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Abstract 

This study deals with new integrated systems for power electronic applications including wide-band 

gap semiconductors. The integration of Silicon carbide (SiC) components provides new perspectives 

such as higher temperature operating points than conventional Silicon (Si) semiconductors. The 

present work intends to study the electro-thermal behaviour of an integrated buck converter composed 

of a Silicon IGBT (Insulated-Gate Bipolar Transistor) and a Silicon carbide diode. An analysis of local 

heat sources due to Joule effect and compact thermal model of the assembly are proposed to predict 

local temperature of power electronic components.  

Introduction 

The emergence of wide-band gap semiconductors allows to design electronic power modules with 

high compactness and high power density. Indeed, the maturity level of specific components such as 

those made of Silicon carbide (SiC) and Gallium nitride (GaN) has strongly increased. Nowadays, 

they may be used for high integrated industrial applications. In order to optimize the overall 

integration, higher temperature operating points than for conventional Silicon (Si) semiconductors are 

considered [1]. Consequently, new constrains appear and become critical for power electronics 

assemblies. Several studies aim at identifying failure modes or critical interfaces [2], [3]. In this field 

of research, knowledge of the power module operating temperature and even more the temperature 

experienced by semiconductor devices is of strong interest [4]. 

 

Given the difficulties to obtain full controlled SiC semiconductors at low prices, this technology seems 

to be intended for high voltage applications. On the contrary, uncontrolled SiC semiconductors are 

already easily accessible and allow to design efficient and optimized conversion functions [5]. Joint 

use of a classical controlled Si switch and an uncontrolled SiC switch may induce disparities, 

including thermal ones, in such hybrid assemblies. The main purpose of these study is to intend to 

study the thermal behaviour of an integrated buck converter composed of a Silicon IGBT and of a 

Silicon carbide diode. First of all, the characteristics of the electric system are described. Then, a 

complete theoretical analysis of Joule losses in the different components of the assembly is proposed 

regarding electric operating point and given geometry and materials. Finally, a thermal model linked 

to Joule losses is developed and simulation results are provided. 

Electric system description 

The considered specific integrated function is completed with an external command circuit linked with 

specific IGBT drivers. The signal experienced by the gate of the IGBT is realized thanks an open loop 

using a constant duty cycle α. The electrical load of the buck converter is modeled by a constant 



current source Iload. All tests will be performed at low voltage level and nominal current to ensure high 

thermal dissipation. Figure 1-a illustrates the electric operating diagram and figure 1-b shows the 

related power electronic assembly. It can be noticed that the power electronic assembly is not 

encapsulated using a dielectric polymer or an external case in order to simplify thermal models. Power 

electronic chips are brazed using a Tin-Copper-Silver (Sn-Cu-Ag) alloy on a Silicon nitride Si3N4 

substrate covered by Copper power tracks. A thin layer of Gold is added on the Copper tracks as a 

protection against corrosion. 

 
(a)                                                                          (b) 

Fig. 1: Studied electric system 

 

The chopper converter is supplied by a constant adjustable voltage source and the current source load 

is composed of a series resistance R and inductance L. 

 

Load current ripple 
 

In this section, it has to be considered that the voltage drops in the semiconductor switches are 

negligible regarding input voltage. Moreover, the converter is supposed to operate in steady state 

conditions. Furthermore, assuming that the switching period T=1/f of the converter is lower than the 

time constant of the electrical load, and that the converter operates in continuous conduction, the 

amplitude of the current ripple in the load may be expressed by (1) where Iload is the average load 

current. 
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Given (1), the maximum value of the ripple current is obtained when the duty cycle is 0. 

Consequently, the maximum ripple current is equal to (RIload)/(Lf). It may be demonstrated that the 

chopper always operates in continuous conduction if relation R<Lf is verified. 

 

Root Mean Square (RMS) current  
 

Thermal Joule losses are determined by the value of the RMS current in the load. For a switching 

period, let us consider the current load iload(t) as the summation of a constant part Iload and an 

asymmetrical triangular oscillating component with magnitude of ∆Iload (2). 
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Using (2), it is demonstrated that RMS value of the current Iload, rms expresses as follows (3). 
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Thus, the RMS load current is approximated by its average value Iload. Indeed, resulting error between 

the RMS current and the previous approximation is then provided by (4). The maximum error is 

reached for α=0. 
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System parameters  
 

In this study, the load current is set to 8A whatever the duty cycle. It is obtained by acting on the 

supply voltage E. The load resistance equals R=1Ω and the load inductance is L=3mH. The switching 

frequency is set to f=1000Hz. Regarding (1), the maximum current ripple is ∆Iload=2.6A for α=0. It is 

concluded that the chopper converter always operates in continuous conduction in steady state. 

 

Moreover, regarding (3), the relative error between approximated RMS and averaged currents does not 

exceed 0.5% as illustrated in figure 2. This study is consistent with the highest oscillations of the load 

current obtained when the duty cycle tends to 0. So it will be considered in the following that RMS 

load current is equal to the average load current. 

 

 
Fig. 2: Relative error on RMS load current 

Study of semi-conductors 

Voltage drops in semiconductors   
 

In case of forward conduction of an IGBT or a diode, semiconductors are modeled by a cut-in voltage 

source associated in series with a bulk resistance [6]. Thus, during conduction stage, voltage drops in 

semiconductors are expressed by (5). 
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Regarding the semiconductors used in the system, voltage drops are experimentally determined 

following v(i) measurements in conduction state, for several current values. Results are given in figure 

3. 

 
         (a) – Si IGBT characteristics                                (b) – SiC diode characteristics 

Fig. 3: Semiconductors characteristics 

 

This leads to the following values: 

• vce, sat=0.847V 

• Rds, on=0.113Ω 

• Vd0=0.875V 

• Rd0=0.0893Ω 

 

Power losses in semiconductors    

Conduction power losses 

The power losses in semiconductors during conduction time are estimated through the integral of the 

product between voltage drop and current over a switching period [7]. It is obvious that the IGBT is 

switched ON during the time [0; αT] and diode is ON during time [αT; T]. Finally, conduction losses 

in IGBT (resp. diode) are expressed in (6) (resp. (7)). 
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Switching losses 

For the calculus of switching losses, current increase and decrease in semiconductors are considered to 

be linear during switching time [7]. Switching losses appear in IGBT due to controlled commutations. 

Power losses during turn-on time ton are mainly due to the simultaneous presence of voltage and 

current in the component and to the charging of internal capacitance Coss. The considered current takes 

into account the load current and the reverse recovery current of the diode Irm. Note that effects due to 

parasitic inductance and neglected. During turning-off time toff, switching losses in the IGBT are only 

due to the simultaneous presence of voltage and current in the component. 

 

Finally, switching losses in diode only occur during turn-off due to reverse recovery current. It takes 

into account the integral of current Qrr when voltage appears in the component. Expressions (8) 

summarize the three cases of switching losses previously described. 
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Diode and IGBT losses  

Equations (6), (7) and (8) allow to compute power losses in semiconductors regarding operating 

conditions. Figure 4 illustrates the power losses regarding duty cycle α. 

 

 
Fig. 4: Power losses in semiconductors 

 

Based on such results, a linear approximation of power losses is expressed in (9). 
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The power losses of the IGBT when the duty cycle tends to 0 corresponds to the switching losses since 

no current flows through the component. Similarly, the limit case where the diode is not submitted to 

any current (equivalently, when the duty cycle approaches 1) provides the switching losses within this 

component. It can be seen that switching losses in the diode are lower than those in the IGBT. This 

stands in agreement with the uncontrolled characteristics of the diode switching and also with the 

technological difference between these two components. 

Moreover, it seems that such a difference in the technology of semiconductors also leads to distinct 

power losses dependency regarding duty cycle. This may be explained by the lower on-state resistance 

of the SiC diode, which induces a reduction in conduction losses. 

 

Total power losses and efficiency    
 

In order to demonstrate the overall efficiency of our integrated assembly, complementary studies about 

losses of passive elements are expressed. Passive elements of the chopper converter are defined as 

power tracks, Aluminium wire bondings and brazing. Power losses in these elements are only due to 

Joule effect. Electric resistance R of materials are evaluated through their own resistivity ρ, their 

length l and section S (10). Moreover, the RMS current in each passive element is set either to the 

RMS current in the IGBT (
loadI.α ) or in the diode (

loadI.1 α− ). 
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Considering all power losses in the studied converter, the efficiency of electric conversion may be 

estimated. It can be established from the model that the overall efficiency is around 82.4% ± 0.5% 

along the whole range of duty cycle. Experimental measurements indicates an efficiency of 83.5% for 

α=0.5 leading to a validation of the previous losses study. 

Thermal model  

Previous power losses model leads to local heat production in the system. Consequently, a thermal 

model of the converter, linked to heat sources, has to be established for local component temperature 

monitoring. 

 

Electro-thermal analogy    
 

In order to model the thermal behaviour of the converter, the differential form of Fourier's law of 

thermal conduction is considered (11) [8]. 
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where: 

• 

→

ϕ  is the heat flux density 

• k is the thermal conductivity 

• T is the temperature 

  

This behaviour is similar to the electrical one if the Ohm's law is under consideration. Indeed, 

equivalent thermal parameters are defined by using analogy as given in table I [9]. 

Table I: Electro-thermal analogy  

Thermal element   Electrical element   

Temperature (K) Electric potential 

(V)   

Thermal flux (W) Current (A)      

Thermal resistance (K/W) Resistance (Ω)      

Heat capacity (J/K) Capacity (F)      

 

For the material set used, thermal parameters, resistance Rth and capacity Cth, are evaluated using (12) 

[10]. Moreover, link with ambient temperature is achieved with convection resistance Rcv. 

 

Sh
R

CVC

S

l
R

cv

p

.

1

..th

th

=

=

=

µ
λ       (12) 

 

where: 

• l is the length of the thermal path in m 

• λ is the thermal conductivity in W.K
-1

.m
-1

 

• S is the cross section of the thermal path in m
2
 

• µ is the volumetric mass density of the material in kg.m
-3

 



• V is the volume of the material in m
3
 

• Cp is the heat capacity per mass in J.K
-1

.kg
-1

 

• h is the coefficient of convection in W.K
-1

.m
-2

 
 

 

Elementary thermal models     
 

Due to the various geometry and thermal behaviour of the designed components, several thermal 

models are designed. They will be finally linked to produce an overall thermal model connected to 

electrical inputs. 

One dimension model  

Let’s consider a one dimension system that conducts thermal flux. A heat source is included in the 

system. The associated electro-thermal model is depicted in figure 5-a. The heat source and heat 

capacity reflects a global behaviour of the system. Moreover, convection effects are also considered 

and applied. As a contrary, thermal resistances depict local behaviour by given temperature in a 

specific location that may be selected by setting values of resistances. Note that the sum of local 

thermal resistances equals the total thermal resistance of the system in the considered dimension. 

This model is suitable for elements of the chopper converter such as bonding wires due to the ratio 

between their length and their section. 

Three dimensions model  

The three dimensions thermal model is an extension of the one dimension model. The difference lies 

in the position of convection resistance. Indeed, heat transfer related to convection is applied on 

surfaces. Consequently, convection resistance are linked (if applicable) on external nodes of the model 

as illustrated in figure 5-b. This model is suitable for power tracks, power chips, substrate and brazing. 

 

           
  (a) – One dimension thermal model                   (b) – Three dimensions thermal model 

Fig. 5: Electro-thermal elementary models 

 

Thermal model of the chopper converter     
 

In order to build the thermal model of the whole converter, it is necessary to define cells thermally 

linked together. These cells are composed of several materials dispatched in several layers. Each 

material is represented by a three dimension thermal model. According to thermal losses study, heat 

source are placed on the different models if necessary. 

 

Regarding chopper converter geometry in figure 1-b, twelve thermal cells are defined as presented in 

figure 6-a. They are delimited by dot lines. Moreover, three cells are also defined for wire bonding 



connections. Figure 6-b indicates how is built the thermal model of the cell which concerns the IGBT. 

It is thermally linked to adjacent cells by substrate, copper tracks and wire bondings. It can be noticed 

that convection effects are neglected on cross section of copper tracks, IGBT and brazing. 

 

           
(a) – Thermal cells definition                                      (b) – Thermal model of IGBT cell 

Fig. 6: Thermal model of the chopper converter 

 

Simulation results     
 

Thermal elevation of power chips is computed regarding duty cycle α at constant load current Iload=8A 

using heat dissipations previously determined. Simulation results are given in figure 7. Semiconductor 

temperature is compared to ambient one to obtain thermal elevation. It can be seen that thermal 

elevation of IGBT (resp. diode) increase (resp. decrease) with duty cycle as well as heat losses. 

Moreover, in figure 7, it seems that temperature elevation of components is not strictly correlated with 

heat source analysis provided in figure 4.This may be due to the geometry of the assembly. Indeed, 

IGBT chip is surrounded by Copper tracks that facilitate thermal transfer from the power chip to the 

environment. Finally, it may be concluded that geometry of assemblies has to be strongly studied for 

cooling systems design and temperature operating point of power semiconductors. Indeed, this study 

could allow to determine and optimize leading geometry parameters inducing Joule losses such as 

conductions paths. 

 

 
Fig. 7: Thermal elevation of semiconductors 

 

Conclusion 

In this work, heat sources linked to Joule effect losses has been identified. The interest of a hybrid 

assembly between a Si controlled component and SiC un-controlled component within a buck 

converter has been demonstrated regarding overall efficiency. Indeed, the use of a SiC diode leads to a 

decrease in the overall Joule losses of the assembly, allowing a clear benefit in the design of the heat 

dissipation elements. Moreover, a thermal model based on geometry, heat source locations, physical 

links and materials properties has been built. This model allowed to determine temperature elevation 

in operating conditions of the different elements of the converter, especially of power chips. 

Further works will deal with accurate electrical measurements in order to characterize the dissipated 

energy during switching of the IGBT and diode. The proposed thermal model may be used to obtain 



the thermal distribution along elements such as wire bonding to derive design criteria. These thermal 

studies will allow to examine the dissipation and cooling systems and to optimize power structures and 

their ageing under electro-thermal stresses. Finally, the use of causal thermal model may lead to define 

an observer to estimate inner temperature of power chips using external measurements. 
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