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Abstract

Following the success of the first AutoML challenges , we designed a new challenge
called AutoDL. We target applications such as speech, image, video, and text, for
which deep learning (DL) methods have had great success in the past few years.
All problems will be multi-label classification problems. We hope to drive the
community to work on finding fully automatic ways of designing DL models. Raw
data will be provided (no features extracted). The source of the datasets and the
type of data will be concealed, but the data structure will be revealed. All datasets
will be formatted in a uniform tensor manner, to encourage participants to submit
generic algorithms (not necessarily constrained to DL). We will impose restrictions
on training time and resources to push the state-of-the-art further. We will provide
a large number of pre-formatted public datasets and set up a repository of data
exchange to enable meta-learning. In this paper, the challenge protocol and baseline
results are presented to seek community feed-back. The challenge is planned for
2019, but the exact schedule is not announced yet.

1 Motivation

Despite recent successes of deep learning [11], designing good neural networks remains difficult and
requires practical experience and expertise. Selecting the architecture and hyper-parameters, and
training a complex deep network is often a long and frustrating trial-and-error process involving lots
of heuristics. The acceleration of the demand for deep learning solutions naturally gives rise to the
need for improving the automation of the design of deep learning solutions. Many approaches have
been proposed to address this problem. Earlier work used neuro-evolution strategies [14] inspiring
more recent methods using evolutionary algorithms [1, 17, 19]. However, methods of this kind are
known to scale poorly and may over-fit. Bayesian optimization methods provide another possibility
but they also have scaling issues when the dimension (number of hyper-parameters) is high [20, 9].
Lastly, ideas borrowed from reinforcement learning have recently been applied for this problem
[24, 2]. But almost all of these methods require huge computational resources (e.g. GPU) accessible
only to big companies and laboratories.

The proposed methods vary a lot in terms of capacity and complexity, and may use different settings,
resources, data, metrics, etc. Thus, based alone on the performances reported in the literature, it is
difficult to form an opinion of the relative merit of these various approaches. To fairly evaluate all
these methods and help advance the state of the art in this emerging research area, it is necessary to
devise standard benchmarks. This motivates the organization of this AutoDL challenge.
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the first author.
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Figure 1: Workflow of AutoDL challenge tasks.

2 Challenge Protocol

The main differences between the AutoDL challenge and prior AutoML challenges [6, 7] are:
1. Raw data: Data are no longer pre-processed in a uniform feature vector representation;

they include all data types representable as spatio-temporal sequences. We will use a generic
data format called TFRecords , used by TensorFlow 2. This format allows us to format any
3D+time data, including text, speech, image, video, etc.

2. Large scale datasets: For development, datasets will all be under 2GB (after compression),
for practical reasons (See Section 4), however, for final testing, datasets of hundreds of
thousands of examples will be used.

3. Any-time learning: The metric of evaluation (based on learning curves, see Section 3) will
force the participants to provide algorithms, which can be stopped at any time (not known in
advance), but the participants will be informed of the maximum time budget.

4. Fixed resource learning: The participants will be given limited memory and computational
resources to run their code. They will be informed of resources made available to them
(number of cores, memory, etc.). Their (compressed) code size will be limited to 300 MB.

5. Uniform tasks and metrics: All problems will be multi-label classification problems and
be evaluated with the same metric (see Section 3).

One key aspect of this challenge, and other past AutoML challenges [8] we organized, is that it is a
code submission challenge. The participants will submit code that will be trained and tested on the
challenge platform without any human intervention, on datasets they will never see. Pre-training
will be allowed, provided that the submission size limit is respected. The challenge will be run in two
phases:

• Feed-back phase: During a development period lasting 3 to 4 months, feed-back will be
immediately provided on a leaderboard, using practice datasets (invisible to the participants,
but visible to their submitted code). A large number of public datasets (' 100), in the
same format as the practice datasets, will be made available for method development and to
encourage research on meta-learning.

• Final test phase: After the challenge deadline, the code of the participants will be blind
tested on some new final evaluation datasets that were never disclosed before to the public.

In the AutoDL challenge, we have therefore 3 types of datasets: public, practice, and final. In
contrast with some previous AutoML challenges [6, 7] in which the practice data was distributed to
the participants (except for the target values of the validation and test sets), in the AutoDL challenge,
neither the practice datasets nor the final evaluation datasets will be exposed to the participants directly
in any of the challenge phases: their code will be fully blind tested. However, a large number of fully
labeled “public” datasets will be provided, and we will set up a public repository so participants can
exchange among themselves other datasets. A starting kit in Python with a TensorFlow interface
will be provided. We will give several examples of sample submissions, including some calling
scikit-learn and other libraries. It will be possible to call e.g. PyTorch

2https://www.tensorflow.org/
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Figure 2: Example of learning curve. We modified the Codalab platform so participants can save
their results, at any intervals they choose, to incrementally improve their performance, until the time
limit is attained. In this way, we can plot their learning curves: performance as a function of time. By
evaluating them with the area under the learning curve, we push them to implement any-time learning
methods. The x-axis will be on a log scale. This shows an example in which the participant could
have avoided saving so frequently towards the end of the curve. The algorithm was stopped before
the time limit was reached.

3 Challenge metrics

One novelty in the AutoDL challenge is to enforce any-time learning by scoring participants with the
Area under the Learning Curve (ALC) (Figure 2). The participants can train in increments of a
chosen duration (not necessarily fixed) to progressively improve performance, until the time limit
is attained. This allows us to plot their learning curves: “performance” as a function of time. We
compute ALC by the trapeze method, as a function of log(time), where "time" is the cumulative time
of training and testing. We compute a separate learning curve and ALC for each dataset and rank the
participants according to ALC. The overall ranking is made by averaging ranks over all datasets.

For each dataset, a “performance” point on the learning curve is the average performance over all
the labels of the task. For each label individually, we compute the Balance ACuracy BAC = (1/2)
(TPR + TNR). To that end, the participants are asked to provide a normalized score between 0 and
1, analogous to a probability, which we threshold at 0.5. We may use that score to compute various
other metrics, including the Area under the ROC curve (AUC). We stress that we do not consider
multi-class classification metrics. Each label is scored independently.

4 Datasets and baseline methods

The datasets are still under formatting. However, we alreary formatted ten datasets (5 public datasets
and 5 practice datasets) to run beta-tests, see Table 1. Between now and NIPS 2018, We will be
running a rehearsal of the challenge, in the form of a hackathon lasting a few days, open internally
at Google. The hackathon will be organized using the CodaLab platform, of which a cloned instance
was created running on Google Cloud

In contrast with the real AutoDL challenge (which will take place in 2019), the hackathon will have a
single phase during which participants will get immediate feed-back on five practice datasets when
they submit their code, without having access to them (for that reason, we do not give any detail on
such datasets here). There will be no final testing on separate datasets. But, similarly to the real
AutoDL challenge, the participants’ submitted code will be trained and tested automatically on the
challenge platform, without any human intervention. We set up CodaLab so all five datasets can be
processed in parallel.
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Table 1: Hackathon data summary statistics. We formatted 10 datasets for the hackathon. The
public datasets are shown. Similar practice datasets have been formatted, but remain hidden. For
the real AutoDL challenge, we plan to format ' 100 public datasets and set-up a repository of data
exchange, in the format of the challenge

XY Label Sample number Tensor dimension
# Dataset Domain locality number train test row col time
1 adult tabular No 3 39074 9768 1 24 1
2 katze video Yes 6 1528 863 120 160 181
3 starcraft speech No 10 21115 2567 1 1 16000
4 tweet text No 20 11314 7532 1 50 473
5 munster image Yes 10 60000 10000 28 28 1

For this hackathon, resources will be limited to 2 hours of CPU time. Preliminary baseline are found
in Table 2. We compare those results with literature reference performances. Work still remains to be
done to improve baseline methods or adjust the tasks to make them doable within two hours.

Table 2: Baseline results. Benchmark results on public datasets for planned hackathon, obtained
by running our starting kit and collected from the literature (*) Performances are in AUC for adult,
tweet (20-newsgroup), and munster (MNIST), from the top ranking participants of the AutoML
challenge [8, 3]. The others are reported in multi-class accuracy. AUC and BAC are normalized as in
the AutoML challenge betwen 0 and 1.

Literature Starting Kit
# Dataset Domain Performance (*) References Accuracy AUC BAC

Pu
bl

ic

1 adult tabular 0.77 [22, 10, 8, 3] - 0.72 0.41
2 katze video 0.90 [16, 23, 18] 0.54 0.26 0.263
3 starcraft speech 0.79 [5] 0.47 0.95 0.42
4 tweet text 0.98 [21, 15, 8, 3] 0.61 0.82 0.57
5 munster image 0.99 [13, 12, 8, 3] 0.99 0.99 0.99

Pr
iv

at
e

1 hidden tabular 0.90 hidden 0.85 0.83 0.52
2 hidden video - never used - hidden 0.68 0.41 0.41
3 hidden speech 0.88 hidden 0.42 0.93 0.36
4 hidden text 0.88* hidden 0.76 0.66 0.57
5 hidden image 0.84 hidden 0.47 0.96 0.47

We briefly describe the baseline methods employed. For tabular data, we applied auto-sklearn for
2h [4]. For image data, we create a self-scaling convolutional neural network (SCNN): We repeatedly
apply 2D convolution layers (with kernel shape 3× 3) followed by 2D max-pooling (of shape 2× 2)
until the row number or the column number is equal to 1, doubling the number of filters after each
iteration (the initial value is 32). Then a dense hidden layer is applied, followed by a Dropout layer
of rate 0.5. Finally, we apply a dense output layer, consisting of sigmoid units individually trained by
log-loss (no softmax since we have multi-label problems). For video data, we only have a preliminary
baseline consisting of a fully connected neural network applied to frames averaged over time. For
text data, text is encoded as a string of numbers (one for each word) then passed to a multi-layer
neural network. The first layer performs word embedding. It is followed by two dense layers. For
speech data, we compute power spectrograms with FFT. Then, we apply a SCNN, similarly to that of
image tasks, followed by two dense layers.

5 Conclusion and further work

We presented the design of a new challenge that will stimulate the AutoML community to embrace
deep learning and tackle the hard problems of automatic architecture design and hyper-parameter
search for models trained directly on raw data. By making available a large number of pre-formatted
public datasets, and encouraging data exchange by setting up a repository, we hope to stimulate
research in meta-learning. We have run baseline methods and are getting ready to start a full challenge
rehearsal to verify the feasibility of the tasks, given the allotted time and computational resources.
The results will be reported at NIPS and feed-back from the community will be seeked.
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