations

0 0
3.2 —C = G== = dij,
( ) ag@ éj CJ aCz J
in the Weyl algebra D(E"), where 0;; is the Kronecker delta. Hence we have E, =
_EC —n.

The isomorphism 7 + T in Definition @ﬁ%s not depend on the choice of coordi-
nates. To see this, we consider the natural action of the general linear group GL(FE)
on E, which yields automorphisms of the ring Pol(E) of polynomials of £ and the
Weyl algebra D(F). For Ae GL(E), we set

Ay : Pol(E) — Pol(E), Fw F(A™Y),
A, : D(E)—D(E), Tw AyoToAl
We denote by ‘A € GL(EY) the dual map of A. Then we have
Lemma 3.3. For any Ae GL(E) and T € D(E),
AT=(A") T

The proof is straightforward from the definition @%d we omit it.

Next we consider the group homomorphism GL(E) — GL(Pol(E)), A » Ay.
Taking the differential, we get a Lie algebra homomorphism End(E) - D(FE). In
the coordinates, we write Z =*(z1,-+, 2,) and dz =* (%, e %). Then this homo-

morphism amounts to

(33) Vp:End(E) > D(E), Aw-"7'A0z=- ZAiijai'
i, Zi

Let 0 : g » End(E) be a representation of a Lie algebra g on E, and ¢¥ : g -
End(EV) the contragredient representation. Then the algebraic Fourier transform
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T ~ T relates the two Lie algebra homomorphisms Wgoo : g - D(E) and Wz ooV :
g~ D(EV) as follows:
Lemma 3.4.

VUgpoo=Wg oo+ (Traceoo)-idgv.

Proof. In the coordinates, we write A :=o0(Z) € End(E) ~ M(n,C) for Z € g. Then,

—_—

\I/EOO'(Z)—\I’EV OO'V(Z) = -7 tAaz— tCA@g
= 19 TAC - 'CAD,
(Trace A) idgv,

. . . :commrel
where the last equality follows from the commutation relations 1'%?) ([l

PART2
For actual computations that will be undertaken in a subsequent paper FK‘PTS—Q],

it is convenient to give another interpretation of the algebraic Fourier transform by
using real forms of F.

Definition 3.5. Fix areal form E(R) of the complex vector space E. Let 8{0}(E(]R))

be the space of distributions on the vector space F(R) supported at the origin 0. We
define a “Fourier transform” F, : 5{0}(E (R)) - Pol(EY) by the following formula:

(3.4) Ff(©= (et = [ e p@)  fore .

E(R)

talgF
We have used the function e{*:¢) in @%&%‘her than e-V-1=:) or e~(#:) which are
involved in the usual Fourier transform or the Laplace transfonql?ogq%slpectively. This

convention makes later computations simpler (see Remark :
Furthermore, with our convention

(3.5) Fe(f(A)) = (Fef)('AT),

for any A e GLr(E(R)).
The Fourier transform F. induces an algebra isomorphism

F.: €y (E(R)) > Pol(EY)

between the polynomial algebra Pol(EY) with unit 1, the constant function on EV,
and the convolution algebra SEO}(E (R)) with unit d, the Dirac delta function. We

write F;1: Pol(EY) — 5{0}(E(]R)) for the inverse “Fourier transform”:

F () =0.
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Remark 3.6. The Weyl algebra D(FE) acts naturally on the space of distributions on
E(R), and jin particular, on £ fo}(E (R)). The algebraic Fourier transform defined in

Definition %'S—aﬁsﬁes

(3.6) T=F.oToF;' forTeD(E),

:F-trans —~
and the formula (E%i characterizes T'. To see this, we take coordinates (1, z,)
on E(R), and extend them to the complex coordinates (21, z,) on E and the dual

1l
ones ((1,-+,¢,) on EV. Let P(¢)=(*€ePol(EY) and T = Za/gﬁzﬁ% € D(FE). Then
Byy z

we have

—~ oAl
TP = _NWlga . =——cotr
52,;( ) aﬁﬂazgc ’

and on the other hand,

FooToF'P

(—1)“”".7:C oT(6%(x)) = (—1)'0“.7-"6 (Z agﬁxﬁéaﬂ(x))
By

(~1)k Z(—l)'o‘“h‘amﬂg‘m.
o 1028

:F-t
Hence the identity W on PEI?E;)traﬁisnce the Weyl algebra D(EY) acts

faithfully on Pol( EY), we have shown _In particular, the composition F.oToF !
does not depend on the choice of a real form E(R).

3.2. Holomorphic vector fields associated to the Gelfand—Naimark decom-
position. It is convenient to prepare some notation in the complex reductive Lie
algebras for later purpose.

Let g be a complex reductive Lie algebra, and p = [+ n, a Levi decomposition of
a parabolic subalgebra. Let G¢ be a connected complex Lie group with Lie algebra
g, and Pr = Lcexpn, the parabolic subgroup with Lie algebra p = [+n,. According
to the Gelfand-Naimark decomposition g =n_+ [+ n, of the Lie algebra g, we have
a diffeomorphism

n_x L(C xn, — GC7 (Zaga Y) = (exp Z)ﬁ(eXpY),
into an open dense subset G® of G¢. Let

reg

piincegHﬂm po:G(c - Lc,

be the projections characterized by the identity

exp(p-(9))po(9) exp(ps+(9)) = g-
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We set
d
(3.7) a:gxn_ -, Y, Z)» — po(etyez),
dt =g
d
(3.8) Bigxn_—>n_, (Y, Z) > —| p_(ee?).
dt =0
d
(3.9) yrgxn. - [+n,, (Y, 2) »a(Y,Z) + %‘ P (e™e?).
t=

We regard (Y,-) as a holomorphic vector field on n_ through the following iden-
tification.

n>Z~pY,Z)en_~Tym._.
Example 3.7. Gc=GL(p+q,C), Lc =GL(p,C) x GL(q,C), and n_ ~ M(p, q;C).

We note that n_ is realized as upper block matrices. Then for g1 = (Z Z e G,

Y:(é1 g)eM(erq;C) and Z € M(p,q;C) we have

p-(g7") =bd ™",

Po(g™") =(a~bd "¢, d) e GL(p,C) x GL(q,C),
a(Y,Z)=(A-ZC,CZ+D)  egl(C)@gl,(C),
B(Y,Z)=AZ+B-2ZCZ - ZD.

Then B(Y,-) is regarded as the following holomorphic vector field on n_~ M(p,q;C)
given by

P q a
Trace(S8(Y, Z) ') = Z Zﬁ(Y, Z)ab(9
a=1b=1 Zab
p q p P q q 8
=330 Awizip + Bay = . Y 2ajCiizin - Zzaijb)a_-
a=1b=1 4=1 i=1j=1 j=1 Zab

A reductive Lie algebra g is said to be k-graded if it admits a direct sum decom-
position g = @?z_kg(j) such that [g(i),9(j)] c g(i + 7) for all 7,5. Any parabolic
subalgebra p = [+n, of g is given by [ = g(0) and n, = @;.09(j) for some k-gradation
of g. We then have the following estimates of coefficients of holomorphic differential
operators dm,(Y).

Lemma 3.8. According to the direct sum decomposition g = @é?:_kg(j), we write

WY, Z) = $iove and B(Y,Z) = ;2 By, where v, € g(€) for 0 <L <k and By € g({)
for =k <0 <-=1. Then ~, and By are polynomials in Z of degree at most k —{.
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Proof. Since the map N_¢ x Pr — G¢*® is an analytic diffeomorphism, we have
(3.10) oY o7 = (ZHB(Y,Z)+o(t) pla(Y,Z)+o(t)

for sufficiently small ¢ € C, where we use the Landau symbol oft) far, a g-valued
function dominated by ¢ when t tends to be zero. Multiplying y e 4 from

the left, and taking the differential at ¢t = 0, we get
6ad(Z

ad(Z)
ead(Z) _ 1

because ail e ZeZHtW = MVV. We note that ad(Z) lowers the grading of g,

namely ad(Z)g(j) c ®_',g(i) because Z en_. In particular, we have
ad(Z)
+1)!

Ad(eDYY = (v, 2) + S L sy ),

(3.11) Z(paamW’yym Z B(Y, 7).

Let ¢, : g = g(¢) be the projection according to the direct sum decomposition g =
k

Y7
P g(j). Suppose £ > 0. Applying ¢ to . we have
j=—k

Vg_qg(;]%ﬂ )

Hence 7, is a polynomial in Z of degres at most k - L.
Suppose £ < 0. Applying ¢, to . we get

542616(2—(_1)3@(2) ) (ZZ??EZS' )

j7=0 ]' 1=0 j=¢

By the downward induction on ¢, we see that (5, is a polynomial in Z of degree at
most k — ¢ for -k </ < -1. O

3.3. Fourier transform of principal series representations. Suppose g is a
complex reductive Lie algebra, p = [+n, a parabolic subalgebra, and A : p — End¢ (V)
a finite-dimensional representation.

We use the letter i to denote the representation of p on the dual space V'V given
by

(3.12) pi= A=A @ Trace(ad(:) : ny »n,).

By applying the (algebraic) Fourier transform of the Weyl algebra, we define a Lie
algebra homomorphism

37'(\” g~ D(n+) ® EndC(VV),
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:33partl
by using the complex flag variety G¢/Pc in this subsection. In Section Ei we relate
dm, with the “algebraic Fourier transform” of a generalized Verma module

F.:ind}(VY) > Pol(n,) ® V",

-indPol
which is defined by using a real flag variety G/ P, see (E%%? li.n :
Let G¢ be a connected complex reductive Lie group with complex reductive Lie

algebra g, and Pr = Lc/V, ¢ be the parabolic subgroup with Lie algebra p. Let €x.
be the canonical line bundle of the complex generalized flag variety X¢ = G¢/Fc.

Suppose A lifts to a holomorphic representation of Pr, then so does . We form a
Gc-equivariant holomorphic vector bundle ¥V and VY ® Qx. over X¢ associated to A
and p, respectively.

We consider the regular representation 7, of G¢ on C*(G¢/FPc, VY ® Qx.). The
infinitesimal action will be denoted by dm,, which is defined on C**(U, VY ® Qx,|v)
for any open subset U of G¢/Pe. In particular, we take U to be the open Bruhat cell
n_ o G¢/Pc, Z — exp Z -0, where 0 = eP¢ € G¢/FPc. By trivializing the holomorphic
vector bundle VY ® Qx,. - G¢/Pc on it, we define a function F € C*(n_,VV) for a
section f e C®(Ge/Pc, VY ®§x.) by

F(Z):=f(expZ) for Zen_.
Then the action of g on C*°(n_, V") given by

[ (F)(2)= = 4| Fee)

dt
(3.13) p(Y(Y,Z)F(Z) - (B(Y,-)F)(Z) forY eg,

where by a litgle ahise of notation p stands for the infinitesimal action. The right-
hand side of efines a representation of Lie algebra g whenever p (or \) is a
representation of the Lie algebra p without assuming that it lifts to a holomorphic

representation of the ¢ grfplex reductive. roup Fe.
It follows from and Lemma at we obtain a Lie algebra homomorphism

(3.14) dr,:g—D(n_) ® End(V"),

for any representation A of the Lie algebra p. By taki 1 the algebraic Fourier trans-
form on the Weyl algebra D(n_) (see Definition %ﬁe get another Lie algebra
homomorphism:

(3.15) dr,: g —D(n,) ® End(VY).

We use the same letter 7, to denote the “action” of G¢ on C'**(n_, V") given as

(3.16)  (mu(9)F) (Z) = ulpo(g™ exp Z) exp(p. (9~ exp Z))) " F(p-(g™" exp Z)).
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This formula makes sense if F' comes from C*(Gc/Pc, V@€Y, ), orif F'e C=(n_, V)

and g € G¢ and Z € n_ satisfy g-lexp Z € G*®. In particular, if A is trivial on the
nilpotent radical n, for g = mexpW with m € L¢c and W e n_, and if n, is abelian
we have

(3.17) (7,(9)F) (Z) = u(m) F(Ad(m) " Z = W),
Let us analyze dm,(Y') for Y € [+n,. We begin with the case Y € [. We let the
Levi subgroup L¢ act on Pol(n,) by
Ady(l): f() = f(AA(ITY)), L€ Lc.

Since this action is algebraic, the infinitesimal action defines a Lie algebra homomor-
phism into the Weyl algebra:

ady:[->D(n,), Y wradu(Y),

where ad 4 (Y) is a holomorphic vector field on n, given by ad4(Y'), := Ad(e ™)z €

T.(n,) for x en,.

il
dt 1t=0

Lemma 3.9. Let A becoa representation of the parabolic Lie algebra p = [+ n,, and

1
W= be asin W the following two representations of | on Pol(n,)®VVare
1somorphic:

(3.18) d/ﬂh ~ady ®id +id ® (- Trace o ad| ) =adx(Y)®id+id ® (-)).

In particular, if A lifts to a holomorphic representation of P then the right-hand
side is the infinitesimal action of Ady ® AV of L¢ on Pol(n,) ® VV.

: 351
Proof. For Y e [[ X e n_ we have 7(Y,X) =Y, and the formula @Teduces, in
D(n_) ® End(VV), to

dr,(Y)=1de u(Y)-5(Y, ) ®id.
:Phihat
We apply Lemma o the case where (0, F) is the adjoint representation of [ on

n_. Since B(Y,:) = =dL(Y") for Y € [, we have ¥, oad = - on [, with the notation
therein. Moreover, via the identification n¥ ~ n,, the map W,v o ad” amounts to
U, oad = ady. Therefore, we get

Ta(Y) = ideu(Y)+ Wy oad (V) ®id+ (Trace 0 ad(Y)

)id@id

n-

ideu(Y)+adg(Y)®id - (Trace oad(Y)

)id@id.

ny

Thus, the lemma follows. O



F-METHOD 25

The differential operators dr,(Y) with Y € n, play a central role in the F-method.
If the parabolic subalgebra p is associated to a g—?éxdiatg?n of g, then these differential
operators are at most of order 2k by Lemma 3.8~ We déscribe their structure in the
case where k = 1, namely n, is abelian.

Propositio.n. 3.10. Assume that n, is abel'z'an L‘?tu<c)6mvl) be a representation of I,
extended trivially on n,, and p = \* be as in W@fuem Y en, the operator
dr,(Y') is of the form

0

eqn:degree| (3.19) Z ]kCZaCJaCk Z[ﬂa—cj,

where a{k and v/ € End(V'V) are constants depending on Y .
Proof. Since n, is abelian, we can take a characteristic element H such that
Ad(e*?)Y =e*Y foranyY en,.

We set m :=esH. Then ‘Ad(m)~! = e*id on n_ ~ nY.
Taking the algebraic Fourier transform of the formula

dm, (Ad(m)Y) = m,(m)dm, (Y)m,(m™), .
where (m,,(m)F)(Z) = u(m)F(Ad(m™)Z) = p(m)F(Ad(m) 4 F)(2) by 7 W™

get
dm, (Ad(m)Y) = ('Ad(m)™")  dm, (V)

:Faffi
by Lemma i‘%% Hotce
(3.20) esdm, (V) = (e*id), dr,(Y)

If we write dr,(Y) in the form

olAl
« ,BCa
a,BZE:Nn 8C6
then @%mplies that C\, 5 # 0 only when |a|+|38| = -1 because (e‘sid)*aC =e 5%

and (e~*id).¢; = e5¢; (1 < j < n). Aa dﬂ'? {Yl) is a vector field there is no term for

|o| > 1. Hence we get the expression O

ec:33partl

3.4. Fourier transform on the real flag varieties. In this su sectlogpvxie define
“algebraic Fourier transform” of generalized Verma modules, see

F.:ind}(VY) > Pol(n,) @ V.
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As we shall prove in Propositi,2 e Lie algebra homomorphism dry- : U(g) —>
D(n,)®End(V"V) defined in (3-I5]) in the previous section can be reconstructed from

F., namely, dmy(u) (ueU(g)) is the operator S that is characterized by
SF.(v) =F.(u-v) forany v eindy(V").

For later purpose, we work with a real form G of G¢. From now on, let G be
a real semisimple Lie group, P a parabolic subgroup of G' with Levi decomposition
P =LN,, and V a finite-dimensional representation of P.

Let LN_ be the opposite parabolic subgroup of P = LN,. We write n,(R) and
n_(R) for the Lie algebras of N, and N_, respectively, and set n, = n,(R) ®g C. The
open Bruhat cell is given as the image of the following embedding

t:n_(R) > G/P, X~ exp(X)-o,

where o =eP € G/P.

Let \: P - GL¢c(V) be a finite-dimensional representation of P, and V = G xp V
the G-equivariant vector bundle over the real flag variety G/P. The pullback of the
dualizing bundle V* =V, — G/P via ¢ is trivialized into the direct product bundle
n_(R) x VV > n_(R) and thus we have a linear isomorphism:

(3.21) €, (GIPVS,) > €l (n_(R) ® VY,

through which we induce the (g, P)-action on 8{0}(11_ (R))® VY from 5{0}(G/P, Vs,)-
The Killing form of g jdentifies the dual space n_(R)" with n,(R), and thus the
Fourier transform F, in -gives rise to a linear isomorphism:

(3.22) Fe@id: g (n(R)) ® VY — Pol(n,) ® V",

through which we induce the (g, P)-action further on the right-hand side.

In summary we have the following (g, P)-isomorphisms:
egn:isoMh egn:isol

B-21) F.®id

(3.23)  F.:indp(VY) — 5{0}(G/P, Vs,) > 8{0}(11,(1&)) ® VY- Pol(n,)®V".
We say that F is the algebraic Fourier transform of a generalized Verma module.

The (g, P)-module structure of Pol(n,) ® V'V is described by the following propo-
sition.

Proposition 3.11. Let (A, V') be a finite-dimensional representation of P and define
another representation of P on the dual space V¥ by p1:= X\* = XY ® Cy,. Then,

-indPol
1) Tﬁe g-action on A]Pol(gJ,:)Lﬁ@ VY induced by F, in 15531) “Cotncides with the one
given by dm, in

-10)). - indPol
2) The L action on Pol(n,) ® VY induced by F. in @%@ides with the one
given by Ady ® \V.
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Proof. 1) Let G¢ be a complexification of G and P¢ the connected subgroup of G¢
with Lie algebra p = Lie(P) ®g C. First we assume that A extends to a holomorphic
representation of Pc. Then the G-equivariant vector bundle Vy, over X = G/P
is the restriction of the Gc-equivariant holomorphic vector bundle VY ® €2x. over
Xc = G/ Pc that was introduced in the previgus _%%lgﬁection. Therefore, the action
of Y egon SEO}(n_(R) ® V) induced by ¢* in @Tgiven by the restriction of the
holomorphic differential operator dm,(Y"). Cisold

In turn, the action of Y € g on Pol(n,) ® VV induced by the isomorphism (%
given by

(Fe®id) odm, (V) o (F,' ®id),

which is equal to dm,(Y) by Remark @fﬂ

To complete the proof in the general case we denote by Hom(Pc, GLc(V)) the
set of holomorphic representations of Pc on V' and by Hom(p, End(V")) the set of
Lie algebra representations of p. Since the former is Zariski dense in the latter, the
two g-actions on Pol(n,) ® V'V coincide for all A because both depend algebraically
(actually affinely) on A € Hom(p, End(V")). 410

2) This statement is the analogue of Lemma @Tﬁthe Lie group L. Indeed, since
the group L normalizes n_(R) and fixes the origin 0, the isomorphism ¢* in
respects the L-action when L acts diagonally on & {0}(n_(R)) ® VV. To conclude the

:changevar
proof we use . 0

sol

The map F, does not depend on gpelchoice of a real form G of G¢ that appears
dnaro ~

in the two middle terms of (8.23]]. Moreover, the isomorphism F, : indg(VV) —

Pol(n,) ® VV depends only on the infinitesimal action of P on V. In fact the

following corollary follows immediately from the statement 1) of Proposition@.ﬁ

%or.o.llglyéi 3.12. The algebraic Fourier transform of generalized Verma modules (see

F.:ind}(VY) — Pol(n,) @ V"
18 given by
(u®@vY)»dms(u)(1evY), wuel(g), v eV

4. F-METHOD
ec :Fmethod 1

In Section @esvéz_%rv%established a one-to-one correspondence between differential
symmetry breaking operators for vector bundles and certain Lie algebra homomor-
phisms (Theoremn%._Ujsm this framework our aim is to find explicit formulae for
such operators, in particular, when such operators are a priori known to be unique
up to scalar. For this purpose we propose a new method, which we call the F-method.
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1313
Its theoretical foundation is summarized in Theorem %T’Eis method becomes par-
ticularly simple when b is a parabolic subalgebra with abelian nilradical. I thi&case
we develop the F-method in more details, and give its recipe in Section %._S‘ome
useful lemmas for act Saéc(;g]énputations for vector-valued differential operators are
collected in Section E%

4.1. Construction of equivariant differential operators by algebraic Fourier
transform. Let E be a finite-dimensional vector spaces over C and EV its dual
space. Let Diff®"(E) denote the ring of holomorphic differential operators on E
with constant coefficients. We define the symbol map

Symb : Diff*™"(E)— Pol(EY), D, Q(()
by the following characterization
D.e*9) = Q(¢)e*<,

Then Symb is an algebra isomorphism. The differential operator on E with symbol
Q(¢) will be denoted by 9Q).. hat
By the definition of the algebraic Fourier transform (Definition @'ﬁe has

(1.1) 0P, = (-1'PQ), Q)= 0Q.

for any homogeneous polynomial P on EV of degree ¢ and any polynomial () on F
seen as a multiplication operato c

We recall from Corollary at Pol(n,) ® V¥ is a (g, P)-module if V' is a P-
module. Note that the action of exp(n,) (c P) on Pol(n,) ® VV is not geometric,
namely, it is not given by the pull-back of polynomials via the action on the base
space n,. a4

The key tool for the F-method that we explain in Section @Tsthe fol?owme%ilinear

assertion. We note that the two approaches, cgfhe canonical invariant pairing
and the algebraic Fourier transform @W rise to the same differential operators,

provided that n, is abelian:

Theorem 4.1. Suppose that p is a parabolic subalgebra g and that P = Lexp(n,)
is its Levi decomposition. Let P’ be a closed subgroup of P such that P’ has a
decomposition P' = L'exp(n,) with L' ¢ L and v, c n,. Let G' be an arbitrary
subgroup of G containing P'. For a representation (A, V') of P and a representation
(v, W) of P', we form a G-equivariant vector bundle V = GxpV over X = G[P and a
f’—equjva lant vector bundle W = G' xp W over Y = G'|P’, respectively. Let ji:= \*

e as in (E 2;
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(1) There is a natural isomorphism
(4.2) Diff:(Vx, Wy) =~ (Pol(n,)® Home(V, W)X @)
(Homy(V @ Pol(n, ), 7)) 7™
Here the right-hand side of @%@m of 1 € Pol(n,) ® Home(V, W) sat-

1R

1sfying
(4.3) v(0) o Ady (D)o N(h) =4  forallle L
(4.4) (dr,(C) ®@idw +idev(C))y =0  forallCen’.
(2) Assume that the nilradical n, is abelian. Then the following diagram com-
mutes:
Fc?id Sym}? ®id
Homc (WY, ind$(VV)) —  Pol(n.) @ Homc(V,W)  «— Diff**"(n_) ® Home(V, W)
U O U
Iiornfw(llfv,hldg(lfv)) 1;19 I)ﬂfgl(l%y,)qﬁ/).
X-Y
:F i
Remark 4.2. The cony n_tjﬁg on the Fourier transform F, in Definition if%%glinaoklleglferﬁe
diagram in Theorem commutative without additional powers of \/-1.
:313
Theorem may be regarded as a construction of symmetry breaking operators

by using the Fourier transform of generalized Verma modules.

Corollary 4.3. Assume that n, is abelian and that P’ = L'exp(n’) with L' c L and
. cn,. Then the following diagram of three isomorphisms commutes.

Hom;, (V ® Pol(n, ), W) (™)

y Symbsid

Homp, (WY, ind3(VV)) Diffe:(Vx, Wy)

Dx_y

In the above corollary, Homy (V ® Pol(n, ), W))*™ (") consists of L'-equivariant,
Homp (V, W)-valued polynomial so?utioc %}e(g: n, tg,a system of Helmnretgﬁmcl) ({iifferential
equations of second order, see Sections E% ang EE% Corollary EE% implies that, once
we find such a polynomial solution 1, we obtain a P’-submodule WV in indg(VV)
(sometimes referred to as singular vectors) by (F.®id)"(¢), and a differential sym-
metry breaking operator by (Symb ® id)=!(4)).

. 1313
We first give proofs for the first statement of Theorem ﬁ?ﬁe. The proof of the
second statement is postponed until the next subsection.
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:31 : ject
Proof of Theorem ﬁﬁ; Combining Ehe .%%ality theorem (Theorem @%‘Sﬁi‘ﬁhe

algebraic Fourier transform (Corollary we have an isomorphism
Homp: (WY, Pol(n,) ® V¥) — Diffe:(Vx, Wy)

where the P’-action on Pol(n,) ® V'V is defined via the algebraic Fourier transform
F., namely, the left-hand side consists of 1 € Hom¢ (WY, Pol(n,) ® VV) ~ Pol(n,) ®
Home (V, W) satistying

(dr.(C)®idw +id@v(C))1=0 forall Cel +n,,

provided L’ is connected. Owing to Lemma @% condition for C' e [" is equivalent
to that ¢ € (Pol(n,) ® Home(V,W))", where I acts on Pol(n,) ® Hom¢(V, W) by
ady ®id+id®@(\' ®id+id ®v).

In a more general setting where we allaw L’ to be disconnected, by the same
argument as in the proof of Lemma [3.9) We see that the P-action on Pol(n,) @ VY.
via the algebraic Fourier transform F, of generalized Verma modules (Corollary
coincides with the tensor product representation Ady®\Y when restricted to the Levi

subgroup L. Thus the isomorphism (ﬁ%?i is proved. O

4.2. Symbol map and reversing signatures. The purpose of this section is to
carefully and clearly set up relations involving various signatures in connection with
the algebraic Fourier transform in a coordinates-free fashion.

Denote by 7 : S(E) = Pol(EY) the canonical isomorphism, and define another

algebra isomorphism
Ysgn * S(E) = Pol(EY),

by yoa, where a : S(E) — S(E) denotes the automorphism of the symmetric algebra
S(FE) induced by the linear map X ~ -X for X € F.

Now we regard E as an abelian Lie algebra over C, and identify its enveloping al-
gebra U(F) with the symmetric algebra S(E). Then, the right and left-infinitesimal
actions induce two isomorphisms:

dR: S(F) = Diff*""(E), dL: S(E) = Diff*"'(E).
By the definition of the symbol map, we get,

Symb odR =, Symb odL = 7ygp.
:aFP
On the other hand, it follows from That

N

m = 7(“)7 dR(u) = PYsgn(u)>

for every u € S(FE) ~ U(FE), where polynomials are regarded as multiplication oper-
ators. Hence we have proved



F-METHOD 31

Lemma 4.4. Let E be an abelian Lie algebra over C. For any ue U(E),
SymbodR(u) = dL(u), SymbodL(u) = dR(u).

:313
3. Jroof of Th orepﬁ(ﬂ. We are ready to complete the proof of Theorem
éii (a E%i

nd Corollary

Proof. Take an arbitrary ¢ € Homc(WY,indy(V")), which may be written as a finite
sum

=Y u;®; € U(n_) ® Home(V, W)
J

the Poin aréfggﬁoﬁ—\?\/itt theorem U(g) ~U(n_) ® U(p). Then it follows from
:i%?? and (E%EE% tha

Fup= Z F.(dL(u;)8) ® 1; € Pol(n,) ® Home(V, W).

Since 6 = F (1), we get
Fep =) dL(u;) ® ;.

J

. -DXYdia
On the other hand, by the construction (E igi,

Dx_.y(p) = Z dR(u;) ® ;.

Now we use the assumption that n, or equivalently n_ is abelian. Then, in the
coordinates n_(R) < G/P the operator dR(u;) for u; € U(n_) defines a constant
coefficient differential operator on n_. Thus Dx_y () can be regarded as an element
of Diff*"*"(n_(R)) ® Home(V, W).

Applying the symbol map we have

(Symb®id) o Dx_y(yp) = Z SymbodR(u;) ® ¢, = Z dL(u]) ® 1;,

j j
:RLFc
where the last equation follows from Lemma @._T’lﬁls we have proved that

(F.®id)¢ = (Symb®id) c Dx_y(¢),
: 313
whence the second statement of Theorem . O

4.4. Recipe of the F-method for abelian nilradical n,. Our goal is to find an
explicit form of a differential symmetry breaking operator from Vx to Wy . Equiva-
lently, what we call F-method provides a way to find an explicit element in the space
Homg (ind% (W), ind$(V")) = Homy (WY, indd(V")).

A semisimple element Z in g is called hyperbolic if all the eigenvalues of ad(Z) are
real. A hyperbolic element Z defines a parabolic subalgebra p(Z) = [(Z) + n,(Z),
where [(Z) and n,(Z) are the sum of eigenspaces of ad(Z) with zero and positive
eigenvalues, respectively.
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Let g’ be a reductive subalgebra in g, in the sense that g’ itself is reductive and
the adjoint representation of g’ on g is completely reducible.

Definition 4.5. A parabolic subalgebra p is said to be g’-compatible if there exists
a hyperbolic element Z € g’ such that p = p(Z).

If p = [+n, is g’-compatible, then p’:= pn g’ becomes a parabolic subalgebra of g’
with the following Levi decomposition:
p'=1+nl:=(Ing)+(n.ng),
1313
which satisfies the assumptions of Theorem
In this case the space Diff o/ (Vx, Wy ) of diffe ential symmetry breaking operators
is always finite-dimensional owing to Corollary ecause:

dim¢ Homg (ind, (W"),ind$(V")) < 00
14
for any finite-dimensional representations V and W of p and p’, respectively H(K'lll,

Proposition 2.8].

Our assumption here is that p = [+n, is a g’-compatible parabolic subal ebr%m%fcgo 4
with abelian nilradical n,. Based on the following diagram (see Corollary %I% ]

(15

(Pol(n, ) ® Home (V, W)~ @)

y W

Homp: (WY, ind3 (V")) Diffe (Vx, Wy)

Dx_vy

we develop a method as follows:

Step 0. Fix a finite-dimensional representation (A, V') of the parabolic subgroup P.
It defines a G-equivariant vector bundle Vx = G xp V over X = G/P.

-dpil - dpi2
Step 1. Let = AV ® C,, and compute (see @paind @i}%
dr,:g — D(n.)®End(V"Y),
dr,:g - D(n,)®End(V").
. 361 — P .
According to @7{7&'# only depends on the infinitesimal representation A
of the parabolic subalgebra p.
Step 2. Find a finite-dimensional representation (v, W) of the Lie group P’ such that
HOmPI(WV7iIldg(VV)) * {0}

It defines a G’-equivariant vector bundle Wy = G’ xp W over Y = G’/ P’ such
that Diffo/(Vx, Wy ) is non-trivial.
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Jegn : Fmethdetin : Fmethod?2

Step 3. Consider ¢ € Pol(n, ) ® Homc (V, W) satisfyine (230 and (#.4]). Note that the
g%st%%of partial differential equations 1%% ; is of second order (see Proposition

:Fmethod1
Step 4. Take a slice S for generic Lg-orbits on n,. Use invariant theory for, Zaiai eéﬁn{fl'ao d;
consider .the system of differential equatlor}s on S ndl:llgﬁgltg%%ﬂ: A Egn
polynomials ¢ € Pol(n,) ® Hom(V, W) satisfying lﬁ%) and (#.4) by solving
those equations on S.

:Fmethoftn : Fmethod2

Step 5. Let 1 be a ppl ngn&iar%ﬁolution to @ and (@4 obtained in Step 4. In
the diagram (%',_%ngb@)id)‘l (¢) gives the desired diffe ntigl symmetry

breaking operator in the coordinates n_ of X by Theorem .1 In the same
diagram, (F. ® id)~*(¢)) gives an explicit element in Hom, (W",indg(V"))
(= Homg (indy, (W), indy(V¥))), which is sometimes referred to as a singular
vector.

This method gives all non-trivial differential symmetry breaking operators for given
data (Y = X,Vyx) by providing G’-equivariant vector bundles ;ﬁ}/'%&d explicit ele-
ments in Diff g/ (Vx, Wy). In fact, Step 2 based on Theorem i%% gives a necessary and
sufficient condition for a P’-modul W.tg ensure that Diffo/(Vx, Wy ) is non-zero.

Steps 1, 3 and 5 based on Theorem show that any differential symmetry reall%%%ho di
a§erﬁ_tncl)ert£so ¢f the form (F. ® id)~'(¢) where 1 is a polynomial solution to an

Actual applications of the F-method include the following cases:

1. Holomorphic discrete series representations. holoreal

2. Principal series representations of real reductive groups (Corollary @17

The latter is related fa.questions in conformal geometry (more generally parabolic
geometry), see fW,"K"@S’SlB]. The former case includes the classical Rankin-Cohen
bidifferential perators as a prototype, and it is the main object of the second part
of this work TI)TPTE)Q]. The connection between thesg two is discussed in [KIKPL3].
We note tEF]TS the normalization and formulation in [K®SS13] is different from this
paper, see [K13].

Here we give some comments on the actual applic ions of the F-method when X
and Y are Hermitian symmetric spaces. In Theorem we prove that all continuous
symmetry breaking operators in this case are given by holomorphic differential oper-
ators that extend to the complex flag varieties, so that the F-method for a parabolic
subalgebra with abelian nilradical applies.

Furthermore, if (G,G’) is a reductive symmetric pair, we know a prioriythat
Diffo/(Vx, Wy ) is one-dimensional for line bundles Vx with generic parameter [K14,
Theorem 2.7|. Thus, it is natural to look for explicit form e for such ¢ Pa?l%i;cﬁl op-
erators. In Step 2 we can use explicit branching laws (see [KPT5-2, Fact 77]] to find
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all W such that Hom,, (W",indg (V")) is non-zero. Conversely, the differential equa-
tions in Step 3 are useful in certain cases to get a finer structure of branching laws,
e.g., gaelind the Jordan—Holder series of the restriction for exceptional parameters A
(see HQK@SSB]).

The Rankin—Cohen operators as well as Juhl’s conformally covariant differential
operators are recovered by the F-method as a special cas wh%ee Sengric L-orbits
on n, are of codimension one. The induced system of @r_edm to ordinary
differential e tions on the one dimensional complex manifold S. In the second part
of this work [KPT5-2] we shall treat all the six geometries with a one-dimensional
slice S.

4.5. F-method — supplement for vector valued cases. In order to deal with
the general case where the target Wy is no longer a line bundle but a vector bundle,
i.e., where W' is an-arhitrary finite-dimensional irreducible I'-module, we may find
the condition somewhat complicated in practice, even though it is a system

of differential equations of first order. In tk(jis section we give two useful lemmas to

simplify Step 3 in the recipe by reducing 0 a simpler algebraic question on

polynomial rings, so that we can focuE onFtn%%%&gtial part consisting of a sygtem of

differential e,qsuaqion,s ofi second order . T'he results here will be used in [KPT5-2),
. Sec:5p. [sec:un
Sections 77 and [77].
We fix a Borel subalgebra b(l') of I'. Let x : b(I'’) > C be a character. For an
I'-module U, we set
Uy={uelU: Zu=x(Z)u for any Zeb(l')}.

Suppose that W is an irreducible representation of " with lowest weight —x. Then
the contragredient representation WV has a highest weight y. We fix a non-zero
highest weight vector w¥ € (WV),. Then the contraction map

UeW U, ¢~ (y,wY),
induces a bijection between the following two subspaces:
(4.6) (UeW)" U,
1111

if U is completely reducible as an I-module. By using the isomorphism . we
reformulate Step 3 of the recipe for the F-method as follows:

144
Lemma 4.6. Suppose we are in the setting of Section ﬁﬂssume that W is an
wrreducible representation of the parabolic subalgebra p’. Let —x be the lowest weight
of W as an '-module. Then we have a natural injective homomorphism

Diffe:(Vx, Wy) = {Q € (Pol(n,) ® V¥), :dm,(C)Q =0 forall Cen},

which 1s bijective if L' is connected.
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(111
Proof. Applying @_ﬁ the I-module U := Pol(n,) ® Homc(V, W), we get an iso-

morphism:

eqn:PViichi| (4.7) (Pol(n,) ® Hom(V, W))" > (Pol(n.) ® V), .

Since W is an irreducible p’-module, the Lie s balgnelle)gﬁog’z acts trivially on W and [’
acts irreducibly. In particular, the condition 1%%) amounts to

(dr.(C)®idw)1 =0 forall Cen’.
:PVlichi
Therefore, the isomorphism (@Wl%es a bijection

7 . hod2
{@/} e (Pol(n,) ® Hom(V,W))" : ¢ satisfies @'}M

> {Qe(Pol(n.)® V), 1dm,(C)Q=0 forall Cen’}.
:313
Now Lemma follows from Theorem [ O

Since any non-zero vector in WV is cyﬂ‘g, the next lemma explains how to recover
Dx_y(p) from @ given in Lemma

We assume, for simplicity, that the [-module (A, V') lifts to L¢, the I'-module
(v, W) lifts to L, and use the same letters to denote their liftings.

Lemma 4.7. For any ¢ € Homy (WY,ind}(VV)), £ € Li, and w” e WY,
eqn:Scalea| (4.8) (Dx_y (), (O)wY) = (Ad(£) @ XY (£)) (Dx_y(p),w").

Proof. We write ¢ = ¥ u; ® ¢; € U(n_) ® Home(V,W). Since ¢ is p’-invariant, we
have the identity:

Yuj ;= > Ad(O)u; @ v(€) opjo A(L71)  for e L.
J J

In turn, we have

(Dx-y (), v (Hw")

> dR(Ad(O)u;) ® (vy,w") o A(CT)

((Ad(£) ® A () (Dx-y (), w”).
Thus, we have proved Lemma. 0

:Scal
We notice that the right-hand side of @%&Bae computed by using the identity
in Diff*™ (n_) @ VV:
(Dxoy(9),w’) = (Symb™ ®idyv)(Q),
:313
onge, we know the pol‘ggcqrélgaysg; =y, w") with ¢ = (F. ®1id)(¢) (see Theorem @7

In [KPT5-2, Sections 77 and [77], we find explicit formulee for vector-bundle valued
equivariant differential operators by solving equations for the polynomials Q).
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5. LOCALNESS AND EXTENSION THEOREM FOR SYMMETRY BREAKING
OPERATORS

Let G o G’ be a pair of real reductive Lie groups. In general, continuous sym-
metry breaking operators between two principal series representations of G and G’
are not always given by differential operators. Actually, generic ones are supposed
to be given by integral transforpas and their meromorphic continuation, as one can
see from a classification result [[KS14]. In this section, however, we formulate and
prove a quite remarkable phenomenon (localness theorem) that any continuous G'-
intertwining operator between two representation spaces consisting of holomorphic
sectiops oyer Hermitian symmetric spaces is given by differential operators, see The-
orem %fln particular, the covariant holomgorphic differential operators which we
shall obtain explicitly in the second part [KRPT5-2] of this work exhaust all continuous
symmetry breaking operators.

5.1. Formulation of the localness theorem. Let G be a connected reductive
Lie group, 6 a Cartan involution, and G/K the associated Riemannian symmetric
space. We write ¢(€) for the center of the complexified Lie algebra € := Lie(K) ®g C =
¢(R) ®g C. In order to formulate a localness theorem, we suppose that G/K is a
Hermitian symmetric space. This means that there exists a characteristic element
Z € ¢(t) such that the eigenvalues of ad(Z) € End(g) is 0 or +1 and that we have an
eigenspace decomposition
g=t+n, +n_

of ad(Z) with eigenvalues 0, 1, and -1, respectively. We note that c¢(£) is one-
dimensional if GG is simple. With the notation of the previous sections, the complex
Lie algebra € plays the role of the Levi subalgebra .

Let G¢ be a complex reductive Lie group with Lie algebra g, and P the maximal
parabolic subgroup with Lie algebra p := £ + n,, with abelian nilradical n,. The
complex structure of the homogeneous G/K is induced from the open embedding

G/K c Gc/K(CeXpﬂ+ = Gc/P(c.

Let G’ be a connected reductive subgroup of G. Without loss of generality we may
and do assume that G’ is #-stable. We set K’ := K nG’. Our crucial assumption
throughout this section is

(5.1) Zet.

:ckkl
Lemma 5.1. _]g.@_cmds, then the parabolic subalgebra p is g’'-compatible (see
Definition .and the homogeneous space G'|K' is a Hermitian sub-symmetric

space of G|K such that the embedding G'|K' = G|K is holomorphic.

Proof. Let G be the connected complex subgroup of G¢ with Lie algebra g’ :=
Lie(G’) g C. Then p’:= ¢ +n’. = (Eng’) + (n, ng’) is the sum of the eigenspaces
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of ad(Z) in g’ with 0 and +1 eigenvalues, respectively, and therefore is a parabolic
subalgebra of g’. We set P} := Pc nG’. Then, the Riemannian symmetric space
G'/K' becomes a Hermitian symmetric space, for which the complex structure is
induced from the open embedding in the complex flag variety Y¢ := Gi./Pf:

G'|K' - G|K
open N N open
Y@Z G(/C/P((,j > Gc/P(C ZX(c.
Since Y is a complex submanifold of X¢ = G¢/Pc, the embedding G'/K' - G/K is
holomorphic. 0

: subh
Notice that in the setting of Lemma I%i tho gg?nplexiﬁed Lie algebra of K’ is a
Levi subalgebra of the parabolic subalgebra p’.

Example 5.2. (1) Let G' be a connected simple Lie group such that the asso-
ciated Riemannian symmetric space G'|K' is a Hermitian symmetric space.
We take a characteristic element Z' € ¢(¥'). Let G := G' x G', and we re-
alize G' as the diagonal subgrou é{{g’) ={(g,9) : g € G'} of G. Then
Z = (Z',7") € c(t) satisfies %,_yzeldmg a holomorphic embedding A :
G'|K'>G|/K=G'|K'<xG'|K'.

(2) Let G be a connected simple Lie group such that the associated symmetric
space G| K is a Hermitian symmetric space with Z a characteristic element in
c(€). Suppose T is an automorphism of G of finite order such that T(Z) = Z.
Let G' be the identity component of the subgroup G7 = {g € G : 7(g) = g},
and K' := G'n K. Then the assumption 15 satisfied, and G'|K' is a
Hermitian sub-symmetric space of GJ/K. We shall foc i\ the case where
(G,G7) is a symmetric pair, namely, T is of order two in [KPI5-2] for detailed
analysis.

Consider a finite-dimensional representation of K on a complex vector space V.
We extend it to a holomorphic representation of Pr by letting the unipotent subgroup
exp(n,) act trivially, and form a holomorphic vector bundle Vx. = Gexp. V over X¢ =
Gc/Pc. The restriction to the open set G/K defines a G-equivariant holomorphic
vector bundle V := G xx V. We then have a natural representation of G on the vector
space O(G/K,V) of global holomorphic sections endowed with the Fréchet topology
of uniform convergence on compact sets.

Likewise, given a finite-dimensional representation W of K'’, we form the G’'-
equivariant holomorphic vector bundle W = G' x W and consider the representation
of G" on O(G'/K',W). By definition, it is clear that

(5.2) . Diff%!(Vx, Wy) c Home (O (G/K, V) ,0(G'|K',W)).

Theorem Helow shows that the two spaces do coincide.
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:ckkl
Theorem 5.3. Let G’ be a reductive subgroup of G satisfying @.C_lzt V and W

be any finite-dimensional representations of K and K', respectively. Then,

(1) (localness theorem) any continuous G'-homomorphism from O(G[K,V) to
O(G'[K', W) 4is. gjyen by a holomorphic differential operator, in the sense
of Definition %'Tw’th respect to a holomorphic map between the Hermitian
symmetric spaces G'|K' = G|K, that is,

Diff%!(Vx, Wy') = Homer (O (G/K, V), 0(G'|K',W)) ;

(2) (extension theorem) any such a differential operator (or equivalently, any
continuous G'-homomorphism) extends to a Gi.-equivariant holomorphic dif-
ferential operator with respect to a holomorphic map between the flag varieties
Ye = G/ Pl = X¢ = Ge/Pe, namely, the injection

(53) lethI(VXC, WYC) > lefho1 (Vx, Wy)
15 bijective.
emézrk 5.4. More generally, we may ask whether an analogous statement to Theorem
1) holds or not if we replace O (G/K,V) and O(G’/K’,W) by some other topo-
logical vector spaces having the same underlying (g, K )-module and (g’, K’)-module,
respectively (e.g. the Casselman—Wallach globalization, Hilbert space globalization,
etc.). This question was raised by D. Vogan in May 2014. It turns qut _%hat this

generalization is also true, as we shall show in the proof of Theorem [5.3} that the
natural injection

(54)  Diffg (Ve Wre) = Homg, iy (O (G/E,V) i use» OG'[K' W) i)
:ckkl
is surjective if the assumption 1|§i )Cls satisfied.

Remark 5.5. An analogous statement for real parabolic subgroups is not true. For
instance, for the pair (G,G") = (O(n+1,1),0(n, 1)) there always exists a non-zero
continuous G’-equivariant map from the spherical principal series representations
C>=(G/P,Ly) of G to the one C=(G'/P",L,) of G’ for any (\,v) € C2, hawever,

non-zero G'-equivariant differential operators exist if and only if v — A € 2N [[KS14].

pair. Then owing to Theorems hOI(VXC, %/g .15, at most one-
dimensional for any irreducible K’-module W, and K‘PTE) 2, Fact [77] Tells us precisely

when it is non-zero.

Remark 5.6. Suppose that V is ene;zrl ar cter of K and (G,G") is a symmetric
i%’iﬁ ana

In HDK"P‘J_B 2] we descri e@]&mt formulee of such differential operators by using
the F- method (Theorem or the six complex geometries arising from symmetric
pairs of split rank one.



F-METHOD 39

:C
5..2. Proof of the localness theorem. ‘kﬂggceoqarf_q(l 8.2 I{f}ﬂ{eé:écciggsof thg theory of
discretely decomposable restrictions (see [K94, [K98al, IKIZDH[]. The proof is based on
a careful analysis of the following three objects:

(g, K)-modules, (g, K')-modules, and (g’, K')-modules.

We say that a K’-module Z is K’-admissible if the multiplicity
[M : F]:=dimHom (F, M

Kr)

is finite for any F' € K'. Then, K ~admissibility is preserved by taking the tensor
product with finite-dimensional representations.
We write O(G/K, V) k_finite Tor the space of K-finite vectors of O(G/K, V), which

becomes naturally a (g, K )-module.
Lemma 5.7. The (g, K)-module O(G|K, V) k_finite 15 K'-admissible if Z € g'.

Proof. As a K-module, we have the following isomorphism

O(GIK,V)k-finite = S(ny)®V
(GB S“(m)) eV,

12

a>0
where S%(n,) denotes the space of symmetric tensors of homogeneous degree a.
Since exp(Rv/-1Z) acts on S%(n,) as the scalar eV=1e¢ (¢ € R), the whole S(n,)

is admissible as a module of the one-dimensional subgroup exp(R\/—éeZc )},gimd SO is
O(G/K,V)k_finite- Hence it is also admissible as a K’-module by [K94, Theorem,

94
1.2]. Alternativ ,eggé%sal‘%pma follows as a special case of the general result Keg%,_
Theorem 2.7 or [K98a, Theorem 4.1]. O

Given a (g, K’)-module M, we consider the contragredient representation on the
dual space MV := Hom¢ (M, C). Collecting K’-finite vectors in MV, we get a (g, K')-
module (M) rer_gpige-

Lemma 5.8. Let M be a K'-admissible (g, K')-module. Then,

(1) M is discretely decomposable as a (g', K'")-module.
(2) The (g, K")-module (M) .. is K'-admissible and one has the following
K'-isomorphism

finite

(MV>K’-ﬁnite = @[M : F] EY.
FeR?
deco98
For the proof we refer to H{'KQSB,_PrOposition 1.6].
Lemma 5.9. Let M be a K'-admissible (g, K')-module. Then,

(M : ) K-finite — (M Y ) K'-finite *
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Proof. There is an obvious inclusion (M) a0 € (M) jerpnie- We shall prove that

the multiplicities in (MV) g0 @0d (MY) i guie are both finite and are the same.
Indeed, M being K’-admissible, one has

[M:F]=@[M:FE]E:F]<oo.

EcK
Conversely, (MY) xr pite = Ppege[M 2 F] FY and thus,

() = DU E1E* = @ (@< E15 )

EeR FeK' \EeK

which concludes the proof. 0]

The next lemma is known to experts, but for the sake of completeness, we give a
proof.

Lemma 5.10. There is a natural (g, K)-isomorphism:
((O(G/K, V)K-ﬁnite>v)K_ﬁnite ~indg(V'").
:indPhi
Proof. As in Lemma %ﬁl‘heﬁré is a natural non-degenerate g-invariant bilinear form
O(G/K7 V)K—ﬁnite x Hldg(vv) - C.

Hence, we have an injective (g, K')-homomorphism ind§(VY) ¢ (O(G/K, V) k_gnite) -
Taking K-finite vectors we get the following commutative diagram of K-modules

isomorphisms:
ind$ (V) c ((O(GIK, V) ketinite)”) e
S(ﬂ_) ®VY = ((POI(I’I_) ® V)V)K-ﬁnite .
Hence the first row is also bijective. 0

o : 1433 lem:434 .
Combining Lemmas ﬁ,‘@ and p.I0fwe have shown the following key result:

prop:Kprimeind‘ Proposition 5.11. There is a natural (g, K)-isomorphism:

((O(G/K> V)K-ﬁnite)v)K,_ﬁnite = 1ndg(vv)
:C
Proof of Theorem %._Let T:0(G/K,V) - O(G'|K',W) be a continuous G’-intertwining
operator. It induces a (g’, K')-homomorphism
(5.5) Tk : O(G/K, V) k-finite > O(G'K', W) K+ _finite-

We shall prove that any such (g, K’)-homomorphism Tk comes from a G-equivariant
differential operator on the flag variety.
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:TK 434 ..
To see this, we take the dual map , and apply Lemma @ﬁd Proposition

prop:Kprimeind

b.11 Then there is a (g/, K')- homomorphlsm (VI 1ndg (W) - ind3(Vv) such that

the following diagram commutes:

(O(G' K" W)Y iee)

lem|/434
Lemma|

indg, (W)

Ty y
K'-finite (O(G/K’ V)K‘ﬁnite)K’—ﬁnite

rop:Kprimeind
Proposition

indg(VV)

The correspondence Tk ~ 1) is one-to-one, and thus we have obtained the following
natural injective map

Homy k1 (O(G/K, V)K finite; O(G'[K', W) i _finite ) = Homg (mdEl (WY),indg(VY)).

:2.1¢hm: 313
and . I[the latter space is isomorphic to Diffgs (Vx, Wy ).

According to The n__ 2

This shows that (5-4]) 1S sut octive. . o - dcont eqn: inj
Sm&;e tLh Jectlve map actors the two injective maps (p.2]] and 1@ 3, both
. O

and (3] are bijective.

5.3. Automatic continuity theorem in the unitary case. Any unitary high-
est weight module is realized as a subrepresentation of O(G/K,V) for some G-
equivariant holomorphic vector bundle V over G/K. In this subsection, we prove that
any continuous homomorphism between Fréchet modules O(G/K,V) and O(G'/ K", W)
induces a continuous homomorphism between their unitary submodules.

Definition 5.12. For a Fréchet G-module F, we say a GG-submodule H is a unitary
submodule if H is a Hilbert space such that the inclusion map H < F is continuous
and that G acts unitarily on H.

If V is an irreducible K-module, then there exists at most one non-zero unitary
submodule (up to a scaling of the inner product) of O(G/K,V). We denote by H
the unitary submodule of O(G/K,V). The classification of irreducible K-modules
V for which H{ # {0} was accomplished in [FEHWS3]. We shall prove that any G’-
equivariant dlfferentlal operator in Theorem %7
the following sense:

ckkl
Theorem 5.13. Let G’ be a reductive subgroup of G satisfying @_ﬁet V and
W be any wrreducible finite-dimensional representations of K and K', respectively.
Suppose that T : O(G|K,V) — O(G'|K', W) is a G'-equivariant differential opera-

tor such that T| , 0. Then HS # {0} and T induces a continuous G'-equivariant
HV

preserves the unitary submodules in

linear map from the Hilbert space HS onto the Hilbert space Hﬁ,’
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:C -CC :
Applying Theorems %ﬁnd %To the setting of Example @Eﬁ%, we have:

Example 5.14. Any symmetry breaking operator for the tensor product of two holo-
morphic discrete series representations is given by a holomorphic differential op-
erator if those representations are realized in the space of holomorphic sections for
G-equivariant holomorphic vector bundles over the Hermitian symmetric space G| K.
The Rankin—Cohen bidifferential operators are such operators for G = SL(2,R).

Remark 5.15. As we shall see in the proof, the unitar representation 7{‘(5 decom-
poses discretely when restricted to G’ if the condition @W&tisﬁed. The unitary
submodule ’Hﬁ,’ occurs as a discrete summand of the restriction of the unitary rep-
resentation H{ of G to the subgroup G'.

Let V' be an irreducible representation of K as before. Then, there exists a unique
K-submodule of O(G/K,V) k_gnite ~ S(n,)®V isomorphic to V', namely S%(n,)®V =~
V.

Lemma 5.16. Let M be a non-zero (g, K)-submodule of O(G/K,V) i finite- Then,

1) The module M contains V.
2) If M is unitarizable, then its Hilbert completion can be realized in O(G|K,V)
and M = (Hg)K-ﬁnite'

Proof. 1) Since any non-zero quotient of the (generalized) Verma module indi (V")
contains V'V, the first statement follows from Lemma - Alternatively, since the
infinitesimal action of n_ on O(G/K, V) g finite ~ Pol(n_) ® V' is given by directional
derivatives, iterated operators of n_ yield non-zero elements in V.

2) Denote by (7, M) the unitary representation of G' obtained as an (abstract)
Hilbert completion of the (g, K')-module M. We regard V' as a K-submodule of M,
and also of M. Then the map

GXWXV—)(C? (g,w,U)H(U),ﬂ'(g)U)M,

induces an injective G-homomorphism ¢ : M — O(G/K, V). Since H$ is the unique
non-zero unitary submodule, ¢ is an isomorphism onto H$. O

.CC 1431
Proof of Theorem %._By Lemma @_ﬁﬁe module (H$) g 18 K'-admissible.
Therefore, the unitary representation HG decomposes into a Hilbert direct sum of
irreducible unitary representations {U,} of G":

(56) HG & 269 ijj>
J
deco94
with m; < oo for all j ([K94, Theorem 1.1]) and the underlying (g, K)-module

(H$) K-finite 18 1somorphic to an algebraic direct sum of irreducible and unitarizable
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(g/, K')-modules

(5.7) (Hg)K-ﬁnite = (Hg)K’-ﬁnite = E.ij (U3) ie-finite
deco98 ’
with the same multiplicities H{KQS‘B . (We remark that an analogous statement fails
for the restriction 7|gs of an irreducible unitary representation 7 of G if the branching
law contains continuous spectrum). .C
As we saw in the proof of Theorem %,'_ﬁhe G'-equivariant differential operators
T induces a (g’, K')-homomorphism

Ty : (’Hg) — O(G'| K", W) k' _finite-

K-finite
1432
By S M =Ty ((’Hg) K_ﬁnite) is an algebraic direct sum of some irreducible unita-

rizable (g’, K')-modules. Since O(G'/K’, W) krmite contains at most one irreducible
unitarizable (g’, K')-module, M is irreducible gs auggfdsflgrgaglodule, and we can re-
alize its Hilbert C():%Qletion %3%[% by Lemma [5.T6}

In view of @ﬁd @t‘here exists a continuous G’-homomorphism between

Hilbert spaces:

T:H —HS

such that T|(H3)K L= T|(7"x(5);< ... Since the inclusion map HS > O(G/K,V) and
the differential operator T : O(G/K,V) — O(G'/K’, W) are both continuous, we

get T =T on HG. Hence Theorem is proved. O

5.4. Orthogonal projectors. Clkfky is one-dimensional and (G,G’ is, 4 reductive
symmetric pair satisfying @Tﬂﬁen all the multiplicities m; in are equal to

one (see [[K0J]) and it becomes meaningful to describe the projector from H$ to each
G'-irreducible summand. We explain briefly the relationship between the projector
for the unitary representation and the symmetry breaking operator.

For this, suppose T : O(G/K,V) - O(G'[K. ¥¥) is a G'-equivariant differential
operator such that T|H€ # 0. By Theorem 1" induces a continuous map 1" :
HE — ’Hg,’ . Let T~ : H%’ - HS be its the adjoint operator. Then the composition
T*T : HG - HS is a G'-intertwining operator onto the G’-irreducible summand which
is isomorphic to Hg,’ Since T vanishes on the orthogonal complement to T* ('Hﬁ,’),
it is (up to scaling) the orthogonal projector onto H‘?V'

Explicit description of such differential operators T' will be the main concern of
the second part [KPT5-2] of this work.
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