Estimating the Reputation of Newcomer Web Services Using a Regression-Based Method

Okba Tibermacine 1 Chouki Tibermacine 2 Foudil Cherif 1
2 MAREL - Models And Reuse Engineering, Languages
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : In this paper, we propose a novel method to estimate the initial reputation values of newcomer web services. In fact, the reputation of web services is one of the criteria used for recommending services in service-oriented computing environments. The lack of evaluating the initial reputation values can subvert the performance of a service recommendation system making it vulnerable to different threats like whitewashing and Sybil attacks, which negatively affect its quality of recommendation. The proposed method uses Quality of Service (QoS) attributes from a side, and reputation values of similar services from the second side, to estimate the reputation values of newcomer services. Basically, it employs regression models, including Support Vector Regression, in the estimation process of the unknown reputation values of newcomers from their known QoS values. We demonstrate the efficiency of the method in estimating the reputation of newcomer services through statistical evidences gathered from experimentations conducted on a set of real-world web services.
Type de document :
Article dans une revue
Journal of Systems and Software, Elsevier, 2018, 145, pp.112-124. 〈10.1016/j.jss.2018.08.026〉
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01905901
Contributeur : Tibermacine Chouki <>
Soumis le : vendredi 26 octobre 2018 - 11:30:08
Dernière modification le : jeudi 8 novembre 2018 - 01:14:38

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Okba Tibermacine, Chouki Tibermacine, Foudil Cherif. Estimating the Reputation of Newcomer Web Services Using a Regression-Based Method. Journal of Systems and Software, Elsevier, 2018, 145, pp.112-124. 〈10.1016/j.jss.2018.08.026〉. 〈hal-01905901〉

Partager

Métriques

Consultations de la notice

13

Téléchargements de fichiers

10