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Abstract

Bayesian calibration of black-box computer models offers an established framework to obtain a posterior
distribution over model parameters. Traditional Bayesian calibration involves the emulation of the computer
model and an additive model discrepancy term using Gaussian processes; inference is then carried out using
MCMC. These choices pose computational and statistical challenges and limitations, which we overcome by
proposing the use of approximate Deep Gaussian processes and variational inference techniques. The result
is a practical and scalable framework for calibration, which obtains competitive performance compared to the
state-of-the-art.

1 INTRODUCTION

The inference of parameters of expensive computer models from data is a classical problem in Statistics (Sacks
et al., 1989). Such a problem is often referred to as calibration (Kennedy and O’Hagan, 2001), and the results of
calibration are often of interest to draw conclusions on parameters that may have a direct interpretation of real
physical quantities. There are many fundamental difficulties in calibrating expensive computer models, which we
can distinguish between computational and statistical. Computational issues arise from the fact that traditional
optimization and inference techniques require running the expensive computer model many times for different values
of the parameters, which might be unfeasible within a given computational budget. Statistical limitations, instead,
arise from the fact that computer models are abstractions of real processes, which might be inaccurate.

Building on previous work from Sacks et al. (1989), in their seminal paper, Kennedy and O’Hagan (2001)
propose a statistical model, based on Gaussian processes (GPs; Rasmussen and Williams (2006)), which jointly
tackles the problems above. In their model, which we will refer to as KOH, the output of a deterministic computer
model is emulated through a GP estimated from a set of computer experiments; in this way, computational issues
are bypassed by using the prediction of the GP for a given set of parameters in place of the computer model.
Observations from the real process, also known as field observations, instead, are modeled as the sum of the output
of the GP emulating the computer model and another GP, which accounts for the mismatch between the computer
model and the real process of interest. The KOH model is treated in a Bayesian way, making it suitable for problems
where quantification of uncertainty is an important requirement. This is often the case when one is interested in
drawing conclusions on parameters of interest, making predictions for decision-making with specific cost associated
to predictions, or when one is interested in iteratively improve the experimental design.

While the KOH model and inference make for an attractive and elegant framework to tackle quantification
of uncertainty for calibration of expensive computer models, there are a number of limitations, which we aim to
overcome with this work. From the modeling perspective, GPs are indeed flexible emulators, provided that a suitable
covariance function is chosen. This may limit the class of functions that can be modeled compared to alternatives
from, for instance, the literature of nonstationary Gps (e.g. Paciorek and Schervish (2003)) or, more recently, of
Deep GPs (DGPs; Damianou and Lawrence (2013)). From the computational perspective, limitations are inherited
from the scalability issues of aps (Rasmussen and Williams, 2006), which form the building blocks of this model,
and the use of Markov chain Monte Carlo (McMC) (Neal, 1993) techniques to carry out inference.

This work aims to tackle these issues by proposing the use of recent developments in the GP and DGP literature
and variational inference, to (i) extend the modeling capabilities of GPs in the emulation using DGPs; (ii) extend
the original framework in Kennedy and O’Hagan (2001), by casting the model as a special case of a DGP; (iii)
use techniques based on random feature expansions and stochastic variational inference, building on the work by
Cutajar et al. (2017), to obtain a scalable framework for Bayesian calibration of computer models. We extensively
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validate our proposal, which we name V-CAL, on a variety of calibration problems, comparing with alternatives from
the state-of-the-art. We demonstrate the flexibility and the scalability of v-CAL, as well as the ability to capture
the uncertainty in model parameters and model mismatch.

2 RELATED WORK

The framework of Kennedy and O’Hagan (2001) and related calibration methodologies (e.g., Bayarri et al. (2007);
Higdon et al. (2004); Goldstein and Rougier (2004)) have been extended and developed for applications in fields as
diverse as climatology (Sans et al., 2008; Salter et al., 2018), environmental sciences (Larssen et al., 2006; Arhonditsis
et al., 2007), biology (Henderson et al., 2009), and mechanical engineering (Williams et al., 2006), to name a few.

More generally, Bayesian calibration had a large echo in statistical analysis of computer experiments. Among
many others, Wang et al. (2009) propose a Bayesian approach where the posterior of the field observation is
expressed as the sum of two independent posterior distributions derived separately, representing the discrepancy
and the computer model. Storlie et al. (2015) propose a calibration approach which can handle categorical inputs
within a Bayesian smoothing spline ANOVA framework.

Identifiability issues with the KOH model were pointed out in the discussion of the paper of Kennedy and O’Hagan
(2001). Such issues arise due to the over-parameterization of the model, whereby it is possible to confound the
effects of calibration parameters and model discrepancy. Later, more work has been done on illustrating the lack
of identifiability and proposing ways to mitigate it (Arendt et al., 2012; Brynjarsdéttir and O’Hagan, 2014). In the
former, it is shown that, when the computer model has multiple responses, identifiability is improved by considering
them jointly with multiple output GP models. In the latter, the authors show with simple examples the crucial
importance of prior information, and they discuss how eliciting this may be difficult for arbitrary black-box computer
models.

Tuo and Wu (2016) propose a proof of inconsistency of a simplified version of the KOH model for Bayesian
calibration. As an alternative, calibration with convergence properties is performed by minimizing a loss function
involving the discrepancy. More recently, Plumlee (2017) provide analytic guarantees on the use of discrepancy
priors that reduce the suboptimal broadness of the posterior.

A large literature is devoted to the practicalities of numerically challenging applications. The KOH calibration
model and its inference suffer from the well known computational burden of standard Gp models. Higdon et al.
(2008) use basis functions representations to tackle problems with high dimensional output. Gramacy et al. (2015)
use local approximate GP modeling and calibrate parameters by solving a derivative-free maximization of a likelihood
term. Pratola and Higdon (2016) handle large problems using a sum-of-trees regression for modeling jointly data
from computer model and the real process.

Very recent approaches combine Bayesian and discrepancy-based loss minimization providing good performance
on moderate-size data sets. Gu and Wang (2018) perform calibration within a Bayesian framework, by defining
a prior distribution directly on the Ly norm of the discrepancy. Finally, Wong et al. (2017); Xie and Xu (2018)
sample from the posterior distribution over calibration parameters by minimizing the Ly norm of a sample path of
the discrepancy.

3 VARIATIONAL CALIBRATION

In this section we introduce V-CAL, which is based on the KOH calibration model, random feature expansions of
GaPs and DGPs, and Stochastic Variational Inference (svi). We first review the KOH model for Bayesian calibration
of computer models and random feature expansions of GPs and DGPs. We then present our contribution; see the
supplementary material for an illustrative example describing how V-CAL works in detail.

3.1 Background on Bayesian Calibration

Consider prediction and uncertainty analysis of a physical phenomenon approximated by a computer model (often
expensive to evaluate). Observations Y = [y,,...,y,] € R™"*%u are made over variable inputs X = [@1,...,2,]"
in a given set D; C R?%. For example, in a climatological context, ¥ could correspond to temperature measurements
with respect to the latitude and the longitude (with doyy = 1 and D; = [—90, 90] x [—180, 180[). The computer model
simulating the real phenomenon requires the calibration inputs @ € Dy C R%, and, given these, it is a function
of € D;. Calibration inputs 8 determine which specific application we are reproducing (e.g., exchange rates

determining the carbon cycle). We use ¢t € D5 to denote particular values of calibration inputs, and 6 to denote the
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Figure 1: kou Calibration Model.

true (unknown) values we are interested in inferring. In their Bayesian formulation, Kennedy and O’Hagan (2001)
introduce a prior over 8, and they aim to characterize the posterior distribution over @ given the data collected
from the observations of the real process and runs of the computer model.

Beside the observations Y associated with X, the computer model is run at (possibly different) inputs X* =

[zF,..., m}‘V]T with calibration inputs T' = [tq, ... ,tN]T. Generally N is larger than n as running the computer
model is easier (albeit computationally expensive) compared to performing a real world observation. We denote by
Z=lz1,..., zN]T € RV*dout the output of computer model evaluated at X* and 7.

We assume that Y and Z are drawn from some distributions p(y,[f;) and p(z;|n}), which determine the
likelihood functions. The matrices F = [f,..., f,]T and H* = [n},...,n%]" result from mapping (x;,0)i=1,. »
and (x},t;);j=1,. ~ through f and n, respectively. The link between the computer model (with latent representation
1) and the real phenomenon (with latent representation f) is modeled by

f(z,t) = n(x,t) + &(), (1)

where § represents the discrepancy between the computer model and the real process. Figure 1 illustrates the KOH
calibration model.

In this framework, n and § are expressed as independent multidimensional GPs. In order to keep the notation
uncluttered, we denote the GP covariance parameters for 7 and § with ¥ and the input locations X, X* T with =.
The marginal likelihood is

(Y, Z|Z, ) = /p<Y|He+A)p<Z\H*)p(Alx,w
p( Ho, H*| 6, Z, 4)p(0)dH* dA dHo d6,

where Hg = [n(x1,0),...,m(x,,0)]" and A = [§(z1),...,8(z,)]". The nontrivial dependence of this integrand
with respect to 6, which are the parameters of interest, makes inference over 6 intractable, and this requires
approximations. We do this by employing an approximation of the GPs composing the model via random feature
expansions, building on the work by Gal and Ghahramani (2016); Cutajar et al. (2017), and through variational
inference techniques.

3.2 Generalized KOH Calibration Model

The original formulation of the KOH calibration model involves the use of GPs to emulate the computer model and
to model the additive discrepancy. As pointed out by Kennedy and O’Hagan (2001), additive discrepancy is very
specific and this formulation can be relaxed (as e.g. in Qian and Wu (2008)). We propose to do so by assuming
that observations from the real process are obtained through the warping of the emulator, as follows

f(:l:7 t) =g (77("’3; t)v 15) . (2)

Clearly, we retrieve the KOH formulation when the warping applies the identity to n(x,t) and adds it to a GP on
x. We can therefore interpret the KOH model as a special case of a DGP, where the first layer implements the



emulation of the computer model and the second layer implements a particular type of warping to model the real
process. Similarly to the original KOH model, its generalization allows one to reason about the mismatch between
the computer model and the real process through the analysis of the warping function. We will illustrate examples
in the experiments.

3.3 Random Features Expansions

In order to develop a practical and scalable calibration framework, we propose to approximate GPs using random
feature expansions (Rahimi and Recht, 2008; Lazaro-Gredilla et al., 2010; Cutajar et al., 2017). This approximation
turns GPs into Bayesian linear models with a set of basis functions determined by the choice of the GP covariance
function, as discussed next.

Consider a GP prior with zero mean (without loss of generality) and a covariance function k(-,-). The properties
of the covariance function determine the characteristics of the GP prior. When the covariance function is Gaussian,
Matérn or arc-cosine, to name a few, it is possible to show that draws from the GP prior are a linear combination
of an infinite number of basis functions, with Gaussian-distributed weights (Neal, 1996; Rasmussen and Williams,
2006). In practice, denoting by f a draw from a GP evaluated at n inputs, this can be expressed as f = ®w, with
w ~ N(0,I) and infinite dimensional, and ® the evaluations of the infinite basis functions at the n inputs. The
covariance of f is readily obtained as

cov(f) =E(dww @) = PE(ww )d' = dd ',

The idea of random feature expansions is to obtain tractable ways to truncate the infinite representation of
GPs, introducing a finite set of basis functions and a finite set of weights for approximating efficiently f. There
are various ways to carry out the truncation; when the covariance is shift-invariant, it is possible to express the
covariance as the Fourier transform of a positive measure, and this makes apparent the low-rank decomposition of
the covariance considering a finite set of frequencies (Rahimi and Recht, 2008).

When using GPs in modeling problems with n observations, the truncation has the advantage of avoiding the
need to solve algebraic operations with the covariance matrix, which generally cost O(n?) operations. Instead, the
truncation turns GPs into Bayesian linear models, for which inference can be done linearly in n and O(N3g), where
Ngr denotes the number of random features used in the truncation.

In this work, we propose to expand the two GPs 1 and & in the KOH calibration model using Nrr random
features. Assuming that the Gps have a Gaussian covariance with precision A, and As and marginal variances O‘%
and o2, we obtain:

n(z,0) = &,z +Q2e) "W, (3)
(5(:1:) = ‘I’g(ng)TWJ. (4)

Here, the functions ®,,®; : RNrr 5 RNRF consist in the element-wise application of sine and cosine functions,

On os . . ..
scaled by JNer)2 and JNary2’ respectively. The elements of W, and W;, of size Nrr X dout, have i.i.d. standard

normal priors, whereas the frequency matrices €2, = [Q%l), Q%Q)], Qs, of size Ny X (di + dz2), Nrr x dj, have i.i.d.
normal rows, with covariance dependent on the positive definite matrices A, and As; in particular, each row Q,
is 1.i.d. (0, A,). Similar considerations apply to €25. Figure 2 represents the model (using a neural network-like
diagram) according to Equations (1), (3), and (4).

Deep extension: It is possible to extend the proposed formulation letting i and/or § to be modeled as DGPs
instead of Gps. This is straightforward, as the random feature approximation turns GPs into shallow Bayesian
neural networks, so it is possible to approximate DGPs by stacking these approximate GPs, obtaining a Bayesian
deep neural network. The deep extension is particularly useful when the emulator or the real process exhibit space-
dependent behavior that are difficult to model by designing appropriate covariance functions. DGPs offer a way to
learn such nonstationarities from data, so this is particularly appealing in such challenging applications. We will
explore this possibility in the experiments.

3.4 Stochastic Variational Inference

In this work, we propose a general formulation based on variational inference techniques to approximate the posterior
distribution over all model parameters, that is W,, W5, and 0, noting that there might be cases where W,, Ws
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Figure 2: Neural Network representation of the proposed approximation to the KOH model. Equations (3) and (4)
formulate two-layer modules for GP approximations of 1 and 4.

can be inferred analytically (Gaussian likelihoods). In particular, we introduce an approximation to the posterior
q(W,, Ws,0), which we aim to make as close as possible to the actual posterior over these parameters. Using
standard variational inference techniques, it is possible to derive a lower bound of the log-marginal likelihood as
follows:

£ > & — Dicw (W, Ws, 0)| [p(W, )p(Ws)p(0)). (5)

where E=E,w, w;,0)log(p(Y; Z|Z, ¢, Q,W,, W;s,0))] and Q = [Q,, Qs]. With an expression for the lower bound of
the marginal likelihood, we can now attempt to maximize it with respect to the parameters of ¢(W,, Ws,0). The
lower bound contains two terms: the first (£) is a model fitting term, whereas the second is a regularization term
which penalizes approximations that deviate too much from the prior. This second Dk, term can be computed
analytically when priors and approximate posteriors have particular forms (e.g., multivariate Gaussian).

There is an apparent complication in the fact that the first term in the lower bound depends on ¢(W,,, Ws, 0)
through the expectation of the log-likelihood. However, this is usually bypassed by employing stochastic optimiza-
tion using Monte Carlo with a finite set of samples from ¢(W,,, W5, 0):

1 Nmc ) ) )
~ r Z IOg (p(K Z|‘E7 d)7 Qa Wygl)a Wé(l)7 G(Z))>
MC

i=1

&

with W,gl), Wé(z), 0 ~ q(W,, Ws,0). The Monte Carlo approximation is unbiased, and so it is its derivative with
respect to any of the parameters of ¢(W,, W5, ). This means that we can employ stochastic gradient optimization
to adapt the parameters of ¢(W,, Ws,0) to maximize the lower bound with guarantees to reach a local optimum
of the objective (Robbins and Monro, 1951; Graves, 2011). The only precaution to take to make this viable, is to
reparameterize the samples from ¢(W,, Ws, 0) using the so-called reparameterization trick (Kingma and Welling,

2014); for instance, assuming a fully factorized Gaussian posterior over all parameters, the expression QEi) =

e + ey)w separates out the stochastic (eéi) ~ N(0,1)) and deterministic (u¢ and oy) components in the way
samples from the approximate posterior are generated. The same can be done for the other parameters of interest
W, and Ws. In this way, the derivative with respect to the variational parameters (e.g. s and o¢) can be used for

stochastic optimization.

Mini-batch-based learning and automatic differentiation: Part of the huge success of deep learning is
due to the possibility to exploit mini-batch-based learning and automatic differentiation. The former allows to
achieve scalability, as the model progressively learns by iteratively looking at subsets of data. The latter allows to
tremendously simplify the implementation of complex models, as one has to implement the objective function of
interest and automatic differentiation takes care of computing its derivatives based on the graph of computation
and the chain rule. Traditional implementations and approximations of GPs do not allow for the use of mini-batch
learning, because doing so ignores the covariance among observations, which is crucial for effective Gp modeling.



The proposed GP and DGP approximation and svI allow us to exploit mini-batch-based learning. When the
likelihood factorizes across observations, the terms within the Monte Carlo approximation of &, say £, can be
unbiasedly estimated by selecting m out of n terms in the set of indices Z,,, (Graves, 2011).

D) = i i) i
ED ~ 237 og (plyy, (2, v, 2. WO, Wi, 00))

JEI’HL

This approximation introduces an extra level of stochasticity in the optimization, but it allows one to scale the
learning of these models to virtually any number of observations; previous work has reported results on DGPs for
107 observations with a single-machine implementation (Cutajar et al., 2017).

Implementation Details Considering the large number of parameters to optimize, the learning procedure is
divided in stages. We first focus on the computer model response: all parameters are fixed except the ones
influencing the prediction of Z, i.e. 0., the means and variances of the components of W,, the correlation length
and variance of 7. In the second stage all others parameters are freed for inferring ¥ and 6 jointly. Within each
stage, we first optimize the means and variances of W, and then all parameters jointly with a smaller learning rate.
The variational distributions are initialized equal to the priors.

4 EXPERIMENTS

In this section we extensively validate v-CAL. For each experiment the discrepancy structure (additive (1) or
general (2)) will be specified. We will also test the model when using DGPs instead of GPs.

The experiments have the following setup. The likelihoods p(y:|fi) and p(z;|n}) are assumed Gaussian with
variances 05 and o? treated as hyperparmeters within 1. All covariance functions of n and § are Gaussian. The
variational posteriors ¢(W,)q(Ws)q(€) and the prior p(@) are Gaussian.

4.1 TIllustrative Example

We illustrate the variational calibration with one variable and one calibration input. As a first test, the prior and
hyperparameters used to generate the data set are assumed to be known, with 6 ~ N (0,1), o, = 1, 4, = %I ,
o5 = 12—0, As = %. We choose locations for N = 7 computer runs and n = 4 observations from the real process in
a space filling manner in [0, 1] x [f%, g] The output vector Z of the computer model at (x});=1,.. n is sampled
form its prior distribution. In order to determine the real observations Y, we first sample p(#) to get irye. Then
the observation values are computed using Equation 1. The results of V-CAL are displayed in Figure 3. In the first
and the third panels, we see that the posterior of 6 obtained analytically by integrating out W, and Ws has its
mass concentrated around the true value &~ 0.8, where there is a (color) match between Z (the the dots) and Y
(the lines). The variational posterior (blue line) offers a reasonable approximation of the true posterior.

4.2 Model Calibration in Cell Biology

We apply v-CAL to a biological application, which has been previously studied in Plumlee (2017) and Xie and Xu
(2018). The output is the normalized current through ion channels of cardiac cells needed to maintain the membrane
potential at —35 mV. The input variable z is the logarithm of the experiment time rescaled to D; = [0,1]. The
calibration inputs @ € Dy = [0, 10]® control a mathematical model ncen (-, @) of the phenomenon proposed by Clancy
and Rudy (1999). Here it is considered to be an expensive black box with N = 300 runs available, whereas the
number of observations is n = 19. The runs are located in a space filling manner in D; x Dy (Latin hypercube
sampling optimized with maximin distance criterion).

We compare V-CAL with additive and general discrepancy against four competitors. The method “Ls” is a
simple minimization over 0 of the Lo residual error ||Y — flecen(X, 8)||, where # is a surrogate model of e given
X*, T and Z. Its minimization takes 30 seconds and the residual error is 1.31. This method is generally good for
predicting observations from the real process, but it provides no quantification of uncertainty. The method KOH and
PROJECTED refer to the implementation in R language of the KOH model and the Bayesian Projected Calibration
of Xie and Xu (2018). Finally, ROBUST refers to the calibration of the R package RobustCalibration using scaled
Gps (Gu and Wang, 2018).

In Table 3, we report for each method the mean squared error (MSE), Eq@g)(||Y — neen(X,0)|?), where ¢
represents the estimated posterior density of 8. All tuning parameters of the codes are left to default values, and
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Figure 3: Top-left: the prior (black), the analytical posterior (green) and the variational posterior (blue) distri-
butions of # and the actual value used to generate Y (red). Top-right: the true response 7 used to generate the
data set of this example and the locations of the computer runs (dots). Bottom-left: shows Y as horizontal lines
in Dy X Dy. The color of the lines correspond to the values Y;. The dots represent the computer runs Z. The grey
level represent the posterior distribution of 6 (also displayed in the top-left panel). Bottom-right: the posterior
mean of 7.

Table 1: Comparison of calibration error on the Cell Biology calibration problem.

METHOD TIME MSE

PROJECTED 3792 2.52

V-CAL additive 79 1.83
V-CAL general 93 1.55
KOH 3245 5.10
RoBuUsT 361 1.99

all methods are run on the same machine to ensure some fairness in reporting running time (laptop with 4 x 2.50
GHz cores). We see that the MSE values obtained by the methods PROJECTED, V-CAL and ROBUST are significantly
lower than the MSE of KOH. The proposed V-CAL is the fastest among the competitors.

The posterior distributions over @ obtained by the calibration methods we tested are reported in Figure 4. All
methods yield a distribution concentrated around the Ly minimizer (the red dot). However, the distributions are
clearly not similar to each other (except for ROBUST and v-CAL). This could be explained by differences in the
model formulations. Although we ensured that the covariance and mean functions are the same for all competing
methods (Matérn with smoothness 5/2 and constant mean), there are several differences that cannot be matched.
For instance, ROBUST has an additional step in the hierarchy of priors concerning the Lo norm of the discrepancy.
Moreover, the definition of the calibration parameters @ itself differs among methods. In PROJECTED, @ is a
minimizer of a given stochastic process, while other methods follow the KOH definition. Also ROBUST performs a
fully Bayesian inference including hyperparameters, while in the other methods, including ours, they are optimized.
It would be straightforward to allow for a Bayesian treatment of the hyperparameters in v-CAL, but we leave this
for future work. To visualize the results of the calibration process, in Figure 5 we overlay the observations from the
real process with the responses of the computer model e (-, @) when 6 is sampled from its posterior distribution.
All the probabilistic method present a good fit while allowing for quantification of uncertainty in predictions, with
larger uncertainty for models that account for the uncertainty in the hyperparameters. We see how the computer
model output 7 is warped by ¢ in V-CAL with general discrepancy (Equation (2)). In Figure 6 we display the
expected derivative of the warping with respect to the computer model output, i.e. E%, for three values of x.
As the estimated values oscillate around one for every x € Dy, this model confirms that an additive discrepancy
is a sensible assumption. When the estimated ¢(-, z) is exactly the identity, the general discrepancy boils down to
an additive one. This figure also shows how the model with general discrepancy can adapt to data sets with space
dependent behavior. Indeed in this test case the values of n have a very different distribution according to x. If
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Figure 5: Samples of 7cen(+, @), with 8 drawn from its posterior. The grey dots represent the computer runs and
the white dots the real observations.

x is around 0.2, the distribution of the computer runs is very asymmetric, with a heavy tail for high values, and
very short for low value (see the grey dots in Figure 5). On the other hand for higher values of x, say higher than
0.6, the distribution of Z is more symmetric, and looks closer to a Gaussian distribution. This corresponds to the
warping observed in Figure 6, where 7 gets its output warped and concentrated asymmetrically toward lower values
for x = 0.2, while for x = 0.6 or 1, its Gaussian output is almost left untouched.

4.3 Model Calibration for Complex Response

We deal now with a case-study with locally non-smooth response of the computer model, for which a stationary
GP is generally inadequate. The computer model is a simulator of the effects of underground nuclear tests on
radionuclide diffusion into aquifers at the Yucca Flats in the United States (Fenelon, 2005). We take the same data
set as generated by a script in the supplementary material of Pratola and Higdon (2016), which is available online,
with dy = 2, dy =6, n =10 and N = 17600.

In Pratola and Higdon (2016), the size of the dataset as well as nonstationary modeling is handled with a sum-
of-trees regression. We carry out calibration using v-CAL with a two-layer DGP emulator for the computer model
to showcase the ability of a more complex emulator to capture the nonstationarity that characterizes this problem.
We therefore compare vV-CAL with a shallow GP emulator. The implementation details on the initialization can be
find in the supplement. Furthermore, we compare against the modularized method with Local Approximate GPs
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(LAGP) of Gramacy et al. (2015).

In Figure 7, we display the posterior over the function f(-,0) modeling the real observations. We observe that
only the deep variational calibration method and the sum-of-trees approach manage to reproduce the nonstationary
nature of the data set by capturing the “spike” characterizing one of the observations.

4.4 Data Set Size Scalability

We now showcase the scalability of V-CAL to a large calibration problem in 8 dimensions with one million computer
runs, and 100, 000 real observations. We use the borehole function nuy, (z,t), & € [0,1]° ¢ € [0, 1]?, which is a widely
used function in the literature of computer experiments. The discrepancy function is a rational function (as e.g. in
Gramacy et al. (2015)) (see supplement for details). We are interested in retrieving a randomly chosen true value
0 = [0.089,0.308,0.372] . The locations X, X* and T are generated with Latin hypercube sampling. To generate
Y, a white Gaussian noise & of standard deviation oy, = 5 x 1072 is added: y; = n(x;, 0) + 6(x;) + &;.

We build a shallow v-CAL model with additive discrepancy as described by Equations (1)(3)(4). The covariance
functions for the centered Gps 7 and § are isotropic Gaussian approximated by 100 random features.

Concerning the sum-of-trees calibration, a sensible computation budget would be to set 2000 posterior samples
plus 10000 for burn-in, with 1000 tree cutpoints. However, this corresponds to one month of computation on our
computers, so we divided the sampling budget by 5, and set 100 cutpoints, keeping all other default parameters
untouched.

We did not compare with the modularized calibration using LAGP, as the current implementation in R does not
support large amount of real observations. This does not question the relevance of the method, which could be
fixed by using a scalable GP for the discrepancy.

We evaluate the performance by comparing the posterior of @ with the truth (Figure 8) and by evaluating the
MSE error between the computer model and observation from the real process Eqg)(||Y — non(X,0)||?) (Table 2).
V-CAL provides the best performance both in retrieving @ and MSE, and it is the fastest by far.



Table 2: Results of calibration on a large data set

CALIBRATION TIME (h) MSE
None (unif. samples on D) 0 0.32
V-CAL 1.4 0.03
Sum-of-trees 132.4 0.14
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Figure 8: Posterior distribution of 8 on a large data set (black: truth, blue: v-CAL, green: sum-of-trees).

5 CONCLUSIONS

The KOH model and inference in Kennedy and O’Hagan (2001) offers a classical framework to tackle calibration
problems where quantification of uncertainty is of primary interest. In this paper we proposed a number of im-
provements over the KOH calibration model and inference.

From the modeling perspective, we cast the KOH calibration model as a special case of a more general DGP model,
where the latent process modeling the real observations is a warped version of the emulator of the computer model.
In the experiments, we show that this general calibration model retains the possibility to reason about uncertainty
in the mismatch between the computer model and the real process. Furthermore, the proposed approximation of
GPs and DGPs with random features and inference through variational techniques gives us a number of advantages,
namely the possibility to extend to the use of DGPs to emulate complex computer model outputs, and scalability
as demonstrated in the experiments. Crucially, this yields an extremely practical calibration approach that can be
implemented using modern development frameworks featuring automatic differentiation.

We are currently investigating the issue of non-identifiability in the context of v-CAL. We are also extending
V-CAL to handle cases where the uncertainty in the model can be used to guide the incremental design of the
experiment. Finally, we are investigating the application of vV-CAL to other large-scale calibration problems in
environmental sciences, where the KOH model and related calibration methodologies are usually not the preferred
choice due to its limited scalability.
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Appendix

A Borehole objective and discrepancy functions

The objective function used in section 4.4 is defined for all z € [0, 1]® and ¢ € [0, 1], with
2T, (Hy — Hy)

In(r/ry) (1 + m + %) ’

2(102% + 423)
50129 + 10’

Non (T, t) =

(5bh(iL') =

with T, = x1 (115600 — 63070) + 63070, H, = x5(1110—990)+990, H, = x3(820—700)+ 700, L = x4(1680— 1120) +
1120, K., = 25(12045—9855)+9855, ry, = ¢1(0.15—0.05)+0.05, r = £5(50000—100)+ 100, T} = t3(116—63.1)+63.1.

B Initialization of variational parameters in v-cal for the Radionuclide
model

We list in the following table the settings of the V-CAL models used for the experiments of the section 4.3.

Table 3: Radionuclide Model: Initial Values for the v-CAL models
PARAM. SHALLOW DEEP

Eq(e)(g) %[LL”T %[l’lal]T
vary(g)(0) sl 1,17 FlL,1,17
oy 1072 1072
o, 1073 1073
Ay, As 201 201
Oy, 05 1, 1—10 1, 1—10
Alayer 7 (Z) 2Id1 +do
Olayer i Q) 1
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