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Abstract We study local and global properties of positive solutions of −∆u = up+M |∇u|q in a domain Ω

of RN , in the range min{p, q} > 1 and M ∈ R. We prove a priori estimates and existence or non-existence

of ground states for the same equation.
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1 Introduction

This article is concerned with local and global properties of positive solutions of the following
type of equations

−∆u = M ′|u|p−1u+M |∇u|q , (1.1)

in Ω \ {0} where Ω is an open subset of RN containing 0, p and q are exponents larger than
1 and M,M ′ are real parameters. If M ′ ≤ 0 the equation satisfies a comparison principle and
a big part of the study can be carried via radial local supersolutions. This no longer the case
when M ′ > 0 which will be assumed in all the article, and by homothety (1.1) becomes

−∆u = |u|p−1u+M |∇u|q . (1.2)

If M = 0 (1.2) is called Lane-Emden equation

−∆u = |u|p−1u. (1.3)

It turns out that it plays an important role in modelling meteorological or astrophysical phe-
nomena [15], [13], this is the reason for which the first study, in the radial case, goes back to the
end of nineteenth century and the beginning of the twentieth. A fairly complete presentation
can be found in [18]. If N ≥ 3, This equations exhibits two main critical exponents p = N

N−2

and p = N+2
N−2 which play a key role in the description of the set of positive solutions which can

be summarized by the following overview:

1- If 1 < p ≤ N
N−2 , there exists no positive solution if Ω is the complement of a compact set.

Even in that case solution can be replaced by supersolution. This is easy to prove by studying
the inequality satisfied by the spherical average of a solution of the equation.

2- If 1 < p < N+2
N−2 , there exists no ground state, i.e. positive solution in RN . Furthermore any

positive solution u in a ball BR = BR(a) satisfies

u(x) ≤ c(R− |x− a|)−
2
p−1 , (1.4)
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where c = c(N, p) > 0, see [19].

3- If p = N+2
N−2 all the positive solutions in RN are radial with respect to some point a and endow

the following form

u(x) := uλ(x) =
(N(N − 2)λ)

N−2
4

(λ+ |x− a|2)
N−2

2

. (1.5)

All the positive solutions in RN \ {0} are radial, see [12].

4- If p > N+2
N−2 there exist infinitely many positive ground states radial with respect to some

points. They are obtained from one say v, radial for example with respect to 0 by the scaling
transformation Tk where k > 0 with

Tk[v](x) = k
2
p−1 v(kx). (1.6)

Indeed, the first significant non-radial results deals with the case 1 < p ≤ N
N−2 . They are

based upon the Brezis-Lions lemma [11] which yields an estimate of solutions in the Lorentz

space L
N
N−2

,∞, implying in turn the local integrability of uq. Then a bootstrapping method as in
[21] leads easily to some a priori estimate. Note that this subcritical case can be interpreted using
the famous Serrin’s results on quasilinear equations [24]. The first breakthrough in the study of
Lane-Emden equation came in the treatment of the case 1 < p < N+2

N−2 ; it is due to Gidas and
Spruck [19]. Their analysis is based upon differentiating the equation and then obtaining sharp
enough local integral estimates on the term uq−1 making possible the utilization of Harnack
inequality as in [24]. The treatment of the critical case p = N+2

N−2 , due to Caffarelli, Gidas and
Spruck [12], was made possible thanks to a completely new approach based upon a combination
of moving plane analysis and geometric measure theory. As for the supercritical case, not much
is known and the existence of radial ground states is a consequence of Pohozaev’s identity [22],
using a shooting method.

The study of (1.2) when M 6= 0 presents some similarities with the one of Lane-Emden
equation in the cases 1 and 2, except that the proof are much more involved. Actually the
approach we develop in this article is much indebted to our recent paper [6] where we study
local and global aspects of positive solutions of

−∆u = up |∇u|q , (1.7)

where p ≥ 0, 0 ≤ q < 2, mostly in the superlinear case p + q − 1 > 0. Therein we prove the
existence of a critical line of exponents

(L) := {(p, q) ∈ R+ × [0, 2) : (N − 2)p+ (N − 1)q = N}. (1.8)

The subcritical range corresponds to the fact that (p, q) is below (L). In this region Serrin’s
celebrated results [24] can be applied and we prove [6, Theorem A] that positive solutions of
(1.7) in the punctured ball B2 \ {0} satisfy, for some constant c > 0 depending on the solution,

u(x) + |x| |∇u(x)| ≤ c |x|2−N for all x ∈ B1 \ {0}. (1.9)

When (p, q) is above (L), i.e. in the supercritical range, we introduced two methods for
obtaining a priori estimate of solutions: The pointwise Bernstein method and the integral Bern-
stein method. The first one is based upon the change of unknown u = v−β, and then to show
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that |∇v| satisfies an inequality of Keller-Osserman type. When (p, q) lies above (L) and verifies

(i) either 1 ≤ p < N+3
N−1 and p+ q − 1 < 4

N−1 ,

(ii) or 0 ≤ p < 1 and p+ q − 1 < (p+1)2

p(N−1) ,

we prove that any positive solution of (1.7) in a domain Ω ⊂ RN satisfies

|∇ua(x)| ≤ c∗ (dist (x, ∂Ω))
−1−a 2−q

p+q−1 for all x ∈ Ω, (1.10)

for some positive c∗ and a depending on N , p and q [6, Theorem B]. As a consequence we prove
that any positive solution of (1.7) in RN is constant. With the second method we combine
the change of unknown u = v−β with integration and cut-off functions. We show the existence
of a quadratic polynomial G in two variables such that for any (p, q) ∈ R+ × [0, 2) satisfying
G(p, q) < 0 any positive solution of (1.7) in RN is constant [6, Theorem C]. The polynomial G
is not simple but it is worth noting that if 0 ≤ p < N+2

N−2 , there holds G(p, 0) < 0, which recovers
Gidas and Spruck result [19].

For equation (1.2) we first observe that the equation is invariant under the scaling transfor-
mation (1.6) for any k > 0 if and only if q is critical with respect to p, i.e.

q =
2p

p+ 1
.

In general the transformation Tk exchanges (1.2) with

−∆v = vp +Mk
2p−q(p+1)

p−1 |∇v|q, (1.11)

hence if q < 2p
p+1 , the limit equation when k → 0 is (1.3). We say that the exponent p is

dominant. We can also consider the transformation

Sk[v](x) = k
2−q
q−1 v(kx), (1.12)

when q 6= 2, which is the same as Tk if q = 2p
p+1 , and more generally transforms (1.2) into

−∆v = k
q−p(2−q)
q−1 vp +M |∇v|q. (1.13)

Hence if q > 2p
p+1 , the limit equation when k → 0 is the Riccati equation

−∆v = M |∇v|q. (1.14)

It is also important to notice that the value of the coefficient M (and not only its sign) plays a
fundamental role, only if q = 2p

p+1 . If q 6= 2p
p+1 the transformation

u(x) = av(y) with a = |M |−
2

(p+1)q−2p and y = a
p−1

2 x (1.15)

allows to transform (1.2) into
−∆v = |v|p−1v ± |∇v|q. (1.16)
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The equation (1.2) has been essentially studied in the radial case when M < 0 in connection
with the parabolic equation

∂tu−∆u+M |∇u|q = |u|p−1u, (1.17)

see [14], [16], [17], [25], [27], [30], [31]. The studies mainly deal with the case q 6= 2p
p+1 , although

not complete when q > 2p
p+1 . When q = 2p

p+1 the existence of a ground state is proved in
dimension 1. Some partial results that we will improve, already exist in higher dimension. The
case M > 0 attracted less attention.

In the nonradial case, any nonnegative nontrivial solution is positive since p, q > 1. We first
observe, using a standard averaging method applied to positive supersolutions of (1.3), that if
M ≥ 0, 1 < p ≤ N

N−2 when N ≥ 3, any p > 1 if N = 1, 2, then for any q > 0 there exists no

positive solution in an exterior domain. When 0 < q < 2p
p+1 the equation endows some character

of the pure Emden-Fowler equation (1.3) by the transformation Tk. In [23] it is proved that if
0 < q < 2p

p+1 , 1 < p < N+2
N−2 and M ∈ R, any positive solution of (1.3) in an open domain satisfies

u(x) + |∇u(x)|
2
p+1 ≤ cN,p,q,M

(
1 + (dist (x, ∂Ω))

− 2
p−1

)
for all x ∈ Ω. (1.18)

Note that this does not imply the non-existence of ground state. In [1] Alarcón, Garćıa-Melián
and Quass study the equation

−∆u = |∇u|q + f(u), (1.19)

in an exterior domain of RN emphasizing the fact that positive solutions are super harmonic
functions. They prove that if 1 < q ≤ N

N−1 and if f is positive on (0,∞) and satisfies

lim sup
s→0

s−pf(s) > 0, (1.20)

for some p > N
N−2 , then (1.19) admits no positive supersolution. The same authors also study in

[2] existence and non-existence of positive solutions of (1.19) in a bounded domain with Dirichlet
condition.

The techniques we developed in this paper are based upon a delicate extension of the ones
already introduced in [6]. Our first nonradial result dealing with the case q > 2p

p+1 is the following:

Theorem A Let N ≥ 1, p > 1 and q > 2p
p+1 . Then for any M > 0, any solution of (1.2) in a

domain Ω ⊂ RN satisfies

|∇u(x)| ≤ cN,p,q
(
M
− p+1

(p+1)q−2p + (Mdist (x, ∂Ω))
− 1
q−1

)
for all x ∈ Ω. (1.21)

As a consequence, any ground state has at most a linear growth at infinity:

|∇u(x)| ≤ cN,p,qM
− p+1

(p+1)q−2p for all x ∈ RN . (1.22)
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Our proof relies on a direct Bernstein method combined with Keller-Osserman’s estimate
applied to |∇u|2. It is important to notice that the result holds for any p > 1, showing that, in
some sense, the presence of the gradient term has a regularizing effect. In the case q < 2p

p+1 we
prove a non-existence result

Theorem A’ Let N ≥ 1, p > 1, 1 < q < 2p
p+1 and M > 0. Then there exists a constant

cN,p,q > 0 such that there is no positive solution of (1.2) in RN satisfying

u(x) ≤ cN,p,qM
2

2p−(p+1)q for all x ∈ RN . (1.23)

When q is critical with respect to p the situation is more delicate since the value of M plays
a fundamental role. Our first statement is a particular case of a more general result in [1], but
with a simpler proof which allows us to introduce techniques that we use later on.

Theorem B Let N ≥ 2, p > 1 if N = 2 or 1 < p ≤ N
N−2 if N = 3, q = 2p

p+1 and M > −µ∗
where

µ∗ := µ∗(N) = (p+ 1)

(
N − (N − 2)p

2p

) p
p+1

. (1.24)

Then there exists no nontrivial nonnegative supersolution of (1.2) in an exterior domain.

In this range of values of p this result is optimal since for M ≤ −µ∗ there exists positive
singular solutions. The constant µ∗ will play an important role in the description developed in
[7] of radial solutions of (1.2). Using a variant of the method used in the proof of Theorem B
we obtain results of existence and nonexistence of large solutions.

Theorem B’ Let N ≥ 1, p > 1 and q = 2p
p+1 .

1- If Ω is a domain with a compact boundary satisfying the Wiener criterion and M ≥ −µ∗(2)
there exists no positive supersolution of (1.2) in Ω satisfying

lim
dist (x,∂Ω)→0

u(x) =∞. (1.25)

2- If G is a bounded convex domain, Ω = G
c

and M < −µ∗(1) there exists a positive solution of
(1.2) in Ω satisfying (1.25).

We show in [7] that the inequality M < −µ∗(1) is the necessary and sufficient condition for
the existence of a radial large solution in the exterior of a ball.

Concerning ground states, we prove their nonexistence for any p > 1 provided M > 0 is
large enough: indeed

Theorem C Let Ω ⊂ RN , N ≥ 1, be a domain, p > 1, q = 2p
p+1 . For any

M > M† :=

(
p− 1

p+ 1

) p−1
p+1
(
N(p+ 1)2

4p

) p
p+1

, (1.26)
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and any ν > 0 such that (1 − ν)M > M†, there exists a positive constant cN,p,ν such that any
solution u in Ω satisfies

|∇u(x)| ≤ cN,p,ν ((1− ν)M −M†)−
p+1
p−1 (dist (x, ∂Ω))

− p+1
p−1 for all x ∈ Ω. (1.27)

Consequently there exists no nontrivial solution of (1.2) in RN .

The next result, based upon an elaborate Bernstein method, complements Theorem C under
a less restrictive assumption on M but a more restrictive assumption on p.

Theorem D Let 1 < p < N+3
N−1 , N ≥ 2, 1 < q < N+2

N and Ω ⊂ RN be a domain. Then there
exist a > 0 and cN,p,q > 0 such that for any M > 0, any positive solution u in Ω satisfies

|∇ua(x)| ≤ cN,p,q (dist (x, ∂Ω))
− 2a
p−1
−1

for all x ∈ Ω. (1.28)

Hence there exists no nontrivial nonnegative solution of (1.2) in RN .

It is remarkable that the constants a and cN,p,q do not depend on M > 0, a fact which is
clear when q 6= 2p

p+1 by using the transformation Tk, but much more delicate to highlight when

q = 2p
p+1 since (1.2) is invariant. When |M | is small, we use an integral method to obtain the

following result which contains, as a particular case, the estimates in [19] and [7]. The key point
of this method is to prove that the solutions in a punctured domain satisfy a local Harnack
inequality.

Theorem E Let N ≥ 3, 1 < p < N+2
N−2 , q = 2p

p+1 . Then there exists ε0 > 0 depending on N and
p such that for any M satisfying |M | ≤ ε0, any positive solution u in BR \ {0} satisfies

u(x) ≤ cN,p |x|−
2
p−1 for all x ∈ BR

2
\ {0}. (1.29)

As a consequence there exists no positive solution of (1.2) in RN , and any positive solution u in
a domain Ω satisfies

u(x) + |∇u(x)|
2
p+1 ≤ c′N,p (dist (x, ∂Ω))

− 2
p−1 for all x ∈ Ω. (1.30)

Note that under the assumptions of Theorem E, there exist ground states for |M | large
enough when 1 < p < N

N−2 , or any p > 1 if N = 1, 2.

If u is a radial solutions of (1.2) in RN it satisfies

−u′′ − N − 1

r
u′ = |u|p−1 u+M

∣∣u′∣∣q , (1.31)

on (0,∞). Using several type of Lyapounov type functions introduced by Leighton [20] and
Anderson and Leighton [3], we prove some results dealing with the caseM > 0 which complement
the ones of [25] relative to the case M < 0.

Theorem F 1- Let p > 1 and q > 2p
p+1 . Then there exists no radial ground state u satisfying

u(0) = 1 when M > 0 is too large.
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2- Let 1 < p < N+2
N−2 . If 1 < q ≤ p there exists no radial ground state for any M > 0. If q > p

there exists no radial ground state for M > 0 small enough.

3- Let N ≥ 3, p > N+2
N−2 and q ≥ 2p

p+1 . Then there exist radial ground states for M > 0 small
enough.

We end the article in proving the existence of non-radial positive singular solutions of (1.2)
in RN \ {0} in the case q = 2p

p+1 obtained by bifurcation from radial explicit positive singular
solutions. Our result shows that the situation is very contrasted according M > 0 where a
bifurcation from (M,XM ) occurs only if p ≥ N+1

N−3 and M ≥ 0 and M < 0 where there exists a

countable set of bifurcations from (Mk, XMk
), k ≥ 1, when 1 < p < N+1

N−3 .

In a subsequent article [7] we present a fairly complete description of the positive radial
solutions of (1.2) in RN \ {0} in the scaling invariant case q = 2p

p+1 .

Acknowledgements This article has been prepared with the support of the collaboration
programs ECOS C14E08 and FONDECYT grant 1160540 for the three authors.

2 The direct Bernstein method

We begin with a simple property in the case M ≥ 0 which is a consequence of the fact that the
positive solutions of (1.2) are superharmonic.

Proposition 2.1 1- There exists no positive solution of (1.2) in RN \BR, R ≥ 0 if one of the
two conditions is satisfied:
(i) M ≥ 0, q ≥ 0 and either N = 1, 2 and p > 1 or N ≥ 3 and 1 < p ≤ N

N−2 .

(ii) M > 0, N ≥ 3, p ≥ 1 and 1 < q ≤ N
N−1 .

2- If N ≥ 3, q ≥ 1, p > N
N−2 and u(x) = u(r, σ) is a positive solution of (1.2) in RN \ BR,

R ≥ 0. Then there exists ρ ≥ R such that

1

NωN

∫
SN−1

u(r, σ)dS := u(r) ≤ c0r
− 2
p−1 for all r > ρ, (2.1)

with c0 :=
(

2N
p−1

) 1
p−1

and∣∣∣∣ 1

NωN

∫
SN−1

ur(r, σ)dS

∣∣∣∣ := |ur(r)| ≤ (N − 2)c0r
− p+1
p−1 for all r > ρ. (2.2)

3- If M > 0, p ≥ 0, and q > N
N−1 there holds for

|ur(r)| ≤
(

(q − 1)(N − 1)− 1

(q − 1)M

) 1
q−1

r
− 1
q−1 for all r > ρ, (2.3)

and

u(r) ≤
(q − 1

2− q

)((q − 1)(N − 1)− 1

(q − 1)M

) 1
q−1

r
q−2
q−1 for all r > ρ, (2.4)

Furthermore, if R = 0, inequalities (2.1), (2.2) and (2.3) hold with ρ = 0.
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Proof. Assertion 1-(i) is not difficult to obtain by integrating the inequality satisfied by the
spherical average of the solution and using Jensen’s inequality. For the sake of completeness, we
give a simple proof although the result is actually valid for much more general equations (see
e.g. [8] and references therein). In this statement we denote by (r, σ) ∈ R+×SN−1 the spherical
coordinates in RN , by ωN the volume of the unit N-ball and thus NωN is the (N-1)-volume of
the unit sphere SN−1. Writing (1.2) in spherical coordinates and using Jensen formula, we get

−r1−N (rN−1ur
)
r
≥ up +M |ur|q . (2.5)

It implies that r 7→ w(r) := −rN−1ur is increasing on (R,∞), thus it admits a limit ` ∈ (−∞,∞].
If ` ≤ 0, then ur(r) > 0 on (R,∞). Hence u(r) ≥ u(ρ) := c > 0 for r ≥ ρ > R. then(

rN−1ur
)
r
≤ −cprN−1 =⇒ ur(r) ≤

ρN−1

rN−1
ur(ρ)− cp

N

(
r − ρN

rN−1

)
,

which implies ur(r) → −∞, thus u(r) → −∞ as r → −∞, contradiction. Therefore ` ∈ (0,∞]
and either ur(r) < 0 on (R,∞) or there exists r` > R such that ur(r`) = 0, u is increasing on
(R, r`, ) and decreasing on (r`,∞). If ur(r) < 0 on (R,∞), then we have for r > 2R

−rN−1ur(r) ≥
∫ r

r
2

tN−1up(t)dt ≥ rNup(r)

2N
=⇒

(
u1−p)

r
≥ (p− 1)r

2N
=⇒ u(r) ≤

(
2N

(p− 1)r2

) 1
p−1

,

which yields (2.1). If we are in the second case with r` > R, we apply the same inequality with
r > 2r` and again (2.1) for r > 2r`. Since u is superharmonic, the function v(s) = u(r) with
s = r2−N is concave on (0, R2−N ) and it tends to 0 when s→ 0. Thus

vs(s) ≤
v

s
=⇒ |ur(r)| ≤ (N − 2)

u(r)

r
≤ (N − 2)c0r

− p+1
p−1 .

This implies (2.1) and (2.2). Note that the case r` > R cannot happen if R = 0, so in any case,
if R = 0 then ρ = 0.
If M > 0, we have with w(r) = −rN−1ur

wr ≥Mr(1−q)(N−1) |w|q .

We have seen that w(r) > 0 at infinity with limit ` ∈ (0,∞], hence, on the maximal interval
containing ∞ where w > 0, we have (w1−q)r ≤ (1− q)Mr(N−1)(1−q). We have for r > s > R

w1−q(r)− w1−q(s) ≤M ln
(r
s

)
,

if q = N
N−1 and

w1−q(r)− w1−q(s) ≤ M(q − 1)

(q − 1)(N − 1)− 1

(
r1−(q−1)(N−1) − s1−(q−1)(N−1)

)
if q < N

N−1 , and both expressions which tend to −∞ when r →∞, a contradiction. This proves

1-(ii). If q > N
N−1 , the above expression yields, when r →∞,

`1−q − w1−q(s) ≤ − (q − 1)M

(q − 1)(N − 1)− 1
s1−(q−1)(N−1).
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This implies

w(s) ≤
(

(q − 1)(N − 1)− 1

(q − 1)M

) 1
q−1

s
N−1− 1

q−1 ,

and (2.3). �

Remark. The previous is a particular case of a much more general one dealing with quasilinear
operators proved in [8, Theorem 3.1].

2.1 Proof of Theorems A, A’ and C

The function u is at least C3+α for some α ∈ (0, 1) since p, q > 1. Hence z = |∇u|2 is C2+α.
Since there holds by Bochner’s identity and Schwarz’s inequality

−1

2
∆z +

1

N
(∆u)2 + 〈∇∆u,∇u〉 ≤ 0, (2.6)

we obtain from (1.2),

−1

2
∆z +

|u|2p

N
+

2M

N
|u|p−1uz

q
2 +

M2

N
zq − p|u|p−1z − Mq

2
z
q
2
−1〈∇z,∇u〉 ≤ 0.

Since for δ > 0,

z
q
2
−1 |〈∇z,∇u〉| ≤

∣∣∣z− 1
2∇z

∣∣∣ z q−1
2 |∇u| =

∣∣∣z− 1
2∇z

∣∣∣ z q2 ≤ δzq +
1

4δ

|∇z|2

z
,

we obtain for any ν ∈ (0, 1), provided δ is small enough,

−1

2
∆z +

|u|2p

N
+

2M

N
|u|p−1uz

q
2 +

M2(1− ν)2

N
zq − p|u|p−1z ≤ c1

|∇z|2

z
, (2.7)

where c1 = c1(M,N, ν) > 0.

2.1.1 Proof of Theorem A

We recall the following technical result proved in [6, Lemma 2.2] which will be used several times
in the course of this article.

Lemma 2.2 Let S > 1, R > 0 and v be continuous and nonnegative in BR and C1 on the set
U+ = {x ∈ BR : v(x) > 0}. If v satisfies, for some real number a,

−∆v + vS ≤ a |∇v|
2

v
(2.8)

on each connected component of U+, then

v(0) ≤ cN,S,aR−
2

S−1 . (2.9)
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Abridged proof. Assuming a > 0, we set W = vα for 0 < α ≤ 1
a+1 , this transforms (2.8) into

−∆W +
1

α
Wα(S−1)+1 ≤ 0, (2.10)

and then we apply Keller-Osserman inequality. �

Proof of Theorem A. Suppose 2p
p+1 < q. We set r = 2p

p−1 , r′ = r
r−1 , then, for any ε > 0

p|u|p−1z ≤ εr|u|(p−1)r

r
+

zr
′

εr′r′
= (p− 1)

εr|u|2p

2
+ (p+ 1)

z
2p
p+1

2εr′
.

We fix η ∈ (0, 1) and ε so that εr = 2(1−η)
N(p−1) and get

p|u|p−1z ≤ (1− η)
|u|2p

N
+ c2z

2p
p+1 ,

where c2 = p+1
2

(
N(p−1)
2(1−η)

) p+1
p−1

. We perform the change of scale (1.6) in order to reduce (1.2) to

the case M = 1 by setting u(x) = α
2
p−1 v(αx) with α = M

− p−1
(p+1)q−2p . Then the equation for

z = |∇v|2 is considered in Ωα = αΩ. Choosing now η = 1
2 we obtain

c2z
2p
p+1 ≤ 1

4N
zq + c3,

where c3 = c3(N, p, q) > 0, hence

−1

2
∆z +

v2p

2N
+

1

4N
zq ≤ c3 + c1

|∇z|2

z
.

Put z̃ =
(
z − (4Nc3)

1
q

)
+

, then

−1

2
∆z̃ +

1

4N
z̃q ≤ c1

|∇z̃|2

z̃
,

hence, from Lemma 2.2, we derive

z̃(y) ≤ c4 (dist (y, ∂Ωα))
2
q−1

where c4 = c4(N, q, c1) > 0 which implies

|∇v(y)| ≤ c′4
(

1 + (dist (y, ∂Ωα))
− 1
q−1

)
∀ y ∈ Ωα. (2.11)

Then (1.21) and (1.22) follow.

Assume now that there exists a ground state u. Fix y ∈ RN and consider {yn} ⊂ RN such
that |yn| = 2n > |y|. We apply (2.11) with Ωα = Bn(yn). Then

|∇v(y)| ≤ c′4
(

1 + |2n− |y||−
1
q−1

)
,
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and letting n→∞ we infer
|∇v(y)| ≤ c′4 ∀ y ∈ RN . (2.12)

Hence, by the definition of v and y we see that

|∇u(x)| ≤ c′4M
− p+1

(p+1)q−2p ∀x ∈ RN

which is exactly (1.22 ). �

2.1.2 Proof of Theorem A’

Suppose 1 < q < 2p
p+1 . By scaling we reduce to the case M = 1 and we replace u by v defined

by (1.6) as in the proof of Theorem A with α = M
p−1

2p−(p+1)q . From (2.7) with ν = 1
4 the function

z = |∇v|2 satisfies

−1

2
∆z +

v2p

N
+

1

2N
zq − pvp−1z ≤ c1

|∇z|2

z
. (2.13)

By Hölder’s inequality,

pvp−1z ≤ 1

4N
zq + p(4Np)q

′−1v(p−1)q′ .

Since (p− 1)q′ = 2p+ 2p−(p+1)q
q−1 we derive

−1

2
∆z +

v2p

N

(
1− 4q

′−1pq
′
N q′v

2p−(p+1)q
q−1

)
+

1

4N
zq ≤ c1

|∇z|2

z
.

If max v ≤ cN,p,q := (4q
′−1pq

′
N q′)

− q−1
2p−(p+1)q , we obtain

−1

2
∆z +

1

4N
zq ≤ c1

|∇z|2

z
,

which implies that z = 0 by Lemma 2.2, hence v is constant and thus v = 0 from the equation.
�

Remark. If u is a positive ground state of (1.2) radial with respect to 0, it satisfies ur(0) = 0
and it is a decreasing function of r. The previous theorem asserts that it must satisfy

u(0) > cN,p,qM
2

2p−(p+1)q . (2.14)

2.1.3 Proof of Theorem C

Suppose 2p
p+1 = q. For A > 0 we consider the expression

(up +A |∇u|q)2 −Npup−1 |∇u|2

=
(
up +A |∇u|q −

√
Npu

p−1
2 |∇u|

)(
up +A |∇u|q +

√
Npu

p−1
2 |∇u|

)
.
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Now the function Z 7→ ΦA(Z) = up + AZq −
√
Np u

p−1
2 Z achieves its minimum at Z0 =(√

Np
qA

) p+1
p−1

u
p+1

2 and

ΦA(Z0) =

[
1− p− 1

p+ 1

(
N(p+ 1)2

4p

) p
p−1

A
− p+1
p−1

]
up.

Thus setting

M† =

(
p− 1

p+ 1

) p−1
p+1
(
N(p+ 1)2

4p

) p
p+1

, (2.15)

we obtain that if A ≥ M†, then ΦA(Z) ≥ 0 for all Z. Put Mν = (1 − ν)M for ν ∈ (0, 1) such
that M† < Mν , we derive from (2.7)

−1

2
∆z +

(up +M†z
q
2 )2

N
− pup−1z +

M2
ν −M2

†
N

zq ≤ c1
|∇z|2

z
, (2.16)

which yields

−1

2
∆z +

M2
ν −M2

†
N

zq ≤ c1
|∇z|2

z
.

Using again Lemma 2.2 we obtain

|∇u(x)| ≤ c′1 ((1− ν)M −M†)−
1
q−1 (dist (x, ∂Ω))

− 1
q−1 , (2.17)

which is equivalent to (1.27). �

2.2 Proof of Theorems B and B’

2.2.1 Proof of Theorem B

Since the result is known when M ≥ 0 from Proposition 2.1, we can assume that M = −m < 0
and N = 1, 2 or N ≥ 3 with p < N

N−2 , u is a nonnegative supersolution of (1.2) in B
c
R and we

set u = vb with b > 1. Then

−∆v ≥ (b− 1)
|∇v|2

v
+

1

b
v1+b(p−1) −mbq−1v(b−1)(q−1) |∇v|q . (2.18)

Here again q = 2p
p+1 , setting z = |∇v|2 we obtain

−∆v ≥ Φ(z)

bv

where

Φ(z) = b(b− 1)z −mb
2p
p+1 v

2+b(p−1)
p+1 z

p
p+1 + v2+b(p−1).

Thus Φ achieves it minimum for

z0 =

(
mpbq−1

(b− 1)(p+ 1)

)p+1

bp−1v2+b(p−1)
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and

Φ(z0) = v2+b(p−1)

(
1− pp

(p+ 1)p+1

(
b

b− 1

)p
mp+1

)
. (2.19)

In order to ensure the optimal choice, when N ≥ 3 we take 1 + b(p − 1) = N
N−2 , hence b =

2
(N−2)(p−1) which is larger than 1 because p < N

N−2 . Finally

Φ(z0) = v
N
N−2

+1

(
1− 1

(p+ 1)p+1

(
2p

N − p(N − 2)

)p
mp+1

)
.

Hence, if

m < (p+ 1)

(
N − p(N − 2)

2p

) p
p+1

= µ∗(N), (2.20)

we have for some δ > 0,

−∆v ≥ δv
N
N−2 , (2.21)

and by Proposition 2.1 that is no positive solution in an exterior domain of RN .

If N = 2 for a given b > 1 we have from (2.19) that if

m < (p+ 1)

(
b− 1

bp

) p
p+1

,

then, for some δ > 0,
−∆v ≥ δv1+b(p−1). (2.22)

The result follows from Proposition 2.1 by choosing b large enough. �

2.2.2 Proof of Theorem B’

1- We assume that such a supersolution u exists and we denote u = ev, then

−∆v ≥ F (|∇v|2), (2.23)

where
F (X) = X + e(p−1)v +Me

p−1
p+1

v
X

p
p+1 .

Clearly, if M ≥ 0, then F (X) ≥ 0 for any X ≥ 0. Next we assume M < 0, then

F (X) ≥ F (X0) = e(p−1)v

(
1− pp

(
|M |
p+ 1

)p+1
)

= e(p−1)v

(
1−

(
|M |
µ∗(2)

)p+1
)
.

Hence, if |M | ≤ µ∗(2), v is a positive superharmonic function in Ω which tends to infinity on the
boundary. Such a function is larger than the harmonic function with boundary value k > 0 for
any k (and taking the value min

|x|=R
v(x) for R large enough if Ω is an exterior domain). Letting

k →∞ we derive a contradiction.
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2- Let R > 0 such that Ωc ⊂ BR and let w be the solution of

−∆w − ae(p−1)w = 0 in BR ∩ Ω
lim

dist (x,∂BR)→0
w(x) = −∞

lim
dist (x,∂Ω)→0

w(x) =∞,
(2.24)

with a = 1−
(
|M |
µ∗(2)

)p+1
< 0, obtained by approximations. By the argument used in 1,

ae(p−1)w ≤ |∇w|2 + e(p−1)w − |M | e
p−1
p+1

w |∇w|
2p
p+1 ,

hence
−∆w ≤ |∇w|2 + e(p−1)w − |M | e

p−1
p+1

w |∇w|
2p
p+1 .

Therefore v = ew is nonnegative and satisfies

−∆v − vp + |M | |∇v|
2p
p+1 ≤ 0 in BR ∩ Ω

v = 0 on ∂BR
lim

dist (x,∂Ω)→0
v(x) =∞.

(2.25)

Next we extend v by zero in Bc
R and denote by ṽ the new function. It is a nonnegative subsolution

of (1.2) which tends to∞ on ∂Ω. For constructing a supersolution we recall that if M ≤ −µ∗(1)
there exist two types of explicit solutions of

−u′′ = up +M |u′|
2p
p+1 (2.26)

defined on R by Uj,M (t) =∞ for t ≤ 0 and Uj,M (t) = Xj,M t
− 2
p−1 , j=1,2, for t > 0 where X1,M

and X2,M are respectively the smaller and the larger positive root of

Xp−1 − |M |
(

2

p− 1

) 2
p+1

X
p−1
p+1 +

2(p+ 1)

(p− 1)2
= 0. (2.27)

Since Ωc is convex it is the intersection of all the closed half-spaces which contain it and we
denote by HΩ the family of such hyperplanes which are touching ∂Ω. If H ∈ HΩ let nH be the
normal direction to H, inward with respect to Ω, H+ = {x ∈ RN : 〈nH , x − nH〉 > 0} and we
define UH in the direction nH by putting

UH(x) = U2,M (〈nH , x− nH〉) = X2,M (〈nH , x− nH〉)−
2
p−1 for all x ∈ H+.

Hence and set, for x ∈ Ω := ∩H∈HΩ
H+,

uΩ(x) = inf
H∈HΩ

UH(x). (2.28)

Then uΩ is a nonnegative supersolution of (1.2) in Ω and

uΩ(x) ≥ X2,M (distx,Ω))
− 2
p−1 ∀x ∈ Ω.
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Next vΩ = lnuΩ blows up on ∂Ω, is finite on ∂BR and satisfies

−∆vΩ − ae(p−1)vΩ ≥ 0 in BR ∩ Ω. (2.29)

By comparison with w since a < 0, vΩ ≥ w. Hence uΩ ≥ v in BR \Ωc. Extending v by zero as ṽ
we obtain uΩ ≥ ṽ in Ωc. Hence uΩ is a supersolution in Ωc where it dominates the subsolution
ṽ. It follows by [29, Theorem 1-4-6] that there exists a solution u of (1.2) satisfying ṽ ≤ u ≤ uΩ,
which ends the proof. �

3 The refined Bernstein method

The method is a combination of the one used in the previous proofs. It is based upon the
replacement of the unknown by setting first u = v−β as in [19] and [10] and the study of the
equation satisfied by |∇v|. However we do not use integral techniques. Since u is a positive
solution of (1.2) in BR, the function v is well defined and satisfies

−∆v + (1 + β)
|∇v|2

v
+

1

β
v1−β(p−1) +M |β|q−2 βv(β+1)(1−q) |∇v|q = 0 (3.1)

in BR. We set

z = |∇v|2 , s = 1− q − β(q − 1) = (1− q)(β + 1) , σ = 1− β(p− 1),

and derive

∆v = (1 + β)
z

v
+

1

β
vσ +M |β|q−2 βvsz

q
2 . (3.2)

Combining Bochner’s formula and Schwarz identity we have classically

1

2
∆z ≥ 1

N
(∆v)2 + 〈∇∆v,∇v〉.

We explicit the different terms

(∆v)2 = (1 + β)2 z
2

v2
+M2β2(q−1)v2szq +

v2σ

β2
+ 2M(1 + β) |β|q−2 βvs−1z1+ q

2

+
2(1 + β)

β
vσ−1z + 2M |β|q−2 vs+σz

q
2 ,

∇∆v = (1 + β)
∇z
v
− (1 + β)z

v2
∇v +

σ

β
vσ−1∇v +Ms |β|q−2 βvs−1z

q
2∇v

+
Mq

2
|β|q−2 βvsz

q
2
−1∇z,

〈∇∆v,∇v〉 =

(
1 + β

v
+
Mq

2
|β|q−2 βvsz

q
2
−1

)
〈∇z,∇v〉 − (1 + β)z2

v2
+
σ

β
vσ−1z

+Ms |β|q−2 βvs−1z
q
2

+1.

Hence

−1

2
∆z +

1

N
(∆v)2 +

(
1 + β

v
+
Mq

2
|β|q−2 βvsz

q
2
−1

)
〈∇z,∇v〉

− (1 + β)z2

v2
+
σ

β
vσ−1z +Ms |β|q−2 βvs−1z

q
2

+1 ≤ 0.

(3.3)
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3.1 Proof of Theorem D

We develop the term (∆v)2 in (3.3) and get

−1

2
∆z +

(
(1 + β)2

N
− (1 + β)

)
z2

v2
+
M2β2(q−1)

N
v2szq +M

(
s+

2(1 + β)

N

)
|β|q−2 βvs−1z1+ q

2

+
v2σ

Nβ2
+

(
1 + β

v
+
Mq

2
|β|q−2 βvsz

q
2
−1

)
〈∇z,∇v〉+

Nσ + 2(1 + β)

Nβ
vσ−1z +

2M |β|q−2

N
vs+σz

q
2

≤ 0.
(3.4)

Next we set z = v−kY where k is a real parameter. Then ∇z = −kv−k−1Y∇v + v−k∇Y ,

〈∇z,∇v〉 = −kv−k−1Y z + v−k〈∇Y,∇v〉 = −kv−2k−1Y 2 + v−k〈∇Y,∇v〉,

〈∇z,∇v〉
v

= −kv−2k−2Y 2 + v−k−1〈∇Y,∇v〉,

Mvsz
q
2
−1〈∇z,∇v〉 = −kMvs−

qk
2
−k−1Y

q
2

+1 +Mvs−
qk
2 Y

q
2
−1〈∇Y,∇v〉,

−∆z = div
(
kv−k−1Y∇v − v−k∇Y

)
= kv−k−1Y∆v − k(k + 1)v−k−2Y z + 2kv−k−1〈∇Y,∇v〉 − v−k∆Y
= kv−k−1Y∆v − k(k + 1)v−2k−2Y 2 + 2kv−k−1〈∇Y,∇v〉 − v−k∆Y.

From (3.2)

∆v = (1 + β)v−k−1Y +
1

β
vσ +M |β|q−2 βvs−k

q
2Y

q
2 ,

therefore

−∆z = k(β − k)v−2k−2Y 2 +
k

β
vσ−k−1Y + kM |β|q−2 βvs−k

q
2
−k−1Y

q
2

+1

+ 2kv−k−1〈∇Y,∇v〉 − v−k∆Y.

Replacing 〈∇z,∇v〉 and ∆z given by the above expressions in (3.4) and z by v−kY , leads to

−∆Y +

(
k(β − k)

2
+

(1 + β)2

N
− (k + 1)(β + 1)

)
v−k−2Y 2 +

v2σ+k

Nβ2
+
M2β2(q−1)

N
v2s+k−kqY q

+

(
k + β + 1

v
+
Mq |β|q−2 β

2
vs+k−k

q
2Y

q
2
−1

)
〈∇Y,∇v〉+

2M |β|q−2

N
vs+σ+k−k q

2Y
q
2

+

(
s+

2(1 + β)

N
− k(q − 1)

2

)
M |β|q−2 βvs−k

q
2
−1Y 1+ q

2 +
1

β

(
k

2
+ σ +

2(1 + β)

N

)
vσ−1Y ≤ 0.

For ε1, ε2 > 0,
1

v
|〈∇Y,∇v〉| ≤ ε1v−k−2Y 2 +

1

4ε1

|∇Y |2

Y
,

vs+k−k
q
2Y

q
2
−1 |〈∇Y,∇v〉| ≤ ε2v2s−kq+kY q +

1

4ε2

|∇Y |2

Y
.
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Hence

−∆Y +
v2σ+k

Nβ2
+

2M |β|q−2

N
vs+σ+k−k q

2Y
q
2 +

(
M2β2(q−1)

N
− Mqε2 |β|q−1

2

)
v2s+k−kqY q

+

(
k(β − k)

2
+

(1 + β)2

N
− (k + 1)(β + 1)− |k + β + 1| ε1

)
v−k−2Y 2

+
1

β

(
k

2
+ σ +

2(1 + β)

N

)
vσ−1Y +

(
s+

2(1 + β)

N
− k(q − 1)

2

)
M |β|q−2 βvs−k

q
2
−1Y 1+ q

2

≤

(
|k + β + 1|

ε1
+
Mq |β|q−1

2ε2

)
|∇Y |2

4Y
.

(3.5)

We first choose ε2 = M |β|q−1

qN , then

−∆Y +
v2σ+k

Nβ2
+

(
k(β − k)

2
+

(1 + β)2

N
− (k + 1)(β + 1)− |k + β + 1| ε1

)
v−k−2Y 2

+
1

β

(
k

2
+ σ +

2(1 + β)

N

)
vσ−1Y +

M2β2(q−1)

2N
v2s+k−kqY q +

2M |β|q−2

N
vs+σ+k−k q

2Y
q
2

+

(
s+

2(1 + β)

N
− k(q − 1)

2

)
M |β|q−2 βvs−k

q
2
−1Y 1+ q

2

≤
(
|k + β + 1|

ε1
+
Nq2

2

)
|∇Y |2

4Y
.

(3.6)
In order to show the sign of the terms on the left in (3.5), we separate the terms containing the
coefficient M from the ones which do not contain it. Indeed these last terms are associated to
the mere Lane-Emden equation (1.3) which is treated, as a particular case, in [6, Theorem B]

where the exponents therein are q = 0, and p ∈
(

1, N+3
N−1

)
. We set

Hε1,1 =
v2σ+k

Nβ2
+

(
k(β − k)

2
+

(1 + β)2

N
− (k + 1)(β + 1)− |k + β + 1| ε1

)
v−k−2Y 2

+
1

β

(
k

2
+ σ +

2(1 + β)

N

)
vσ−1Y

= v2σ+kH̃ε1,1(v−1−k−σY ),

(3.7)

where

H̃ε1,1(t) =

(
k(β − k)

2
+

(1 + β)2

N
− (k + 1)(β + 1)− |k + β + 1| ε1

)
t2

+
1

β

(
k

2
+ σ +

2(1 + β)

N

)
t+

1

Nβ2
,

(3.8)

and

HM,2 =
M2β2(q−1)

2N
v2s+k−kqY q +

2M |β|q−2

N
vs+σ+k−k q

2Y
q
2

+

(
s+

2(1 + β)

N
− k(q − 1)

2

)
M |β|q−2 βvs−k

q
2
−1Y 1+ q

2 .

(3.9)
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Then

−∆Y + v2σ+kH̃ε1,1(v−1−k−σY ) +HM,2 ≤
(
|k + β + 1|

ε1
+
Nq2

2

)
|∇Y |2

4Y
.

The sign of H̃ε1,1 depends on its discriminant Dε1 which is a polynomial in its coefficients. Then
if for ε1 = 0 this discriminant is negative D0 is negative, the discriminant Dε1 of H̃ε1,1 shares
this property for ε1 > 0 small enough and therefore Hε1,1 is positive. The proof is similar as
the one of [6, Theorem B] in case (i) but for the sake of completeness we recall the main steps.
Firstly

D′0 := N2β2D0 =

(
Nk

2
+ σN + 2(1 + β)

)2

− 4

(
Nk(β − k)

2
+ (1 + β)2 −N(k + 1)(β + 1)

)
.

Then

D′0 =

(
N(p− 1)

4
− 1

)
(2σ + k)2 + 2(p− 1)(2σ + k) + L̃

where L̃ = (p− 1)k2 + p(λ+ 2)2 > 0. Put

S =
2σ + k

k + 2
= 1− 2β(p− 1)

k + 2
and T (S) =

(
(N − 1)(p− 1)

4
− 1

)
S2 + (p− 1)S + p.

After some computations we get, if k 6= −2,

D′1 :=
(p− 1)D′0
(k + 2)2

= (p− 1)

(
k

k + 2
− S

2

)2

+ T (S). (3.10)

We choose S > 2 such that k
k+2 −

S
2 = 0, hence β = 2−k

2(p−1) . If p < N+3
N−1 the coefficient of S2 in

T (S) is negative. Hence T (S) < 0 provided S is large enough which is satisfied if k < −2 with
|k + 2| small enough. We infer from this that β > 0, D0 < 0 and H̃ε1,1 > 0 if ε1 is small enough.
In particular H̃ε1,1(t) ≥ c6(t2 + 1) for some c6 = c6(N, p, q) > 0, which means

v2σ+kH̃ε1,1(v−1−k−σY ) ≥ c6

(
v−k−2Y 2 + v2σ+k

)
. (3.11)

Secondly the positivity of HM,2 is ensured, as β and M are positive, by the positivity of

A := s+
2(1 + β)

N
− k(q − 1)

2
.

Replacing s by its value, we obtain, since 1 < q < N+2
N and β + 2+k

2 > 0, which can be assume
by taking |k + 2| small enough,

A = 2
1 + β

N
− (q − 1)

(
β + 1 +

k

2

)
> − k

N

Then we deduce that

−∆Y + c6

(
v−k−2Y 2 + v2σ+k

)
≤ c7

|∇Y |2

Y
, (3.12)
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and c7 = c7(N, p, q) > 0 is independent of M . Since S = 1 − 2β(p−1)
k+2 = 1 − 2−k

k+2 = 2k
k+2 > 0, we

have

2Y
2S
S+1 = 2

(
Y 2

vk+2

) S
S+1

v
(k+2)S
S+1 ≤ Y 2

vk+2
+ v(k+2)S =

Y 2

vk+2
+ v2σ+k. (3.13)

From this we infer the inequality

−∆Y + 2c6Y
2S
S+1 ≤ c7

|∇Y |2

Y
. (3.14)

Then we derive from Lemma 2.2 that in the ball BR there holds

Y (0) ≤ c8R
− 2(S+1)

S−1 = c8R
−2+

2(k+2)
β(p−1) . (3.15)

From this it follows ∣∣∣∇u− 2+k
2β (0)

∣∣∣ ≤ |k + 2|
2

√
c8R

−1+ k+2
β(p−1) . (3.16)

Setting a = −k+2
2β > 0 we get that for any domain Ω ⊂ RN any positive solution in Ω satisfies

|∇ua(x)| ≤ |k + 2|
2

√
c8 (dist (x, ∂Ω))

−1− 2a
p−1 for all x ∈ Ω. (3.17)

The non existence of any positive of (1.2) solution in RN follows classically. �

Corollary 3.1 Let Ω be a smooth domain in RN , N ≥ 2 with a bounded boundary, 1 < p < N+3
N−1 ,

1 < q < N+2
N and M > 0. If u is a positive solution of (1.2) in Ω there exists d0 depending on

Ω and c9 = c9(N, p, q) > 0 such that

u(x) ≤ c9

(
(dist (x, ∂Ω))

− 2
p−1 + max

dist (z,∂Ω)=d0

u(z)

)
for all x ∈ Ω. (3.18)

Proof. It is similar to the one of [6, Corollary B-2]. �

4 The integral method

4.1 Preliminary inequalities

We recall the next inequality [9, Lemma 3.1].

Lemma 4.1 Let Ω ⊂ RN be a domain. Then for any positive u ∈ C2(Ω), any nonnegative
η ∈ C∞0 (Ω) and any real numbers m and d such that d 6= m+ 2, the following inequality holds

A

∫
Ω
ηum−2 |∇u|4 dx− N − 1

N

∫
Ω
ηum(∆u)2dx−B

∫
Ω
ηum−1 |∇u|2 ∆udx ≤ R, (4.1)

where

A =
1

4N

(
2(N −m)d− (N − 1)(m2 + d2)

)
, B =

1

2N
(2(N − 1)m+ (N + 2)d) ,

and

R =
m+ d

2

∫
Ω
um−1 |∇u|2 〈∇u,∇η〉dx+

∫
Ω
um∆u〈∇u,∇η〉dx+

1

2

∫
Ω
um |∇u|2 ∆ηdx.
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It is noticeable that d is a free parameter which plays a role only in the coefficients of the integral
terms. The following technical result is useful to deal with the multi-parameter constraints
problems which occur in our construction. It was first used in [10] under a simpler form and
extended in [9, Lemma 3.4].

Lemma 4.2 For any N ∈ N, N ≥ 3 and 1 < p < N+2
N−2 there exist real numbers m and d

verifying

(i) d 6= m+ 2,

(ii)
2(N − 1)p

N + 2
< d,

(iii) max

{
−2, 1− p, (N − 4)p−N

2

}
< m ≤ 0,

(iv) 2(N −m)d− (N − 1)(m2 + d2) > 0.

(4.2)

4.2 Proof of Theorem E

Step 1: The integral estimates. Let η ∈ C∞0 (Ω), η ≥ 0. We apply Lemma 4.1 to a positive
solution u ∈ C2(Ω) of (1.2), firstly with q > 1 and then with q = 2p

p+1 .

A

∫
Ω
ηum−2 |∇u|4 dx− N − 1

N

∫
Ω
η
(
um+2p + 2Mum+p |∇u|q +M2um |∇u|2q

)
dx

−B
∫

Ω
ηum−1 |∇u|2 ∆udx ≤ R.

(4.3)

We multiply (1.2) by ηum+p and integrate over Ω. Then∫
Ω
η
(
um+2p +Mum+p |∇u|q

)
dx = −

∫
Ω
ηum+p∆udx

=

∫
Ω
um+p〈∇u,∇η〉dx+ (m+ p)

∫
Ω
ηum+p−1 |∇u|2 dx.

We set

F =

∫
Ω
ηum−2 |∇u|4 dx , P =

∫
Ω
ηum−1 |∇u|q+2 dx , V =

∫
Ω
ηum+2pdx,

T =

∫
Ω
ηum+p−1 |∇u|2 dx , W =

∫
Ω
ηum+p |∇u|q dx , U =

∫
Ω
ηum |∇u|2q dx,

S =

∫
Ω
um+p〈∇u,∇η〉dx,

so that there holds

AF − N − 1

N

(
V + 2MW +M2U

)
+BT +BMP ≤ R, (4.4)
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and
V +MW = (m+ p)T + S. (4.5)

Eliminating V between (4.4) and (4.5), we get

AF +B0T +M

(
BP − N − 1

N
W − N − 1

N
MU

)
≤ R− N − 1

N
S, (4.6)

where

B0 = B − N − 1

N
(m+ p) =

N + 2

2N
d− N − 1

N
p.

Also

2P = 2

∫
Ω
ηum
|∇u|2

u
|∇u|q dx ≤

∫
Ω
ηum

(
|∇u|4

u2
+ |∇u|2q

)
dx = F + U.

We fix now q = 2p
p+1 , then

U =

∫
Ω
ηum |∇u|2q dx =

∫
Ω
ηum

(
|∇u|√
u

)4(q−1)

u2(q−1) |∇u|4−2q dx

≤ p− 1

p+ 1

∫
Ω
ηum−2 |∇u|4 dx+

2

p+ 1

∫
Ω
ηum+p−1 |∇u|2 dx

≤ p− 1

p+ 1
F +

2

p+ 1
T,

(4.7)

hence

P ≤ 1

2
F +

1

2
U ≤ p

p+ 1
F +

1

p+ 1
T (4.8)

and

2W = 2

∫
Ω
ηum+p |∇u|q dx ≤

∫
Ω
ηum+2pdx+

∫
Ω
ηum |∇u|2q dx = V + U

≤ U + (m+ p)T + S −MW.

(4.9)

Next we assume that |M | ≤ 1. From (4.7), (4.9), it follows that

W ≤ U + (m+ p)T + S ≤ F + (m+ p+ 1)T + S. (4.10)

From now we fix m and d according Lemma 4.2. Therefore A > 0 by (4.2)-(iv) and B > 0 by
combining (4.2)-(ii) and (4.2)-(iii). Furthermore B0 > 0 by (4.2)-(ii). Hence, from (4.7), (4.8)
and (4.10) we derive, since N−1

N < 1 and m ≤ 0 from (4.2)-(ii)∣∣∣∣BP − N − 1

N
W − N − 1

N
MU

∣∣∣∣ ≤ B (F + T ) + F + (p+ 1)T + S + F + T,

≤ (B + 2)F + (B + p+ 2)T + S.

Plugging these estimates into (4.6) we infer

AF +B0T − |M |
(

(B + 2)F + (B + p+ 2)T + S
)
≤ R− N − 1

N
S. (4.11)
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Since A and B0 are positive, there exists µ1 ∈ (0, 1) such that for any |M | < µ1,

A1 := A− |M | (B + 2) >
A

2
and B1 := B0 − |M | (B + p+ 2) >

B0

2
.

Set A2 = min{A1, B1}, then, and whatever is the sign of S,

A2(F + T ) ≤ |R|+ |S| .

Using (4.7) and (4.8) we have

A2(U + P ) ≤ 2A2(F + T ) ≤ 2(|R|+ |S|). (4.12)

In the sequel we denote by cj some positive constants depending on N and p. Then

U + P + F + T +W ≤ c1(|R|+ |S|). (4.13)

On the other hand, we have

|R| ≤ c2

∫
Ω

(
um−1 |∇u|3 |∇η|+ um+p |∇u| |∇η|+ um |∇u|q+1 |∇η|+ um |∇u|2 |∆η|

)
dx.

Since

|∇u|q =

(
|∇u|√
u

)q
u
q
2 ≤ |∇u|

2

u
+ u

q
2−q =

|∇u|2

u
+ up,

we deduce ∫
Ω
um|∇u|q+1|∇η|dx ≤

∫
Ω
um−1|∇u|3|∇η|dx+

∫
Ω
um+p|∇u||∇η|dx.

Thus we derive from (4.13)

U + P + F + T +W ≤ 2c3

(∫
Ω
um−1|∇u|3|∇η|dx+

∫
Ω
um+p|∇u||∇η|dx

+

∫
Ω
um |∇u|2 |∆η| dx

)
.

(4.14)

From this point we can use the method developed in [10, p 599] for proving the Harnack inequality
satisfied by positive solutions of (1.3) in Ω. We set η = ξλ with ξ ∈ C∞0 (Ω) with value in [0, 1]
and λ > 4. For ε ∈ (0, 1) we have by the Hölder-Young inequality∫

Ω
um−1|∇u|3|∇ξλ|dx ≤ ε

4c3

∫
Ω
um−2|∇u|4ξλdx+ C(ε, c3)

∫
Ω
um+2|∇ξ|4ξλ−4dx, (4.15)∫

Ω
um+p|∇u||∇ξp|dx ≤ ε

4c3

∫
Ω
um+p−1|∇u|2ξpdx+ C(ε, c3)

∫
Ω
um+p+1|∇ξ|2ξλ−2dx, (4.16)

and ∫
Ω
um|∇u|2|∆ξp|dx ≤ ε

4c3

∫
Ω
um−2|∇u|4ξpdx+ C(ε, c3)

∫
Ω
um+2

(
|∇ξ|4 + |∆ξ|2

)
ξλ−4dx.

(4.17)
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Hence

U + P + F + T +W ≤ c4

(∫
Ω
um+2

(
|∇ξ|4 + |∆ξ|2 ξ2

)
ξλ−4dx+

∫
Ω
um+p+1|∇ξ|2ξλ−2dx

)
.

(4.18)
Let us denote by c4X the right-hand side of (4.18). Combining (4.5), (4.16) and (4.18) we also
get

S :=

∫
Ω
um+p|∇u||∇ξp|dx ≤ c5X =⇒ V :=

∫
Ω
um+2pξpdx ≤ c6X, (4.19)

and we finally obtain
U + V + P + F + S + T +W ≤ c7X. (4.20)

Finally we estimate the different terms in X, using that m+ p > 0 from (4.2)-(iii). For ε > 0∫
Ω
um+2

(
|∇ξ|4 + |∆ξ|2 ξ2

)
ξλ−4dx ≤ ε

∫
Ω
um+2pξλdx

+ C(ε, c7)

∫
Ω
ξ
λ−2m+2p

p−1

(
|∇ξ|4 + |∆ξ|2

) m+2p
2(p−1)

dx,

(4.21)

and ∫
Ω
um+p+1|∇ξ|2ξλ−2dx ≤ ε

∫
Ω
um+2pξλdx+ C(ε, c7)

∫
Ω
ξ
λ−2m+2p

p−1 |∇ξ|
2(m+2p)
p−1 dx. (4.22)

At end we obtain

U + V + P + F + S + T +W ≤ c8

∫
Ω
ξ
λ−2m+2p

p−1

(
|∇ξ|4 + |∆ξ|2

) m+2p
2(p−1)

dx. (4.23)

Step 2: The Harnack inequality. We suppose that Ω = BR \ {0} := B∗R, fix y ∈ B∗R
2

, set r = |y|,
then Br(y) ⊂ B∗R. Let ξ ∈ C∞0 (Br(y)) such that 0 ≤ ξ ≤ 1, ξ = 1 in B r

2
(y), |∇ξ| ≤ cr−1 and

|∆ξ| ≤ cr−2. We choose λ > max
{

4, m+2p
p+1

}
, then

∫
Br(y)

ξ
λ−2m+2p

p−1

(
|∇ξ|4 + |∆ξ|2

) m+2p
2(p−1)

dx ≤ c9r
N− 2(m+2p)

p−1 ,

and hence ∫
B r

2
(y)
um+2pdx ≤ V ≤ c10r

N− 2(m+2p)
p−1 . (4.24)

We write (1.2) under the form

∆u+D(x)u+M〈G(x).∇u〉 = 0, (4.25)

with
D(x) = up−1 and G(x) = |∇u|−

2
p+1∇u.
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Set σ = m+2p
p−1 , then σ > N

2 by (4.2)-(iii) and∫
B r

2
(y)
Dσ(x)dx ≤ V ≤ c10r

N− 2(m+2p)
p−1 = c10r

N−2σ. (4.26)

Next we estimate G. For τ, ω, γ > 0 and θ > 1, we have with θ′ = θ
θ−1 ,

|∇u|(q−1)τ = uω |∇u|γ u−ω |∇u|(q−1)τ−γ ≤ uωθ′ |∇u|γθ + u−ωθ |∇u|((q−1)τ−γ)θ′ .

We fix

τ = 2
2p+m

p− 1
= 2σ , ω =

(2−m)(p+m− 1)

p+ 1
and θ =

p+ 1

2−m
.

Then ω > 0 and θ > 1 from (4.2)-(iii), ω > 0. Then uωθ
′ |∇u|γθ = up+m−1 |∇u|2 and

u−ωθ |∇u|((q−1)τ−γ)θ′ = um−2 |∇u|4, thus∫
B r

2
(y)
|∇u|(q−1)τ dx ≤ F + T ≤ c11

∫
Ω
ξ
λ−2m+2p

p−1

(
|∇ξ|4 + |∆ξ|2 ξ2

) m+2p
2(p−1)

dx.

This implies ∫
B r

2
(y)
Gτ (x)dx ≤ c12r

N−τ , (4.27)

with τ > N . Using the results of [28, Section 5], we infer that a Harnack inequality, uniform
with respect to r, is satisfied. Hence there exists c13 > 0 depending on N, p such that for any
r ∈ (0, R2 ] and y such that |y| = r there holds

max
z∈B r

2
(y)
u(z) ≤ c13 min

z∈B r
2

(y)
u(z) ∀0 < r ≤ R

2 ∀y s.t. |y| = r, (4.28)

which implies

u(x) ≤ c14u(x′) ∀x, x′ ∈ RN s.t. |x| = |x′| ≤ R

2
, (4.29)

and actually c14 = c7
13 by a simple geometric construction. By (4.24)

rNωNr
N

(
min

z∈B r
2

(y)
u(z)

)m+2p

≤ 4Nc10r
N− 2(m+2p)

p−1 ,

where ωN is the volume of the unit N-ball. This implies

u(x) ≤ c14 |x|−
2
p−1 ∀x ∈ B∗R

2

. (4.30)

The proof follows. �

Remark. Using standard rescaling techniques (see e.g. [29, Lemma 3.3.2]) the gradient estimate
holds

|∇u(x)| ≤ c15 |x|−
p+1
p−1 ∀x ∈ B∗R

3

. (4.31)

And the next estimate for a solution u in a domain Ω satisfying the interior sphere condition
with radius R is valid

u(x) ≤ c14 (dist (x, ∂Ω))
− 2
p−1 ∀x ∈ Ω s.t. dist (x, ∂Ω) ≤ R

2
. (4.32)
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5 Radial ground states

We recall that if q 6= 2p
p+1 and M 6= 0, (1.2) can be reduced to the case M = ±1 by using the

transformation (1.15). Since any ground state u of (1.2) radial with respect to 0 is decreasing
(this is classical and straightforward), it achieves its maximum at 0 and the following equivalence
holds if v is defined by (1.15)

−u′′ − N − 1

r
u′ = |u|p−1u+M |ur|q s.t. maxu = u(0) = 1

⇐⇒

−v′′ − N − 1

r
v′ = |v|p−1v ± |vr|q s.t. max v = v(0) = |M |

2
(p+1)q−2p .

(5.1)

Hence large or small values of M for u are exchanged into large or small values of v(0) for v and
in the sequel we will essentially express our results using the function u.

5.1 Energy functions

We consider first the energy function

r 7→ H(r) =
up+1

p+ 1
+
u′2

2
. (5.2)

Then

H ′(r) = M
∣∣u′∣∣q+1 − N − 1

r
u′2.

Hence, if M ≤ 0, H is decreasing, a property often used in [25]. This implies in particular that
a radial ground state satisfies

∣∣u′(r)∣∣ ≤√ 2

p+ 1
(u(0))

p+1
2 . (5.3)

A similar estimate holds in all the cases.

Proposition 5.1 Let M > 0, p, q > 1. If u is a radial ground state solution of (1.2), then the
function H defined in (5.2) is decreasing and in particular (5.3) holds.

Proof. Let u be such a radial ground state. By Proposition 2.1 we must have q > N
N−1 and

r

u′2
H ′ = Mr

∣∣u′∣∣q−1
+ 1−N ≤ (N − 1)q −N

q − 1
+ 1−N = − 1

q − 1
,

this implies the claim. �

5.1.1 Exponential perturbations

As we have seen it in the introduction, if q < 2p
p+1 equation (1.2) can be seen as a perturbation of

the Lane-Emden equation (1.3) while if q > 2p
p+1 it can be seen as a perturbation of the Ricatti
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equation (1.14). Two types of transformations can emphasize these aspects.

1) For p > 1 set

u(r) = r
− 2
p−1x(t), u′(r) = −r−

p+1
p−1 y(t), t = ln r, (5.4)

then

xt =
2

p− 1
x− y

yt = −Ky + xp +Me−ωtyq
(5.5)

with

K =
(N − 2)p−N

p− 1
, (5.6)

and

ω =
(p+ 1)q − 2p

p+ 1
. (5.7)

If q > 2p
p+1 (resp. q < 2p

p+1), then ω > 0 (resp. ω < 0) system (5.7) is a perturbation of the
Lane-Emden system

xt =
2

p− 1
x− y

yt = −Ky + xp,

(5.8)

at ∞ (resp. −∞). The following energy type function introduced in [20] is natural with (5.8)

N (t) = L(x(t), y(t)) =
K

p− 1
x2 − xp+1

p+ 1
−
(

2

p− 1

)q
Me−ωt

xq+1

q + 1
− 1

2

(
2x

p− 1
− y
)2

, (5.9)

and it satisfies

N ′(t) =

(
2x

p− 1
− y
)[

L

(
2x

p− 1
− y
)
−Me−ωt

((
2x

p− 1

)q
− yq

)]
+ ω

(
2

p− 1

)q
Me−ωt

xq+1

q + 1
,

(5.10)

where L = N − 2− 4

p− 1
= K − 2

p− 1
. Relation (5.10) will be used later on.

2) For p, q > 1 set

u(r) = r
− 2−q
q−1 ξ(t), u′(r) = −r−

1
q−1 η(t), t = ln r, (5.11)

then

ξt =
2− q
q − 1

ξ − η

ηt = −(N − 1)q −N
q − 1

η + eωtξp +Mηq
(5.12)

where

ω =
p− 1

q − 1
ω. (5.13)
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Note that if q < 2p
p+1 this system at ∞ endows the form

ξt =
2− q
q − 1

ξ − η

ηt = −(N − 1)q −N
q − 1

η +Mηq.

(5.14)

It is therefore autonomous and much easier to study.

5.1.2 Pohozaev-Pucci-Serrin type functions

Let α, γ, θ, κ be real parameters with α, κ > 0. Set

Z(r) = rκ
(
u′2

2
+
up+1

p+ 1
+ α

uu′

r
− γu′

∣∣u′∣∣q) . (5.15)

This type of function has been introduced in [25] in their study of equation (1.2) with M = 1
with specific parameters. We use it here to embrace all the values of M . We define U by the
identity

Z ′ + θ
∣∣u′∣∣q−1Z = rκ−1U . (5.16)

Then

U =
(κ

2
+ α+ 1−N

)
u′2 +

(
κ

p+ 1
− α

)
up+1 + α(κ−N)

uu′

r
+

(
θ

p+ 1
− γq

)
rup+1

∣∣u′∣∣q−1

+

(
M + γ +

θ

2

)
r
∣∣u′∣∣q+1

+
(

((N − 1)q − κ) γ − α(θ +M)
)
u
∣∣u′∣∣q − γ(θ + qM)ru

∣∣u′∣∣2q−1
.

(5.17)

5.2 Some known results in the case M < 0

We recall the results of [14], [25] and [23] relative to the case M < 0.

Theorem 5.2 1- Let N ≥ 3 and 1 < p ≤ N
N−2 .

1-(i) If q > 2p
p+1 , there is no ground state for any M < 0 ([25, Theorem C]).

1-(ii) If 1 < q < 2p
p+1 there exists a ground state when |M | is large [14, Proposition 5.7] and

there exists no ground state when |M | is small ([23]).

2- Assume N
N−2 < p < N+2

N−2 and let q be the unique root in ( 2p
p+1 , p) of the quadratic equation

(N − 1)(X − p)2 − (N + 2− (N − 2)p)((p+ 1)X − 2p)X = 0.

2-(i) If q ≤ q < p there exists no ground state for any M < 0 ([25, Theorem C]).
2-(ii) If 2p

p+1 < q < q, there exists no ground state for |M |. It is an open question whether there
could exist a finite number of M for which there exists a ground state ([25, Theorem 4]).
2-(iii) If 1 < q < 2p

p+1 , there exists a ground state for large |M | ([14, Proposition 5.7]) and no
ground state when |M | is small ([23]).
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3- Assume p > N+2
N−2 and q > 1 and let QN,p = 2(N−1)p

2N+p+1 ∈ ( 2p
p+1 , p).

3-(i) If QN,p < q < p there exists a ground state for |M | small.
3-(ii) If 1 < q ≤ QN,p there exists a ground state for any M < 0 ([25, Theorem A]).

4- Assume p = N+2
N−2 . There exists at least one M < 0 such that there exists a ground state if

and only if 1 < q < p. More precisely:
4-(i) If 2p

p+1 < q < p there exists ground state if |M | is small ([25, Theorem B]).

4-(ii) If q ≥ 2p
p+1 there exists a ground state for any M < 0 ([25, Theorem A]).

Remark. It is interesting to quote that when M < 0 and q ≥ 2p
p+1 , there holds [25, Theorem 3],

u(r) = O(r
− 2
p−1 ) and u′(r) = O(r

− p+1
p−1 ) when r →∞.

5.3 The case M > 0

The next result is a consequence of Theorem A.

Theorem 5.3 Let M > 0, p > 1 and q > 2p
p+1 then there exists no radial ground state satisfying

u(0) = 1 when M is large.

Proof. Suppose that such a solution u exists. From Theorem A and Proposition 2.1 there holds

sup
r>0

∣∣u′(r)∣∣ ≤ cN,p,q|M |− p+1
(p+1)q−2p and sup

r>0
r
p+1
p−1
∣∣u′(r)∣∣ ≤ cN,p. (5.18)

As a consequence, if r > R > 0,

1− u(r) = u(0)− u(r) = u(0)− u(R) + u(R)− u(r) ≤ cN,p,q|M |
− p+1

(p+1)q−2pR+

∫ ∞
R
|u′(s)| ds

≤ cN,p,q|M |
− p+1

(p+1)q−2pR+ c′N,pR
− 2
p−1 ,

with c′N,p = p−1
2 cN,p. Since u(r)→ 0 when r →∞, we take R = |M |

p−1
(p+1)q−2p and derive

1 ≤
(
cN,p,q + c′N,p

)
|M |−

2
(p+1)q−2p , (5.19)

and the conclusion follows. �

Remark. If we use Proposition 5.1 we can make estimate (5.19) more precise.

5.3.1 The case M > 0, 1 < p ≤ N+2
N−2

It is a consequence of our general results that there is no radial ground state for large M or
for small M when 1 < q ≤ 2p

p+1 and 1 < p < N+2
N−2 . Indeed, if 1 < q < 2p

p+1 is a consequence of
the equivalence statement between a priori estimate and non-existence of ground state proved
in [23], and if q = 2p

p+1 it follows from Theorems C and E. Actually in the radial case, the result
is more general.
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Theorem 5.4 Let M > 0 and 1 < p < N+2
N−2 . If 1 < q ≤ p, there exists no radial ground state

for any M . If q > p there exists no radial ground state for M small enough.

Proof. By Proposition 2.1, we may assume N ≥ 3 and

N

N − 2
< p ≤ N + 2

N − 2
and q >

N

N − 1
. (5.20)

(i) Assume first q < 2p
p+1 . We use the system (5.5). Then ω, defined by (5.7) is negative.

Hence the Leighton function N defined by (5.9) is nonincreasing since L ≤ 0 when p ≤ N+2
N−2 .

Furthermore since (x(t), y(t)) → (0, 0) when t → −∞ and e−ωt → 0, we get N (−∞) = 0 it
follows that N (t) < 0 for t ∈ R. Moreover, by Proposition 2.1,

u(r) = O(r
− 2−q
q−1 ) as r →∞⇐⇒ x(t) = O(e

q(p+1)−2p
(p−1)(q−1)

t
) = o(1) as t→∞

This implies e−ωtxq+1(t) = O(e
2
q(p+1)−2p
(p−1)(q−1)

t
) = o(1) as t→∞ and N (∞) = 0, contradiction.

(ii) Assume next 2p
p+1 ≤ q ≤ p. We consider the function (5.15) with the parameters

κ =
2(p+ 1)(N − 1)

p+ 3
= (p+ 1)α and γ = − 2M

q(p+ 1) + 2
=

θ

q(p+ 1)
,

already used by [25] when M = −1, and we get with U defined by (5.16),

U =
2

(p+ 3)2

u |u′|
r

(
A+BMχ+ CMχ2

)
with χ =

p+ 3

2 + q(p+ 1)
r
∣∣u′∣∣q−1

,

where

A = (N − 1)(N + 2− (N − 2)p) , B = 2(N − 1)(p− q) , C = q(q(p+ 1)− 2p). (5.21)

By our assumptions A ≥ 0, B ≥ 0 and C > 0. Hence U > 0. This implies

Z(r) = e−
∫ r
0 θ|u

′|q−1dsZ(0) +

∫ r

0
e−θ

∫ r
s |u
′|q−1dσsκ−1U(s)ds =

∫ r

0
e−θ

∫ r
s |u
′|q−1dσsκ−1U(s)ds,

since Z(0) = 0. If u is a ground state, then u′(r)→ 0 as r →∞, thus u |u′|q ≤ u |u′|
2p
p+1 . Hence,

from Proposition 2.1, u′2(r) = O(r
−2 p+1

p−1 ) as r →∞. The other terms up+1(r), r−1u(r)u′(r) and

u |u′|
2p
p+1 satisfy the same bound, hence

Z(r) = O(r
κ− 2(p+1)

p−1 ) = O(r
2(p+3)(N−1)

p+3
− 2(p+1)

p−1 ) = O(r
2(p+1)((N−2)p−(N+2))

(p+3)(p−1) ).

Then Z(r)→ 0 when r →∞, contradiction.

(iii) Suppose q > p and u is a ground state. By Proposition 5.1 and (5.18), there holds

r
∣∣u′∣∣q−1

= r
∣∣u′∣∣ p−1

p+1
∣∣u′∣∣q− 2p

p+1 ≤ cN,p.

Then χ = p+3
2+q(p+1)r |u

′|q−1 ≤ cN,p. Hence, if M ≤ MN,p for some MN,p > 0, U is positive as A
is. We conclude as above. �



Quasilinear elliptic equations with mixed reaction terms 31

5.3.2 The case M > 0, p > N+2
N−2

We recall that in Theorem C if q = 2p
p+1 and p > 1 there is no ground state whenever M > MN,p,

see (1.26). In Theorem A’ if 1 < q < 2p
p+1 and p > 1 there is no ground state u such that

u(0) = 1 if M is too large. In the next result we complement Theorem 5.3 for small value of M
in assuming q > 2p

p+1 .

Theorem 5.5 If p > N+2
N−2 and q ≥ 2p

p+1 then there exist radial ground states for M > 0 small
enough.

Proof. First we consider the function Z with k = N and obtain

Z(r) = rN
(
u′2

2
+
up+1

p+ 1
+ α

uu′

r
− γu

∣∣u′∣∣q) .
The function vanishes at the origin. We compute U from the identity Z ′ + θ |u′|q−1Z = rN−1U
and get

U =

(
α− N − 2

2

)
u′2 +

(
N

p+ 1
− α

)
up+1 +

(
θ

p+ 1
− γq

)
rup+1 |u′|q−1

+

(
M + γ +

θ

2

)
r |u′|q+1 +

[
((N − 1)q −N) γ − α(θ +M)

]
u |u′|q − γ(θ + qM)ru |u′|2q−1 .

If γ = 0 and θ = −2M , then

U =

(
α− N − 2

2

)
u′2 +

(
N

p+ 1
− α

)
up+1 − 2M

p+ 1
rup+1

∣∣u′∣∣q−1
+ αMu

∣∣u′∣∣q .
If u is a regular solution which vanishes at some r0 > 0, then Z(r0) = 2−1r2

0u
′N (r0) > 0. As

p > N+2
N−2 , by choosing α = 1

2

(
N
p+1 + N−2

2

)
we have N

p+1 < α < N−2
2 . We define ` > 0 by

(N − 2)p− (N + 2) = 4(p+ 1)`, then N−2
2 − α = α− N

p+1 = ` and then

U ≤ −`(u′2 + up+1) +Mαu
∣∣u′∣∣q .

Assume first q < 2, we have from Hölder’s inequality and 0 < r ≤ r0 where u is positive

u
∣∣u′∣∣q ≤ q

2
u′2 +

2− q
2
|u|

2
2−q ≤ u′2 + |u|

2
2−q ,

and

U + (`−M)u′2 ≤Mαu
2

2−q − `up+1 = `up+1

(
Mα

`
u
q(p+1)−2p

2−q − 1

)
≤ `up+1

(
Mα

`
− 1

)
since q ≥ 2p

p+1 and u ≤ u(0) = 1. Taking M ≤ `
α = (N−2)p−N−2

(N−2)p+3N−2 , U is negative implying that

r 7→ e−2M
∫ r
0 |u
′|q−1dsZ(r) is nonincreasing. Since Z(0) = 0, Z(r) ≤ 0, a contradiction.
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If q = 2, then U ≤ −`(u′2 + up+1) + Mαu′2 since u ≤ 1 on [0, r0]. We still infer that U ≤ 0
if we choose M ≤ `

α .

Finally, if q > 2, we have from Theorem A, u′ ≤ CN,p,qM
− p+1

(p+1)q−2p . Therefore, using again
the decay of u from u(0) = 1,

Mαu
∣∣u′∣∣q ≤Mαu

∣∣u′∣∣q−2
u′2 ≤MαCq−2

N,p,qM
− (p+1)(q−2)

(p+1)q−2p u′2 = αCq−2
N,p,qM

2
(p+1)q−2pu′2.

Hence U ≤ −
(
`− αCq−2

N,p,qM
2

(p+1)q−2p

)
u′2. Taking

M
2

(p+1)q−2p ≤ C2−q
N,p,q

(N − 2)p−N − 2

(N − 2)p+ 3N − 2

we conclude that U < 0 which ends the proof as in the previous cases. �

Theorem F is the combination of Theorem 5.3, Theorem 5.4 and Theorem 5.5.

6 Separable solutions

We denote by (r, σ) ∈ R+ × SN−1 the spherical coordinates in RN . Then equation (1.2) takes
the form

−urr −
N − 1

r
ur −

1

r2
∆′u = |u|p−1 +M

(
u2
r +

1

r2
|∇′u|2

) q
2

, (6.1)

where ∆′ is the Laplace-Beltrami operator on SN−1 and ∇′ the tangential gradient. If we look
for separable nonnegative solutions of (1.2) i.e. solutions under the form u(r, σ) = ψ(r)ω(σ),

then q = 2p
p+1 , ψ(r) = r

− 2
p−1 , and ω is a solution of

−∆′ω +
2K

p− 1
ω = ωp +M

((
2

p− 1

)2

ω2 + |∇′ω|2
) p

p+1

, (6.2)

where K is defined in (5.6). Throughout this section we assume

p > 1 and q =
2p

p+ 1
. (6.3)

6.1 Constant solutions

The constant function ω = X is a solution of (6.2 ) if

Xp−1 +M

(
2

p− 1

) 2p
p+1

X
p−1
p+1 − 2K

p− 1
= 0. (6.4)

For N = 1, 2 and p > 1 or N ≥ 3 and 1 < p < N
N−2 , we recall that µ∗ = µ∗(N) has been defined

in (1.24). The following result is easy to prove
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Proposition 6.1 1- Let M ≥ 0 then there exists a unique positive root XM to (6.4) if and only
if p > N

N−2 . Moreover the mapping M 7→ XM is continuous and decreasing from [0,∞) onto

(0,
(

2K
p−1

) 1
p−1

].

2- Let M < 0, N ≥ 3 and p ≥ N
N−2 then there exists a unique positive root XM to (6.4) and the

mapping M 7→ XM is continuous and decreasing from (−∞, 0] onto [
(

2K
p−1

) 1
p−1

,∞).

3- Let M < 0, N = 1, 2 and p > 1 or N ≥ 3 and 1 < p < N
N−2 then there exists no positive

root to (6.4) if −µ∗ < M ≤ 0. If M = M∗ := −µ∗ there exists a unique positive root XM∗ =(
2|K|
p(p−1)

) 1
p−1

. If M < −µ∗ there exist two positive roots X1,M < X2,M . The mapping M 7→
X1,M is continuous and increasing from (−∞, µ∗] onto (0, XM∗ ]. The mapping M 7→ X2,M is
continuous and decreasing from (−∞, µ∗] onto [XM∗ ,∞).

Abridged proof. Set

fM (X) = Xp−1 +M

(
2

p− 1

) 2p
p+1

X
p−1
p+1 − 2K

p− 1
, (6.5)

then f ′M (X) = (p− 1)Xp−2 +M p−1
p+1

(
2

p− 1

) 2p
p+1

X
− 2
p+1 .

1- If M is nonnegative, fM is increasing from − 2K
p−1 = −2[(N−2)p−N ]

(p−1)2 to ∞; hence, if p > N
N−2

there exists a unique XM > 0 such that fM (XM ) = 0, while if 1 < p < N
N−2 , fM admits no zero

on [0,∞). Since fM > fM ′ for M > M ′ > 0, there holds XM > XM ′ , By the implicit function

theorem the mapping M 7→ XM is C1 and decreasing from [0,∞) onto (0,
(

2K
p−1

) 1
p−1

]. Actually

it can be proved that (see [7, Proposition 2.2])

XM =
p− 1

2

(
K

M

) p+1
p−1

(1 + o(1)) as M →∞. (6.6)

2- If M is negative, fM achieves it minimum on [0,∞) at X0 =
(
−M
p+1

) p+1
p(p−1)

(
2
p−1

) 2
p−1

, and

fM (X0) = − p

(p+ 1)
p+1
p

(
2

p− 1

)2

(−M)
p+1
p − 2K

p− 1

= −
(

2

p− 1

)2
(

p

(p+ 1)
p+1
p

(−M)
p+1
p +

(N − 2)p−N
2

)
.

Since K > 0, there exists a unique XM > 0 such that fM (XM ) = 0 and XM > X0. The mapping
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M 7→ XM is C1 and decreasing from (−∞, 0] onto [
(

2K
p−1

) 1
p−1

,∞). The following estimate holds

max

{(
2K

p− 1

) 1
p−1

,

(
2

p− 1

) 2
p−1

|M |
p+1
p(p−1)

}
≤ XM

≤ 2
2
p−1

((
2K

p− 1

) 1
p−1

+

(
2

p− 1

) 2
p−1

|M |
p+1
p(p−1)

)
.

(6.7)

3- If N = 1, 2 and p > 1 or N ≥ 3 and 1 < p < N
N−2 , then fM (0) > 0. Hence, if fM (X0) > 0

there exists no positive root to fM (X) = 0. Equivalently, if −µ∗ < M < 0. If fM (X0) = 0,

X0 is a double root and this is possible only if M = −µ∗, hence X−µ∗ =
(

2|K|
p(p−1)

) 1
p−1

. If

fM (X) < 0, or equivalently, if M < −µ∗, the equation fM (X) = 0 admits two positive roots
X1,M < X0 < X2,M . The monotonicity of the Xj,M , j=1,2, and their range follows easily from
the monotonicity of M 7→ fM (X) for M < 0. Actually the following asymptotics hold when
M → −∞,

X1,M =
p− 1

2

(
K

M

) p+1
p−1

(1 + o(1)) and X2,M =

(
2

p− 1

) 2
p−1

(−M)
p+1
p(p−1) (1 + o(1)). (6.8)

�

6.2 Bifurcations

We set

A(ω) = −∆′ω +
2K

p− 1
ω − ωp −M

((
2

p− 1

)2

ω2 + |∇′ω|2
) p

p+1

, (6.9)

If η ∈ C∞(SN−1) and if there exists a constant positive solution X to A(X) = 0 we have

d

dτ
A(X + τη)bτ=0= −∆′η +

(
2K

p− 1
− pXp−1 −M 2p

p+ 1

(
2

p− 1

) 2p
p+1

X
p−1
p+1

)
η.

Hence the problem is singular if

− 2K

p− 1
+ pXp−1 +M

2p

p+ 1

(
2

p− 1

) 2p
p+1

X
p−1
p+1 = λk, (6.10)

where λk = k(k + N − 2) is the k-th nonzero eigenvalue of −∆′ in H1(SN−1). The following
result follows classically from the standard bifurcation theorem from a simple eigenvalue (which
can always be assumed if we consider functions depending only on the azimuthal angle on SN−1

reducing the eigenvalue problem to a simple Legendre type ordinary differential equation) see
e.g. [26, Chapter 13] and identity (6.4).
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Theorem 6.2 Let M0 ∈ R and XM0 be a constant solution of (6.2). If XM0 satisfies for some
k ∈ N∗,

M0

(
2

p− 1

) 2p
p+1

X
p−1
p+1

M0
=

p+ 1

p(p− 1)
(2K − λk) , (6.11)

there exists a continuous branch of nonconstant positive solutions (M,ωM ) of (6.2) bifurcating
from the (M0, XM0).

Since M

(
2

p− 1

) 2p
p+1

X
p−1
p+1

M =
2K

p− 1
−Xp−1

M by (6.4) the following statements follow imme-

diately from Proposition 6.1.

Lemma 6.3 Set Φ(M) = M
(

2
p−1

) 2p
p+1

X
p−1
p+1

M when XM is uniquely determined, and Φj(M) =

M
(

2
p−1

) 2p
p+1

X
p−1
p+1

j,M , j=1,2, if there exist two equilibria. Then

1- If N ≥ 3 and p > N
N−2 , the mapping M 7→ Φ(M) is continuous and increasing from [0,∞)

onto [0, 2K
p−1).

2- If N ≥ 3 and p ≥ N
N−2 , the mapping M 7→ Φ(M) is continuous and increasing from (−∞, 0]

onto (−∞, 0].

3- If N = 1, 2 and p > 1 or N ≥ 3 and 1 < p < N
N−2 , the mapping M 7→ Φ1(M) (resp

M 7→ Φ2(M)) is continuous and decreasing (resp. increasing) from (−∞,−µ∗] onto [ 2K
p−1 , 0)

(resp. (−∞, 2K
p−1 ]).

If we analyse the range R[Φ] of Φ or R[Φj ] of Φj , we prove the following result.

Theorem 6.4 1- Let N ≥ 3 and p ≥ N
N−2 .

1-(i) There exists a continuous curve of bifurcation (M,ωM ) issued from (M0, XM0) for some
M0 = M0(p) ≥ 0 if and only if p ≥ N+1

N−3 and k = 1. Furthermore M0(N+1
N−3) = 0.

1-(ii) The bifurcation curve s 7→ (M(s), ωM(s)), is defined on (−ε0, ε0) for some ε0 > 0 and
verifies (M(0), ωM(0)) = (M0, XM0).

2- Let N ≥ 3 and p ≥ N
N−2 .

2-(i) For any k ≥ 1 there exist Mk < 0 and a continuous branch of bifurcation (M,ωM ) issued
from (Mk, XMk

), with the restriction that p < N+1
N−3 if k = 1.

2-(ii) The bifurcation curve s 7→ (M(s), ωM(s)), is defined on (−ε0, ε0) for some ε0 > 0 and
verifies (M(0), ωM(0)) = (M0, XM0). Finally Mk → −∞ when k →∞.

3- let N = 1, 2 and p > 1, or N ≥ 3 and 1 < p < N
N−2 .

3-(i) There exists no M < 0 such that 2K
p−1 < Φ1(M) < 0, and a countable set of Mk < 0, k ≥ 1,

such that Φ2(Mk) = p+1
p(p−1) (2K − λk).

3-(ii) There exist a countable branches of bifurcation of solutions (Mk(s), ωMk(s)) issued from
(Mk, X2,Mk

).
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Proof. Assertion 1. Since from Lemma 6.3, R[Φ] = [0, 2K
p−1) for M ≥ 0, we have to see under

what condition on p ≥ N
N−2 one can find k ≥ 1 such that

0 ≤ p+ 1

p(p− 1)
(2K − λk) <

2K

p− 1
⇐⇒ 2K

p+ 1
< λk ≤ 2K.

Since K < N and λk ≥ 2N for k ≥ 2, the only possibility for this last inequality to hold is k = 1.
The inequality 2K

p+1 < N − 1 always holds since p > 1, while the inequality N − 1 = λ1 ≤ 2K is

equivalent to p ≥ N+1
N−3 . Therefore M0 = 0 and XM0 =

(
2K
p−1

) 1
p−1

. If we consider only functions

on the sphere SN−1 which depend uniquely on the azimuthal angle θ = tan−1(xNbSN−1), the
function ψ1(σ) = xNbSN−1 is a eigenfunction of −∆′ in H1(SN−1) with multiplicity one. Hence
the bifurcation branch is locally a regular curve s 7→ (M(s), ωM(s)) with 0 ≤ s < ε′0 and we

construct the bifurcating solution on SN−1 using the classical tangency condition [26, Theorem
13.5],

ωM(s) = XM0 + s(ψ1 + ζs) (6.12)

where ζs ∈ H1(SN−1), is orthogonal to ψ1 in H1(SN−1) and satisfies ‖ζs‖C1 = o(1) when s→ 0.
This implies the claim.

Assertion 2. Since R[Φ] = (−∞, 0) for M < 0, we have to find k ≥ 1 such that

p+ 1

p(p− 1)
(2K − λk) < 0⇐⇒ 2K < λk.

As in Case 1, K < 2N , then inequality 2K ≤ λk holds for all k ≥ 2, and if k = 1 this is possible
only if p < N+1

N−3 . The construction of the bifurcating curve is the same as in Case 1.

Assertion 3. We have R[Φ1] = [ 2K
p−1 , 0) for M ≤ −µ∗. If we look for the existence of some k ≥ 1

such that
2K

p− 1
≤ p+ 1

p(p− 1)
(2K − λk) < 0⇐⇒ 2K ≤ λk <

2K

p+ 1
;

we get an impossibility since K < 0. Hence there exists no M0 < 0 such that (M0, X1,M0) is a
bifurcation point. We have also R[Φ2] = (−∞, 2K

p−1 ] for M ≤ −µ∗. Now the condition for the
existence of a bifurcation branch issued from (M0, X2,M0) for some M0 ≤ −µ∗ is

p+ 1

p(p− 1)
(2K − λk) ≤

2K

p− 1
⇐⇒ λk ≥

2K

p+ 1
,

which is always true for any k ≥ 1 and 1 < p < N
N−2 . �

Remark. The exponent p = N+1
N−3 is the Sobolev critical exponent on SN−1. If one consider the

Lane-Emden equation with a Leray potential

−∆u+ λ|x|−2u = u
N+1
N−3 , (6.13)

with λ ∈ R, then the separable solutions u(r, σ) = r−
N−3

2 ω(σ) verify

−∆′ω +

(
(N − 1)(N − 3)

4
− λ
)
ω − ω

N+1
N−3 = 0 on SN−1. (6.14)
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It was observed in [10] that there exists a branch of bifurcation (λ, ωλ) with λ > 0 issued from
(0, ω0), where ω0 is the constant explicit solution of (6.14).

Remark. In Theorem 6.4-1- and the above remark, we conjectured that on the bifurcating curve
there holds locally M(s) < M0, and that for any p ≥ N+1

N−3 there exists M0 := M0(p) such
that for M > M0 all the positive solutions to (6.2) are constant, furthermore M0 is defined
by (6.11). When p = N+1

N−3 , then M = 0 and there exists infinitely many positive solutions to

(6.2) [10, Proposition 5.1]. When N
N−2 < p < N+1

N−3 , it is unclear if the branches of bifurcation
(M(s), ωM(s)) issued from (M0, ωM0) with M0 < 0 are such that M(s) keeps a constant sign. If

it is the case one could expect that if M ≥ 0 and N
N−2 < p < N+1

N−3 , all the positive solutions to
(6.2) are constant.

The following statement is an immediate consequence of Theorem 6.4.

Corollary 6.5 1-If p > 1 and q = 2p
p+1 there always exist nonradial positive singular solutions

of (1.2) in RN \ {0} under the form u(r, σ) = r
− 2
p−1ω(σ).

2- If N ≥ 4 and p > N+1
N−3 , the functions are obtained by bifurcation from XM with M > 0.

3- If N ≥ 3 and N
N−2 ≤ p < N+1

N−3 , the functions are obtained by bifurcation from XM with
M < 0.
4-If N = 1, 2 and p > 1 or N ≥ 3 and 1 < p < N

N−2 , the functions are obtained by bifurcation
from (Mk, X2,Mk

) with Mk < −µ∗ and k ≥ 1.
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