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HIGHLIGHTS

e We model the hydrodynamics and mass transfer into a bubble.

o The effect of the Schmidt and of the internal Reynolds numbers on mass transfer is investigated.
o A predictive equation for the Sherwood number in terms of Schmidt and Reynolds numbers is derived.

ABSTRACT

A numerical study has been conducted to investigate the mass transfer inside a spherical bubble at low to
moderate Reynolds numbers. The Navier-Stokes and diffusion—convection equations were solved nu-
merically by a finite difference method. The effect of the bubble Schmidt number (over the range 0.1 <
Scq<5) and of the internal Reynolds number (over the range 0.1 <Rey< 13) on mass transfer is in-
vestigated. The results show that the mass transfer is strongly dependent on the Reynolds number and
the Schmidt number. From the numerical results, a predictive equation for the Sherwood number in
terms of the Schmidt number and the Reynolds number is derived.

1. Introduction

The understanding of heat or mass transfer in moving bubbles
or drops is important for different physical problems dealing with
waste water treatment, distillation, bubble column reactors, sol-
vent extraction, sedimentation of particles, spraying and so on.
Various researchers investigated analytically or numerically flow
and heat or mass transfer from a bubble (Clift et al., 1978; Sadhal
et al., 1996; Chhabra, 2006; Dani et al., 2006; Takemura and Yabe,
1998; Saboni et al., 2007; Juncu, 1999; Legendre and Magnaudet,
1999; Lochiel and Calderbank, 1964) at low to moderate Reynolds
numbers. A large amount of studies have considered mass transfer
into bubbles or drops at creeping flow (Clift et al., 1978; Sadhal
et al., 1996; Chhabra, 2006; Johns and Beckmann, 1966; Watada
et al., 1970; Oliver and Chung, 1986; Juncu, 2001) but less attention
has been paid to the mass transfer into bubbles at moderate
Reynolds numbers (Oliver and Chung, 1986; Juncu, 2001; Oliver

and De Witt, 1995; Colombet et al., 2013; Juncu, 2010). By as-
suming molecular diffusion and neglecting the continuous phase
resistance, Newman (1931) developed an analytical solution valid
for stagnant spherical bubbles or drops (Pe=0). The instantaneous
Sherwood number is given as
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where 7 is the dimensionless time z = Dt/a* where D is the dif-
fusivity, a is the bubble radius and ¢ is time.

For a fluid sphere in a creeping flow (Re—0) with Pe— co,
Kronig and Brink (1950) assumed that the concentration/tem-
perature during the heat/mass transfer was constant, along a given
streamline at a given time. Using the Hadamard-Rybczynski (Ha-
damard, 1911; Rybczynski, 1911) solution for the fluid flow field,
they developed an asymptotic expansion for the energy equation.
Two new coordinates were chosen to solve the conduction-con-
vection equation: a coordinate coinciding with the Stokes flow
streamlines and a coordinate perpendicular to these streamlines.



With the new coordinate, Kronig and Brink (1950) obtained an
analytical solution:
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where the coefficients A, and A, are given in (Colombet et al.,
2013; Lochiel and Calderbank, 1964).

For the case of intermediate Peclet number values, numerical
solutions were obtained by Johns and Beckmann (1966) and Wa-
tada et al. (1970), who used the flow fields described by the Ha-
damard and Rybczinski analytical solutions. At higher Reynolds
numbers numerical solutions of the Navier-Stokes and diffusion—
convection equations have been obtained by many authors (Chen,
2001; Feng and Michaelides, 2001; Saboni et al., 2010, 2011). The
numerical results show that the flows inside and outside the
sphere significantly influence the mass transfer. Most of these
investigations were in fact motivated by an interest on mass
transfer into drops rather than mass transfer into bubbles. Few
studies have been devoted to mass transfer into bubbles at mod-
erate and large Reynolds numbers (Oliver and De Witt, 1995; Co-
lombet et al., 2013; Juncu, 2010; Zaritzky and Calvelo, 1979). For
instance, Juncu (2010) gives a detailed analysis of the numerical
solving of the unsteady heat/mass transfer inside a circulating
sphere in a creeping flow and in moderate Re numbers flows. The
influence of the Pe and Re numbers on the heat/mass transfer rate
was investigated for three fluid—fluid systems (gas bubbles in li-
quids, liquid drops in another immiscible liquid and liquid drops in
gases). The results obtained for the liquid-liquid and liquid in
gases systems are useful in practice. On the contrary, the results
for the bubbles in a liquid at large Peclet number, should be used
with caution. Indeed, a fluid sphere with a Reynolds number equal
to one and a Peclet number equal to ten thousand requires a
Schmidt number equal to ten thousand (Pe;=Re;*Sc,). Such large
Schmidt number, is valid for the liquid phase but not for the gas
phase where the Schmidt numbers are considerably smaller. It
seems from the studies (Oliver and De Witt, 1995; Colombet et al.,
2013; Juncu, 2010) that the Sherwood number may exceed the
Kronig-Brink asymptotic value for internal Reynolds numbers
greater than ten.

This study aims to complement earlier studies (Oliver and De
Witt, 1995; Colombet et al., 2013; Juncu, 2010) and to check some
statements focusing on the physical properties encountered in
practice. In the present study, the mass transfer model from a
continuous phase to a spherical bubble was developed. Firstly, we
solve the Navier-Stokes equations, and obtain the flow fields in-
side and outside a spherical bubble. Then we use the velocity
components for solving the diffusion-convection equation and
derive the rate of mass transfer into a spherical bubble.

In previous studies (Oliver and De Witt, 1995; Colombet et al.,
2013; Juncu, 2010) the results were analyzed on the basis of the
evolution of Sherwood numbers only, here the results are analyzed
in terms of streamlines inside and outside the spherical bubble, in
terms of concentrations’ contour maps inside the bubble, and in
terms of variations in the average Sherwood number. This analysis
helps to understand the mechanisms of mass transfer between the
bubble and the continuous medium. Based on our numerical re-
sults a predictive equation for the asymptotic Sherwood number is
proposed for the internal Reynolds number in the range 0.1 < Rey4
<13 and Schmidt number from 0.1 to 5.

2. Governing equations

A clean bubble of radius a is considered. It is moving with
uniform velocity U, in another immiscible fluid of infinite extent

volume. Since the flow is considered axisymmetric, the Navier—
Stokes equations can be written in terms of stream function and
vorticity (y and w) in spherical coordinates r and 6:
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Outside the bubble, the above equations are still valid, but for
numerical reasons the radial coordinate r is transformed via r=e?,
where z is the logarithmic radial coordinate. The results are as
follows:
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All variables are normalized by introducing the following di-
mensionless quantities:

r=rla; o=wa/Uso;y=y'|(Ux a?); Reg=2aUso|vy;
Re; =2 a Uo|v,

where the primes denote the dimensional quantities and sub-
scripts d and c refer to dispersed and continuous phase, respec-
tively, a is the bubble radius, U, is the terminal velocity, v is the
kinematic viscosity, Rey is the Reynolds number based on dis-
persed phase properties and Re, is the Reynolds number based on
continuous phase properties. The relation between Reynolds
numbers, is given by Rey :ReC%. For an air bubble in water, with
palpe = 1/55 and  p, [p. = 1/836, the relation between the two
Reynolds numbers is Re;=Re./15.2.

In terms of dimensionless stream function y, the dimensionless
radial and tangential velocities are given by:

1 o, 1 o
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u=
The boundary conditions to be satisfied are:

i) Far from the bubble (z=zoo), undisturbed parallel flow is as-
sumed: w.=0; y.=0.5e*sin’0.

ii) Along the axis of symmetry (0=0, 7): y.=0, w.=0, yg=0, @y
=0.

iii) Across the interface (z=0 or r=1), the following relations
account for, respectively: negligible mass transfer, continuity
of tangential velocity, continuity of tangential stress (no sur-
face tension variation):
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where y is the dynamic viscosity.

Egs. (3)~(6) subjected to the boundary conditions (i)-(iii) are
solved simultaneously to obtain stream-function and vorticity
values. Once stream function is known, the velocities can be de-
termined from Eq. (7). The concentration distribution can then be
calculated from the diffusion—convection equation. Since the flow
is considered axisymmetric, the unsteady convective mass transfer
into a bubble in spherical coordinates r and @ is described by the
following dimensionless diffusion convection equation:
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where Pe is the Peclet number (Pe = 2aU,/D), a is the bubble ra-
dius, and Cis the dimensionless concentration C = C'/C; where ] is
the concentration at the interface.

The boundary and initial conditions to be satisfied are:

i) Initial condition: C(r, 6, t = 0) = 0.
€ Xl _p
90 lg=0 9 lg=r '

iii) Across the interface: C(r=1,6,t) = 1.

ii) Along the axis of symmetry:

The surface and average Sherwood numbers are computed
from the mass transfer flux from the bubble surface:

2(aC
Shsurface = _=(_]
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The average concentration is computed from the following
equation:
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3. Numerical method

We solve the partial differential equations that describe the
motion inside and outside the bubble and the concentration inside
the bubble, as given by Egs. (1)<(8), together with the above
boundary conditions evaluated numerically by finite difference
approximations. The elliptic stream function equations are solved
iteratively, the parabolic vorticity equations are solved by means of
the Alternating Direction Implicit method. Once stream function is
known, the velocities are then determined from Eq. (7). The con-
vection—diffusion equation is solved by means of the Alternating-
Direction Explicit (ADE) scheme (Barakat and Clark, 1966). Nu-
merical experiments were performed in order to check the grid
independence of the solutions and grid size of 181 x 181 elements
in the dispersed phase and 401 x 181 in the continuous phase (N,
=181, Ny=181 and N,=401) was adopted for grid-free solution
throughout the calculations in the present study. The distance
from the bubble to the edge of the computational domain is 100
diameters for small Reynolds numbers and 12 diameters for higher
Reynolds numbers for which the boundary layer thickness is less.
The validation of the numerical methods used implied two stages:
(1) the checking of the numerical solution procedure concerning
the hydrodynamics around and inside a bubble, and (2) the
checking of the numerical method used for the mass transfer.
Detailed discussions on the accuracy of the solution procedure
employed for the momentum, continuity equations, and diffusion—
convection equation were made elsewhere (Feng and Michaelides,
2001; Saboni et al., 2010).

Before presenting new results on mass transfer into a spherical
bubble, it is essential to validate the present computer code. As
noted earlier, since extensive validation of the numerical method
used here, for a variety of cases such as clean or contaminated fluid
spheres have been reported elsewhere (Saboni et al., 2010, 2011)
only few additional validations for hydrodynamics and mass
transfer into bubbles are presented here. The numerical solution
procedure used in this work has been validated by comparing the
present results with those from the literature. Concerning the
hydrodynamics part, we validate the numerical scheme against
the results of Legendre (2007) who simulated the flow around the
bubble. A correlation based on the best fitting of these numerical
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Fig. 1. Maximum velocity at the bubble interface versus external Reynolds number
of a bubble.

results was proposed to estimate dimensionless maximal velocity,
Unmax/Us at bubble interface as a function of the Reynolds number
(Legendre, 2007):

116 + 3.315./Re. + 3 Re,
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Values of maximal velocity, Upax/Us at bubble interface from
the Eq. (12) are presented in Fig. 1 and compared to those from our
numerical results. From Fig. 1, it is evident that for all Reynolds
numbers it exists an excellent agreement between our results and
those of Legendre correlation (Legendre, 2007). It should be noted
that the good agreement between our results, which are derived
from a coupling between the flow inside the bubble and the flow
outside of the bubble and those of Legendre (2007) based on the
simulation of the external flow only validates the hypothesis that
considers the surface of the bubble as shear free interface. This
hypothesis coupled to the solution of the Navier-Stokes equations
outside the bubble, allows to obtain the velocity fields and drag
coefficients without necessity to know the details of the flow in-
side the bubble. The knowledge of the flow within the bubble is
necessary if one is interested in mass transfer inside it.

We present our numerical results focusing on the physical
properties encountered in practice. The Peclet number is defined
as Peyj=Re;*Scy. At a temperature of 20 °C, the Schmidt number,
the ratio (v/D), is about 1 for gases but it is greater for lower
temperatures. To account for the effect of temperature, the nu-
merical computations have been carried out for Schmidt numbers
ranging from 0.1 to 5. We consider continuous Reynolds numbers
not exceeding 200 which is the highest limit for which the flow
rests axisymmetric and for which an air bubble in water remains
quasi-spherical. Viewed the Schmidt and Reynolds numbers con-
sidered, the results are valid for Peclet numbers less than 65
(Pey < 65).

Concerning the mass transfer part, we validate the numerical
scheme against the results of Juncu (2010). The asymptotic Sher-
wood numbers for a spherical bubble with different Schmidt
number values are compared with those of Juncu (2010) in Table 1,
which shows a good agreement between our results and those



Table 1
Comparison of the present results for the asymptotic Sherwood values with those
from the numerical study of Juncu (2010).

Sc Res=1 Re;=10
Juncu (2010) Present results Juncu (2010) Present results

01 - 6.58 6.59 6.59
0.5 - 6.58 6.93 6.96
1.0 6.58 6.58 7.88 8.00
1.5 - - - 9.38
20 - 6.60 10.51 10.77
25 - - - 12.00
3.0 - 6.64 - 13.01
35 - - - 13.83
4.0 - 6.69 - 14.48
4.5 - 14.99
5.0 6.74 6.76 15.32 15.39

from the previous study cited above. Other numerical simulations
with much larger Peclet numbers (Pe; from 100 to 10°) were
conducted and the obtained numerical results are in good agree-
ment with those of Juncu (2010) which confirms the reliability of
the computer code developed by Juncu (2010). However, these
results do not correspond to a physical reality and are not pre-
sented here to avoid any misinterpretation or confusion.

4. Results and discussion

Fig. 2 shows streamline contours inside and outside a bubble
for different dispersed Reynolds numbers Re;=0.1, 1, 5, 10 and 13
corresponding respectively to continuous Reynolds numbers Re.
=1.52, 15.2, 76, 152 and 197.6. For all Reynolds numbers, the
contour line plots show no flow separation downstream the
bubble. Slight asymmetry is observed between upstream and
downstream regions near the bubble. The internal flow departs
from symmetry due to the effect of the external flow.

The isoconcentrations’ contours inside a bubble for different
dispersed Reynolds numbers (Rez=1, 5 and 10) and a fixed
Schmidt number (Sc;=3) at time 7=0.1, are plotted in Fig. 3. For
Reys=1, the shape of the isoconcentrations’ contours is almost
spherical and the average concentration is 0.77 which corresponds
to the value given by the Newnan equation at time 7=0.1. This

means that transport by convection is very limited and the mass
transfer occurs mainly by diffusion. For the case Rey;=10, the part
of the convective transport increases, and the isoconcentrations’
contours inside the bubble become deformed under the influence
of the internal flow.

Fig. 4 shows the development in time of the concentration
profiles inside the bubble. For short times, the radial concentration
gradients near the surface of the sphere are very high, and mass is
transferred mainly by diffusion similar to a stagnant bubble which
absorbs solute in a radially symmetric shape. With the time, the
convective effects prevail and the internal circulation brings the
solute to the rear of the bubble. At large times, the concentration
profiles inside the bubble become deformed under the influence of
internal circulation. It is to be noted that the concentration profiles
within the bubble fail to follow the streamlines since the Peclet
number is not large enough for the convective transport to be
completely dominant.

Fig. 5 shows the time history of the average Sherwood number
for fixed Reynolds number Re;=1 (Re,=15.2) and a fixed Scq
number (Scy=5). The figure shows that, initially, the Sherwood
number is completely large because of strong concentrations’
gradients between the surface and the interior of the bubble. The
Sherwood number decreases with the time approaching an
asymptotic value. At any time, numerical results coincide with the
Newman analytical solution which implies that for low Reynolds
numbers with Schmidt numbers between 0 and 5, the mass
transfer occurs only by diffusion.

The time history of the average Sherwood number for fixed
Reynolds number Re;=13 (Re.=197.6) and different Schmidt
numbers (Sc;=0.5-5.0) is shown on Fig. 6. At the beginning, the
transfer is due mainly to diffusion but rather quickly the convec-
tion becomes the governing mechanism. Combination of both
diffusion and convection allows the solute to be taken away from
the interface. The Sherwood number decreases with time and
approaches an asymptotic value increasing with the Schmidt
number. For high Schmidt number it is observed that the in-
stantaneous Sherwood number oscillates with decreasing ampli-
tude. These oscillations which were also observed under creeping-
flow conditions (Clift et al., 1978; Rybczynski, 1911) are due to the
circulation inside the bubble.

In order to predict heat or mass transfer into drops or bubbles
for moderate Reynolds numbers using results for small Reynolds

\

-
e ||
|

0

Fig. 2. Stream function contours, inside and outside a bubble for different Reynolds numbers (a) Re4=0.1, (b) Rey=1, (c) Re4=5, (d) Re4=10, (e) Req=13.
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Fig. 3. Concentration contour lines inside a bubble for different Reynolds numbers
and Sc=3 at time r=0.1.

7=0.001
C=0.10

=0.01 7=0.1

C=0.31 C=0.91

Fig. 4. Concentration contour lines inside a bubble as function of time for Re;=13
and Sc=5.
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Fig. 5. Time variation of Sherwood number at Rey=1 (Re.=15.2).
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Fig. 6. Time variation of Sherwood number for different Schmidt number at Re,4
=13 (Re.=197.6).

numbers, Oliver and De Witt (1995) introduced an effective Peclet
number. Juncu (2010) notes the validity of the effective Peclet
number concept for Peqy< 200 on behalf of two systems: liquid
drops in other immiscible liquid and liquid drops in a surrounding
gas. In the case of bubbles, the Oliver and De Witt (1995) effective
Peclet number is reduced to the following expression:

Peer = (1 + 0.4 log(0.3 Rec + 1))Pe (13)

Fig. 7 shows the evolution of our numerical asymptotic Sher-
wood number against the effective Peclet number. The numerical
results show that the asymptotic Sh for different values of Re; and
Pegjr are located on the same curve but deviate from the Clift et al.
(1978) results. This coincides with the findings of Colombet et al.
(2013) and confirms that the Oliver and De Witt (1995) effective
Peclet number concept is not suitable for bubbles.

Table 2 summarizes the asymptotic average Sherwood number
(Sh), obtained from our calculations for the range of parameters
covered Re;=0.1-13 (Re,=1.52-197), and different Schmidt num-
bers (Sc;=0.1-5). This table shows the influence of Re; and Sc; on
the mass transfer. As expected, the Sherwood number increases
with increasing the Schmidt number for fixed Reynolds numbers.
For a fixed Reynolds number, the Sherwood number increases
with the Schmidt number increase. The influence of the Schmidt
number on the mass transfer is more or less important; depending
on the Reynolds numbers. From Table 2 it appears, however, that
the relative difference between the Sherwood values for Sc;=0.1,
Scy=5 is less than 3% for Rey < 1. On the contrary, for Re;=13, the
relative difference can be quite large, approaching 60%. This table
also shows that the asymptotic values of the analytical solution of
Kronig-Brink are never exceeded for spherical bubbles with Rey-
nolds numbers Re; < 13 and Schmidt numbers Scy < 5.

To present the numerical results in a more convenient form we
tried to correlate our numerical results. A correlation of these
numerical which is reduced to the Newman solution for Re;Sc;— 0,
is as follows:

Re 4Scq

Sh =657 + =
8.35 + 0.0125(ReSca)" (14)
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Fig. 7. Asymptotic values of average Sh number as a function of the effective Peclet
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Table 2
Asymptotic Sherwood values for different Schmidt and Reynolds numbers.

Sc Rey

0.1 0.5 1 2 3 5 10 13

0.1 6.58 6.58 6.58 6.58 6.58 6.58 6.59 6.60
0.5 6.58 6.58 6.58 6.58 6.60 6.66 6.96 7.22

1.0 6.58 6.58 6.58 6.61 6.68 6.91 8.00 8.81
1.5 6.58 6.58 6.59 6.65 6.81 7.30 9.38 10.64
2.0 6.58 6.58 6.60 6.71 6.99 7.81 10.77 12.22
25 6.58 6.59 6.62 6.79 7.21 8.41 12.00 13.44

3.0 6.58 6.59 6.64 6.88 7.47 9.06 13.01 14.36
3.5 6.58 6.59 6.67 6.99 7.76 9.72 13.83 15.03
4.0 6.58 6.60 6.69 712 8.08 10.36 14.48 15.53
4.5 6.58 6.60 6.73 7.25 8.43 10.98 14.99 15.89
5.0 6.58 6.61 6.76 7.40 8.78 11.55 15.39 16.16

The Sherwood number values derived by this formula coincide
with those calculated numerically with an error less than 5% for
bubbles with 0.1 <Re; < 13 and 0.1 <S¢y < 5.

5. A note on the steady state flow assumption

In this study as well as those of Clift et al. (1978), Oliver and De
Witt (1995), Juncu (2010) and Colombet et al. (2013), the flow is
assumed to be at steady state. This means that the transitional
phase of flow has negligible influence on the transfer. This as-
sumption is valid for large Schmidt numbers for which the vortex
relaxation time, t,=a?vy, is much shorter than the time for dif-
fusion equilibration, ty=a?/D. To check the impact of this as-
sumption when these time scales are comparable (t,=tg, i.e.
Sc=1), we conducted additional simulations with a transient flow
obtained by adding temporal variation of vorticity in Eqs. (4) and
(6). The time history of the average Sherwood number for fixed
Reynolds number Re;=13 (Re.=197.6) and fixed Schmidt number
Scq=1 is shown on Fig. 8 for steady flow and transient flow. At the
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Fig. 8. Time variation of Sherwood number for Sc=1 and Re ;=13 (Re,=197.6): (m)
Steady flow, (®) transient flow.

beginning, the differences between the Sherwood numbers ob-
tained by both models are very important and the relative error
can reach 80%. Gradually, as time increases, the differences be-
tween both models decline and become negligible for di-
mensionless times greater than about 7=0.001. So the assumption
of steady state flow is valid except during short start-up time.
However, it is obvious that if one is interested in transfer at its
initial phase, unsteady flow model is more appropriate.

6. Conclusions

Mass transfer due to the combined diffusive and convective
mechanisms inside spherical bubbles moving in a stagnant liquid
was modeled in this paper. Modeling is based on the Navier—
Stokes and diffusion—convection equations solved numerically by
the finite difference method. The results show the dependence of
Sherwood number on both Red and Scy; numbers. It is found that
when Re; < 1 the dependence of the rate of mass transfer on the
Schmidt number is very weak. In this case, the results are quite
close to the analytical solution of Newman with an error less than
3%. However, at higher values of Req, both the transient rate of
mass transfer and its asymptotic solution depend strongly on the
value of the Schmidt number. The results also show that the
asymptotic values of the analytical solution of Kronig-Brink are
never exceeded for spherical bubbles with Reynolds numbers Rey
<13 and Schmidt numbers Scy < 5. In order to present the nu-
merical results under a form easier to use, our numerical results
are correlated by an equation. The proposed formula gives the
average Sherwood number values which coincide with those cal-
culated numerically with an error not exceeding 5% for Reynolds
numbers Re; < 13 and Schmidt numbers Sc, < 5. Although current
results provide further insight into the mass transfer within bub-
bles, it should be emphasized that the theoretical and computa-
tional framework developed concerns the internal regime of clean
bubbles. In practice, resistance to diffusive transport may occur in
both phases and the aqueous phase may contain surfactants. The
main perspectives of this work would be to extend the simulations
to take into account such effects.
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