
HAL Id: hal-01906465
https://hal.science/hal-01906465

Submitted on 12 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomous Driving System : Model Based Safety
Analysis

Mohamed Tlig, Mathilde Machin, Romain Kerneis, Emmanuel Arbaretier,
Linda Zhao, Florent Meurville, Jean van Frank

To cite this version:
Mohamed Tlig, Mathilde Machin, Romain Kerneis, Emmanuel Arbaretier, Linda Zhao, et al.. Au-
tonomous Driving System : Model Based Safety Analysis. 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W), Jun 2018, Luxembourg city,
Luxembourg. �10.1109/DSN-W.2018.00012�. �hal-01906465�

https://hal.science/hal-01906465
https://hal.archives-ouvertes.fr


Autonomous Driving System : Model Based Safety Analysis
Mohamed TLIG∗, Mathilde MACHIN†, Romain KERNEIS∗, Emmanuel ARBARETIER†,

Linda ZHAO‡, Florent MEURVILLE§, Jean VAN FRANK∗

∗ IRT SystemX – dept. Autonomous Transport – Paris-Saclay, FRANCE
Email: firstname.lastname@irt-systemx.fr

† APSYS – AIRBUS – dept. Modeling and tools – Toulouse, FRANCE
Email: firstname.lastname@apsys-airbus.com

‡ SECTOR-GROUP – dept. Functional Safety – Villebon-sur-Yvette, FRANCE
Email: firstname.lastname@sector-group.net

§ VALEO– dept. Functional Safety and Modeling – Créteil, FRANCE
Email: firstname.lastname@valeo.com

Abstract—The desire to introduce autonomous vehicles by 2020 on the
roads represents a real technological challenge. It requires breaks with
traditional design, security and validation processes to achieve a safe
system.

As part of the SVA1 (Simulation of Autonomous Vehicle Safety)
project, we present the process under development at the Institute for
Technological Research SystemX2, in order to optimally address the
limitations of existing methods.

The objective is to provide designers methods and tools to support
safety considerations during the design and the validation phases of
autonomous vehicles functions.

In this paper, we apply a Model Based Safety Analysis methodology
(MBSA) to an Advanced Driver-Assistance System (ADAS), using a
modular numerical simulation platform. We describe the different activ-
ities carried out during each stage and define the associated objectives.
Experimental simulation results are presented, showing the advantages
of such approach.

Index Terms—Automated Driving Systems, Functional Safety, ISO
26262, MBSA, AltaRica, Autonomous critical systems

I. INTRODUCTION

Studying, arguing and guarantying some level of dependability and
safety in autonomous cars remains an open question. Automotive
standard ISO 26262 [1] deals mainly with internal faults (random
hardware failures and systematic software faults) but gives no clue to
manage problems linked to interpretation of sensed data and interac-
tion with environment which are key points of autonomy. Moreover,
the severity of feared events is assessed through controllability by
human driver, which is no more relevant in autonomous cars. That’s
why we propose to adapt a method from aeronautics called MBSA
(Model Based Safety Analysis) to tackle the problem of environment
perception and interaction.

MBSA requires to build a system model with hight abstraction
level and enables to generate all minimal paths (called cuts by analogy
with failure trees) to a given feared event. Our general approach
will consist in using MBSA to generate potentially critical scenarios,
i.e., set or sequences of internal failures linked to interpretation or
interaction problems. Since the model is high-level, it may not contain
all critical scenarios of the given system. Nevertheless, we claim

This research work has been carried out in the framework of IRT SystemX
and therefore granted with public funds within the scope of the French Pro-
gramme "Investissements d’Avenir". Industrial partners involved are: Apsys-
Airbus, Sector Group, Valeo, Continental, Renault Group, PSA Group, AV
Simulation, Assystem, All4Tec, Optis. Academic partners involved are: CEA,
LSV Lab, Paris-Saclay University, LNE Lab.

1https://www.irt-systemx.fr/en/project/sva/
2https://www.irt-systemx.fr/en/

that this method is more efficient and gives more guarantee than
simulating a finite set of scenarios, in a detailed model (typically
a physical simulator), where the set of possible scenarios is infinite.
Every scenario generated by MBSA represents a "class" of scenarios,
as simulated in a physical simulator. After scenarios generation, we
validate them in a physical simulator, defining the precise parameter
bounds of the critical scenario class.

To illustrate this method, we apply it to the autonomy function
TJC (Traffic Jam Chauffeur), in charge of driving the car in a traffic
jam situation while following a vehicle ahead at maximum speed of
70 km/h on highway.

After giving some background in Section II on the fields of
functional safety and autonomous driving systems in general, we
describe in Section III the model we propose. Then, Section IV
presents the results of this approach, both for cuts and sequences.
Finally, we discuss the perspectives of this work and conclude.

II. BACKGROUND

We address in this paper the general problem of autonomous
driving systems (ADS). The SAE J3016 [2] taxonomy describes the
full range levels of autonomy, where we consider level 3 and higher
ADS. This kind of systems are still new and the feedbacks do not
identify all of their failure modes. Moreover, safety analyzes, such
as Preliminary Hazard Analysis, do not provide an exhaustive list of
possible events leading to failure.

All these problems lead car manufacturers and their engineers
to work on the development of new approaches that deal with the
shortcomings of current methods. As example, we cite the PAS
21448 [3] which is an initiative to handle new sensor problems,
i.e., malfunctioning behaviors in the absence of faults that are not
addressed by the standard ISO 26262 [1].

Recent researches aim to improve safety by quantifying the un-
certainties of the component outputs by propagation. Most of these
approaches are based on Bayesian tools [4] and their variants, e.i.,
Deep Learning [5]. In the following, we suggest a formal method
inspired from aeronautic3 [6].

III. MODELING AUTONOMY FUNCTION

The modeling objective is to represent the TJC and all linked
elements (e.g., forwarding vehicles) in a MBSA language so as to
generate some critical scenarios. In particular, we look for scenarios

3This method was used to study the safety of the hydraulic system of the
Airbus A320 aircraft family



with problems in the sensing process such as dazzling or erroneous
pattern and image recognition.

A. Tools used

To model the TJC, we use Simfia, developed by Apsys-Airbus,
based on the formal language AltaRica [7], originally designed in
LaBRI4 and offering a user-friendly interface.

AltaRica model is a set of bricks. Each brick has input and output
connectors. Its state is defined by state variable and event, an event
changes state variable values and thus defines a state machine. An
event "failure" makes the variable "s" change from "nominal" to
"failed". By logical expression, output connector "o" is set to the value
"ko". AltaRica enables also to define brick hierarchy: a composite
brick contains other bricks.

Starting from an observation point (typically a feared situation),
AltaRica compiler generates cuts, i.e., set of events that result in the
feared situation. AltaRica modeling is very abstract and enables to
generate all cuts whereas a physical model is much more detailed but
does not allow to generate all paths resulting in a given situation.

AltaRica compiler can also generate sequences, i.e., set of events
with a given occurrence order. For example, for the model shown in
Figure 1, with a simple failure in each brick:

• Cuts are {C}, {D} and {A,B};
• Sequences are (C), (D), (A,B) and (B,A).

Fig. 1: Model example with 4 bricks

B. Model structure

In order to model the ADAS, we take into account the autonomous
vehicle and its environment (e.g., other vehicles, weather...). This
is original and it will increase the complexity of the calculations.
However, in our case we are looking for feared scenarios, thus the
environment representation is needed. Model structure, as illustrated
by Figure 2, is as follows:

• Environment: all relevant environment elements for TJC work-
ing,

• Perception: sensors of the autonomous vehicle (also called ego
vehicle in the following) used by TJC,

• Fusion: merging same class of informations seen by different
sensors (e.g., obstacles, front vehicle...),

• Control: deciding of a vehicle motion behavior,
• Activation conditions of the TJC.

The feared situation we study is the collision with another
vehicle. It is considered as reached when the ego vehicle and another
vehicle are on the same square (discrete position).

4http://www.labri.fr

Fig. 2: Proposed model overview

1) Environment: The first element of the model is constituted by
the environment elements used by TJC, in the limit range of the
sensors. Static environment encompasses marking lanes, weather,
road signs and, possibly, forwarding obstacles. As we considered
dynamic environment, we refer to traffic. Up to 2 other cars can be
present in the environment of ego vehicle. This part will be detailed
in Section III-D.

2) Perception: Perception part contains environment sensors and
specific intern sensors (which measure the speed and the yaw rate
of the ego vehicle). Environment sensors are one front camera and
one front radar. They are said to be "smart" as they are not returning
picture frame (e.g., for the camera) but presence and distance of an
object identified to be a vehicle (car, truck...).

Both radar and camera sense obstacles and forwarding vehicles.
Additionally, camera detects marking lanes and road signs.

3) Fusion: As both camera and radar return information about
forwarding vehicles and obstacles, information has to be merged
to provide to TJC control one world representation. In classical
embedded systems, fusion is usually a selection of one information
source, by priority, vote or more complex logics. For autonomous
systems, fusion algorithms take into account confidence levels. We
model in this work 4 levels : level 0 is no confidence, level 1 is low
confidence, level 2 is medium confidence and level 3 is confidence
high. As a consequence, we have chosen to follow the classical
conservative safety approach : if radar and camera disagree on an
object, the most critical (dangerous) is preferred. For example, if
camera "sees" the front vehicle far and radar senses it close, fusion
states that front vehicle is close. In the same way, if camera "sees"
an obstacle on the road which is not sensed by radar, fusion states
that there is an obstacle.

As fusion algorithms are not properly modeled, we have chosen
that modeled fusion cannot contain failures. In other words, we
consider fusion as validated by another method and we claim to assess
only environment and sensing problems.

4) Activation conditions of the TJC: The TJC can be activated by
the driver when some conditions are fulfilled. For example, the driver
must have hands on the steering wheel and seatbelt fasten. When one
of these conditions is no longer fulfilled, the TJC sends a take over
request to the driver. If the driver fails to take over (e.i., after few
seconds), the TJC triggers an emergency braking.

5) Control: Similarly, control part cannot fail. The model contains
two control modules:

• ACC (Adaptive Cruise Control) controls longitudinal speed,
• LKA (Lane Keeping Assist) controls lateral trajectory.



Control part embeds decision logics. Those logics are quite com-
plex to design and debug because they shall result in a steady behavior
of the ego vehicle, i.e.:

• when there is no change in environment or system state, the
command shall remain steady,

• when a change in environment or system state occurs, control
shall react and put the system back in a steady state.

For example, if distance to front vehicle reduces, ACC gives com-
mand to brake. Actuators are not considered as they are similar to
existing cars and that their technology is well mastered.

C. Modeling perception

Modeling environment and its perception is a key feature to assess
TJC safety. In the following part, we present some modeling artifacts
we have used, that are quite specific to autonomy and generic enough
to be reused for other autonomous systems.

1) Data type for environment elements: Environment elements are
numerous and very different from one another. To model them, we
propose three data types:

a) Object without parameter: An object is an element of the
environment that may (or may not) be present (e.g. an obstacle on
the road). A real object has plenty of parameters: size, position,
color, speed... Nevertheless, none of these parameters is modeled.
Either because they don’t play any role in perception, thus any role
in the TJC decisions, or because too much parameters can impact
the system and instead of separate failure modes on each parameter,
we prefer considering an overall error in object perception. Failure
modes considered are:

• omission: the object is present but not detected,
• commission: there is no object but an object is detected,
• erroneous: the present object is detected with some wrong

parameters.
b) Flow: A flow is a data that is always present. For example,

ego speed or light level always exist. Failure modes considered are
omission and erroneous.

c) Object with parameter: To model object parameters, we use
flows. Fusion for an object with parameter is done in two steps: 1)
fusion of object presence, 2) if presence is stated, fusion of each
parameter. Failure modes for object presence detection are omission
and commission only.

2) Modeling sensing: In classical embedded systems, most sensing
errors are caused by hardware internal failures of sensors. However,
for autonomous cars, perception errors are mainly due to interpreta-
tion of sensed data (e.g., erroneous pattern recognition) or interaction
with environment (e.g., dazzling by sun, snow or white truck).
In these cases, the camera can identify correctly a road sign on
the roadside while missing an obstacle on the road. Therefore, we
separate these perception functions in order to intercept separately
perception errors. Each function can fail independently from others,
as it is transient in real world, and it is modeled by a repairable failure.
We model also the hardware failure of the sensors, causing the loss
of all functions, so as to be able to assess the sensor architecture and
the possible redundancies.

D. Modeling control consequences and dynamic environment

We propose here a method that takes into account dynamic traffic.
1) Other vehicles on the road: On top of the ego vehicle, we

model two other vehicles that freely change their speed and lane.
To avoid unrealistic scenarios, some restrictions are added to their
behavior:

• they can change lane only on a free space, if and only if their
speed is different than the nearest vehicle speed on the other
lane (higher or lower, respectively after or before EGO), and,

• changing speed higher or lower depends on respectively the front
or rear vehicle speed.

Due to these restrictions, which imply dependencies between vehi-
cles, modeling more than two vehicles would make the model very
complicated and complex. That is why we limit up to 2 the number
of extra vehicles in this study.

2) Loop ACC command to speed value: As the traffic is dynamic
and the situation depends on ego vehicle behavior, we create a
loop/connection between the ACC command and the ego speed. Thus,
when a change occurs in environment or system state and a new
command is provided by ACC, an event is triggered to update the
ego speed value. It enables to check the logics of the ACC and to
visualize the different motion steps.

3) Road situation: Finally, to have graphical representation of the
road situation, we add display bricks. As shown by Figure3, these
bricks are a sliding scene around the ego vehicle, moving at the same
speed.

Fig. 3: In blue the EGO vehicle displayed in a possible scene

This display enables (i) debugging, (ii) validating by scenario
the model representativeness and (iii) demonstrating to a non-expert
audience.

IV. RESULTS

In this section, we present the process we set up to extract
information from the model. With Simfia, we can generate cuts or
sequences resulting in the feared situation "collision". Cuts are a set of
events, where occurrence order does not matter whereas a sequence is
ordered. We use both generations to have two levels of interpretation.
The number of events in a cut or sequence is called "order". The more
events there is in a cut, the less this cut is probable, and so hazardous.

A. Cut analysis

After 60 hours of computation, we get cuts of order 4 (typical
order for industrial studies is order 3) shown in Table I.

Ordre Generated by Simfia After post-treatment
1 1 1
2 29 6
3 153 19
4 283 13

Total 466 39

TABLE I: Cuts results

To be able to exploit these results we apply three steps of post-
treatment:



• Filtering cuts that encompass a "take over request", to get only
cuts where TJC is not able to detect its own failure;

• Removing events of position change decided by ACC, which is
system evolution;

• Minimizing cuts, i.e., removing cuts that are already included in
other cuts, due to system evolution informations present in cuts.

Thereafter, we obtain 39 cuts, as shown in Table I and we classified
them in 6 categories :

1) Erroneous yaw rate (order 1);
2) Erroneous detection of marking lane and loss of yaw rate

(order 2);
3) Erroneous longitudinal speed and slowing of the front vehi-

cle(order 2);
4) Erroneous distance to front vehicle both on radar and camera

(order 2);
5) Erroneous distance to front vehicle on one sensor and loss of

distance to front vehicle on the other sensor (order 2);
6) Commission (inadvertent detection) on lane detection by cam-

era and end of marking lane and loss of yaw rate (order 3).
From these results, yaw rate and longitudinal speed of ego vehicle

are critical elements (because they appear in order 1 cuts). The
reliability of ESP (Electronic Stability Program) that provides them
to TJC shall be secured. Second, sensing distance from front vehicle
is important (order 2). One can note that sensing front vehicle speed
does not appear in cuts. Indeed, with low distance to front vehicle,
the ACC always commands to bake, no matter the speed. Third,
marking lane detection is highlighted. When no lane is detected, TJC
sends a take over request. Nevertheless, an erroneous detection or
an inadvertent detection inhibit error detection. Finally, note that the
thirteen order 4 cuts (not present in the proposed classification) are in
fact due to a weather condition combined to one of our six categories.

Sequence analysis: After sequences computation, we check that
each cut (previously generated) is present with each of its permutation
in the sequence set. For example, for the cut A,B, we look for the
sequences (A,B) and (B,A). Thus, we found that occurrence order
matters for the following scenarios:

• Erroneous detection of marking lane and loss of yaw rate
(order 2);

• Commission (inadvertent detection) on lane detection by camera
and end of marking lane and loss of yaw rate (order 3).

Indeed, loss of yaw rate results directly in a take over request, whereas
an erroneous detection of marking lane followed by loss of yaw rate
is not detected. In the same way, commission must occur before the
end of marking lane so as not to be detected.

B. Simulations with SCANeR Studio

Afer the extraction of critical scenarios from our MBSA approach,
we then simulate them in order to verify the feared event (collission in
this case). In this work, we used SCANeR Studio5 which is a software
designed for industrials to address the specific needs of dynamic
simulation.

As shown in Figure 4, this makes it easier to demonstrate some
complex failures thanks to the SCANeR’s visualization module.

V. CONCLUSION

In this work, we present a model based safety analysis for
autonomous vehicles. We use AltaRica language and Simfia software
to model this complex system. The application concerns a Traffic
Jam Chauffeur developed and used for testing. We try, through this

5http://www.avsimulation.fr

Fig. 4: SCANeR Studio visualization module when simulating

approach, to improve the model, to bring it closer to reality and not
to make it more complex, so as not to "blow up" the calculation time.
The autonomous vehicle is represented in an environment with two
other vehicles, two lanes, obstacles and road signs. A separate display
of the scene is set up and it allows an easy interpretation of the states
of the vehicles. Thus, we can easily debug and present the model.
We then generate the sequences and cuts of the hazardous event
"collision" and analyze the results by identifying the critical elements
of the system. Finally, some sequence examples are simulated for
demonstration purposes. The followed approach is illustrated in
Figure 5.

Future work includes continuing the experimental study to analyze
the collisions that took place after the take over request. The other
perspective that motivates our research is to model other situations
(not only highway scenarios) and other hazardous events (feared
situations).

Fig. 5: The MBSA approach

REFERENCES

[1] ISO 26262, “Road Vehicle – Functional Safety, Working Group TC22
SC32,” International Organization for Standardization, Standard, 2011.

[2] SAE J3016, “Taxonomy and Definitions for Terms Related to Driving
Automation Systems for on-Road Motor Vehicle,” On-Road Automated
Driving (Orad) Committee, SAE International, 2016.

[3] ISO/WD PAS 21448, “Road vehicles – Safety of the intended function-
ality,” International Organization for Standardization, Standard, Under
development.

[4] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[5] M. Rowan, G. Yarin, K. Alex, v. d. W. Mark, S. Amar, C. Roberto,
and W. Adrian, “Concrete problems for autonomous vehicle safety:
Advantages of bayesian deep learning,” in Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI-17,
2017, pp. 4745–4753.

[6] P. Bieber, C. Castel, and C. Seguin, “Combination of fault tree analy-
sis and model checking for safety assessment of complex system,” in
Proceedings of the 4th European Dependable Computing Conference on
Dependable Computing, ser. EDCC-4. Springer-Verlag, 2002, pp. 19–31.

[7] A. Arnold, G. Point, A. Griffault, and A. Rauzy, “The AltaRica formalism
for describing concurrent systems,” Fundamenta Informaticae, vol. 40, no.
2, 3, pp. 109–124, 1999.


