
HAL Id: hal-01905158
https://hal.science/hal-01905158

Submitted on 25 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Almighty Wand
Rémi Brochenin, Stephane Demri, Etienne Lozes

To cite this version:
Rémi Brochenin, Stephane Demri, Etienne Lozes. On the Almighty Wand. Information and Compu-
tation, 2012, �10.1016/j.ic.2011.12.003�. �hal-01905158�

https://hal.science/hal-01905158
https://hal.archives-ouvertes.fr

On the Almighty Wand1

Rémi Brochenina, Stéphane Demria, Etienne Lozesa,b

aLSV, ENS Cachan, CNRS, INRIA, France
bMOVES, RWTH, Aachen, Germany

Abstract

We investigate decidability, complexity and expressive power issues for (first-
order) separation logic with one record field (herein called SL) and its frag-
ments. SL can specify properties about the memory heap of programs with
singly-linked lists. Separation logic with two record fields is known to be un-
decidable by reduction of finite satisfiability for classical predicate logic with
one binary relation. Surprisingly, we show that second-order logic is as ex-
pressive as SL and as a by-product we get undecidability of SL. This is refined
by showing that SL without the separating conjunction is as expressive as SL,
whence undecidable too. As a consequence, in SL the separating implication
(also known as the magic wand) can simulate the separating conjunction. By
contrast, we establish that SL without the magic wand is decidable, and we
prove a non-elementary complexity by reduction from satisfiability for the
first-order theory over finite words. This result is extended with a bounded
use of the magic wand that appears in Hoare-style rules. As a generalisation,
it is shown that kSL, the separation logic over heaps with k ≥ 1 record fields,
is equivalent to kSO, the second-order logic over heaps with k record fields.

Keywords: separation logic, second-order logic, expressive power,
complexity

1. Introduction

Separation logic. Programming languages with pointer variables seldom have
mechanisms to detect errors. An inappropriate management of memory is the
source of numerous bugs and security holes such as buffer overflow attacks,
null pointer dereferences or memory leaks. Prominent logics for analysing
such pointer programs include separation logic [35], pointer assertion logic
PAL [23], TVLA [28], alias logic [6], BI (Bunched Implication) [22] and LRP

Preprint submitted to Elsevier December 29, 2011

(logic of reachable patterns) [39] to quote a few examples. Separation logic
(SL) is an assertion language used in Hoare-like proof systems [35] that are
dedicated to verify programs manipulating heaps. Any procedure mechaniz-
ing the proof search requires subroutines that check satisfiability of formulae
from the assertion language. The main concern of the paper is to analyze the
expressive power of the assertion language and the decidability of its satisfi-
abily problem. Recall that separation logic contains a structural separation
connective and its adjoint (the separating implication −−∗, also known as the
magic wand). Concise and modular proofs can be derived using these con-
nectives, since they can express properties such as non-aliasing and disjoint
concurrency. In this perspective, the models of separation logic are pairs
made of a store (variable valuation) and a memory heap (partial function
with finite domain) that are understood as memory states.

Magic wand and lists. The complexity of the satisfiability, the model-checking,
the validity or the entailment problems for several fragments of separation
logic have been intensively studied since the early days of separation logic
until quite recently [15, 14, 35, 10, 16]. The magic wand connective makes
any of these problems quite difficult to decide (note that these problems are
often equivalent in presence of magic wand). The expressive power of −−∗ is
increased by the first-order quantification: SL with magic wand is known to
be equivalent to a classical propositional logic [30] if first-order quantifiers are
disabled, whereas no adjunct elimination occurs in SL with first-order quan-
tifiers [17, 31]. The same gap exists with respect to decidability: SL without
first-order quantifiers is decidable, but it becomes undecidable if first-order
quantifiers are taken into account [15]. These known results however crucially
relies on the memory model addressing cells with two record fields (undecid-
ability of SL in [15] is by reduction to the first-order theory of a finite binary
relation). But, despite the predominance of the list-manipulating programs
in the case studies of separation logic, the minimality and complexity of SL
with magic wand is not known for memory models with only one record field.

Second-order logic. A natural question about separation logic is how it com-
pares with weak second-order logic (SO) and its fragments. This is a very
natural question for at least three reasons. Firstly, separating conjunction
and its adjoint are essentially second-order connectives (see also a similar
concern on graphs with spatial logics [18]), which clearly makes SL be a
fragment of SO. Secondly, many properties on heaps require second-order

2

logic, for instance to express recursive predicates, or list and tree properties.
Thirdly, SO is known to be a sufficiently expressive assertion language for en-
suring the completeness of the Hoare-Floyd logic, and better understanding
the relationship between SL and SO could serve to derive the completeness of
the proof system of SL.

A first exploration of the relationships between SL and SO can be found
in [26], but Kunczak and Rinard considered a separation logic for arbitrary
first-order structures, and not the standard, finite, functional heap model of
SL. The expressivity of SL with magic wand for lists is thus also an open
question.

Our contributions. In this paper, we address simultaneously the decidability,
complexity, expressive power, and minimality of first-order separation logic
with one selector (record field) with and without magic wand.

We show that first-order separation logic with one selector (called herein
SL) is as expressive as second-order logic over the class of memory states.
As a by product, we get that even in presence of a unique selector, first-
order separation logic is undecidable (solving an open problem stated in [20]).
This is refined by showing that SL without the separating conjunction is as
expressive as SL, whence undecidable too. Our proof also shows that the two
formalisms have the same conciseness modulo logarithmic-space translations.
As a consequence, SL is not a minimal logic, as the magic wand can simulate
the separating conjunction, but it does not have the adjunct elimination.
Moreover, these results generalize to non-linear recursive data structures:
kSL, the separation logic over heaps with k ≥ 1 record fields, is equivalent
to kSO, the second-order logic over heaps with k record fields. Note that we
use the loose version of points-to and as far as we can judge, our results are
dependent on using the loose points-to. We did not investigate in details
which of our results can be adapted to the tight points-to.

The correspondence between first-order separation logic with one selector
and weak second-order logic over the class of memory states is particularly
interesting from a logical point of view. Indeed, it shows that separating
operators are sufficient to express weak second-order quantification; actually
we even show that the magic wand suffices. There are well-known examples
of standard logics that are shown equivalent to standard other formalisms,
such that temporal logics. The celebrated Kamp’s theorem states that the
the popular linear-time temporal logic LTL is as expressive as first-order
logic [24]; here LTL has only the strict until and since operators. This result

3

is refined in [19] where it is shown that unary LTL is as expressive as first-
order logic restricted to two individual variables. Similarly, the automata-
based approach for formal verification stems from the famous result showing
the equivalence between monadic second-order logic and Büchi automata as
far as definability of languages of infinite words are concerned [12]. In this
paper, our pivot logic is weak second-order logic over the class of memory
states.

We also establish that SL without the magic wand is decidable, but with a
non-elementary complexity (this lower bound is obtained by reduction from
satisfiability for the first-order theory over finite words [36], and holds already
with three variables). Decidability is shown by reduction to weak monadic
second-order theory of one unary (total) function that is shown decidable
in [33]. It is worth noting that even though the first-order theory of one
unary function is known to be not elementary recursive [4], we cannot take
advantage of this result since in our models the domain of the unary function
is necessarily finite and finiteness cannot be expressed in most first-order
dialects. As a by-product, we obtain that the entailment problem considered
in [3] for a fragment of separation logic with one selector is decidable. We also
establish that decidability can be obtained with a restricted use of the magic
wand as it occurs in Hoare-like proof systems involving separation logic.

Related work. The closest works to ours are certainly the recent ones on the
decidability of separation logic for lists with data [2] and the work on the
comparison of the expressive power of monadic second-order logic and the
spatial logic for graphs [1]. Although the questions solved in these works do
not overlap the results presented herein, these works adopt a point of view
quite similar to the one of this paper and give a more complete picture of the
topic. More detailed comments are given in related sections of this paper.

The magic wand is rarely considered by the litterature on SL, which our
result may explain from the complexity point of view. The magic wand is
however often behind the scene in recent developments of SL. For instance,
the bi-abduction problem [21] can be seen as a specialized version of the sat-
isfiability problem for SL with magic wand. As a parallel to this work, results
stating either the absence of adjunct elimination or the undecidability of sat-
isfiability for logics including a form of magic wand have been independently
established for boolean BI [27], propositional SL [11], or context logic [13].
The main difference with our work is that the models of these logics include
formal propositional variables that can be used to axiomatize the models in

4

any desired way, whereas we are sticking to the heap model.
As seen previously, heap properties are formalized in various logical lan-

guages [23, 28, 35, 6, 39] and separation logic is just one prominent example
of these logics. However, in this paper we focus on expressive power and de-
cidability issues rather than on verification techniques. Verification methods
and logics for verifying programs with singly-linked lists can be found for
instance in [3, 5, 34]. From another perspective, the relationships between
logics on graphs with separating features and second-order logic can be found
in [18]. Finally, we would like to mention that sabotage modal logics (SML)
considered in [38, 29] have also the ability to modify the model under evalu-
ation by using new logical connectives. So far, we are not aware of any work
relating separation logic and SML.

Plan of the paper. In Section 2, we present the different logical formalisms
used in the paper (separation logic SL and weak second-order logic SO), exam-
ples for properties that can be expressed in such languages and a translation
from SL into SO. In Section 3, we show that SL restricted to the separating
conjunction is decidable with non-elementary complexity. The complexity
lower bound is by reduction from the first-order theory over finite words and
decidability is obtained by a logarithmic-space reduction into weak monadic
second-order theory for one unary function. In Section 4, we extend this de-
cidability result with a restricted use of the magic wand. Section 5 contains
many technical contributions about the expressive power of SL, in particular
we show how to express arithmetical constraints about the memory heap.
These results are essential to show in Section 6 that SO and SL are equiva-
lent in terms of expressivity. This is refined by showing that SL restricted
to the magic wand (called herein SL(−−∗)) is also as expressive as SO (and
SL). In Section 7, we show how the equivalence between separation logic
and second-order logic can be extended to memory cells with k > 1 record
fields. Section 8 contains concluding remarks and open problems for further
investigation.

This paper is a completed version of [8].

2. Preliminaries

In this section, we recall the definition of first-order separation logic with
one selector (record field), called herein SL, and second-order logic over the
same class of structures (called herein SO). We introduce the concept of

5

being at least as expressive as another fragment, and provide examples of
properties that can be expressed in our formalisms. This section ends by
presenting a quite straightforward encoding of SL into fragments of SO over
structures with one unary function.

2.1. Separation Logic and Second-Order Logic
Memory states. Memory states are models for all the logical formalisms we
consider herein. They represent the states of the memory for programs ma-
nipulating lists. Let Loc be a countably infinite set of locations ranged over
by l, l′, . . . that represents the set of addresses. A memory state is composed
of a pair made of a store and a heap. Let Var be a countably infinite set of
(first-order) variables x, y, z, A memory state (also called a model in the
rest of the document) is a pair (s, h) such that

• s is a variable valuation of the form s : Var→Loc (store),

• h is a partial function h : Loc ⇀ Loc with finite domain (heap). We
write dom(h) to denote its domain and ran(h) to denote its range.

Given a finite set X of variables (for instance occurring in a given formula),
we can assume that a model is finite by restricting the domain of the store
to X. The variables in Var can be viewed as programming variables, the
domain of h as the set of addresses of allocated cells, and h(l) as the value
held by the cell at the address l. We write S to denote the set of stores, and
H to denote the set of heaps. A heap h with domain {l1, . . . , ln} is sometimes
represented by the set of memory cells {l1 7→ h(l1), . . . , ln 7→ h(ln)}. Two
heaps h1, h2 are said to be disjoint, noted h1⊥h2, if their domains are disjoint;
when this holds, we write h1∗h2 to denote the disjoint union h1]h2. Given a
memory state (s, h) and a location l we write]l to denote the cardinal of the
set {l′ ∈ Loc : h(l′) = l} (number of predecessors of the location l in (s, h)).
A location l′ is a descendant [resp. strict descendant] of l if there is n ≥ 0
[resp. n > 0] such that hn(l) = l′ (hn(l) is not always defined). In the rest of
the paper, we assume that Loc = Val = N, the value nil can be encoded by
an individual variable in the first-order language.

Formulae in SL and SO. Formulae of first-order separation logic with one
selector SL are defined by the grammar below:

φ := ¬φ |φ ∧ φ | ∃x φ | x ↪→ y | x = y |φ ∗ φ |φ −−∗ φ

6

The connective ∗ is called separating conjunction whereas the adjoint opera-
tor −−∗, the separating implication, is usually called the magic wand. We will
make use of standard notations for the derived connectives ∀,∨,⇒,⇔. We
write FV(φ) to denote the set of free variables occurring in φ.

We write SL(∗) [resp. SL(−−∗)] to denote the restriction of SL without the
magic wand [resp. without the separating conjunction].

In order to define formulae in SO, we consider a family VAR = (VARi)i≥0

of second-order variables, denoted by P, Q, R, . . . that will be interpreted as
finite relations over Loc. Each variable in VARi is interpreted as an i-ary
relation. An environment E is an interpretation of the second-order variables
such that for every P ∈ VARi, E(P) is a finite subset of Loci. Since we require
finiteness of models, the version of second-order logics we shall consider is
usually called weak.

Formulae of (weak) second-order logic SO are defined by the grammar
below:

φ := ¬φ |φ ∧ φ | ∃x φ | x ↪→ y | x = y | ∃P φ | Q(x1, . . . , xn)

where P, Q are second-order variables and Q ∈ VARn. We write MSO [resp.
DSO] to denote the restriction of SO to second-order variables in VAR1 [resp.
VAR2]. As usual, a sentence is defined as a formula with no free occurrence
of second-order variables. Let us mention that the equality x = y could be
also encoded as by Leibnitz formula ∀P.(P(x)⇔ P(y)).

Satisfaction relations for SL and SO. The logics SL and SO share the same
class of models, namely the set of memory states. The satisfaction relation
for SO is defined below with argument an environment E (below P ∈ VARn).

(s, h), E |= ∃P φ iff there is a finite subset R of Locn,
such that (s, h), E [P 7→ R] |= φ

(s, h), E |= P(x1, · · · , xn)
iff (s(x1), . . . , s(xn)) ∈ E(P)

(s, h), E |= ¬φ iff not (s, h), E |= φ
(s, h), E |= φ ∧ ψ iff (s, h), E |= φ and (s, h), E |= ψ
(s, h), E |= ∃x φ iff there is l ∈ Loc such that (s[x 7→ l], h), E |= φ
(s, h), E |= x ↪→ y iff h(s(x)) = s(y)
(s, h), E |= x = y iff s(x) = s(y)

As usual, when φ is a sentence, we write (s, h) |= φ to denote (s, h), E |= φ
for any environment E since E has no influence on the satisfaction of φ. The

7

satisfaction relation for SL is defined without any environment (or equiva-
lently with no influence of the environment). The clauses that are specific to
SL are the following ones:

(s, h) |= φ1 ∗ φ2 iff there are two heaps h1, h2 such that
h = h1 ∗ h2, (s, h1) |= φ1 and (s, h2) |= φ2

(s, h) |= φ1 −−∗ φ2 iff for all heaps h′⊥h,
if (s, h′) |= φ1 then (s, h′ ∗ h) |= φ2.

Consequently, −−∗ is a universal modality whereas ∗ has an existential flavour.
Validity and satisfiability problems are defined in the usual way. The connec-
tive −−∗ is the adjunct of ∗, meaning that (φ∗ψ)⇒ ϕ is valid iff φ⇒ (ψ −−∗ ϕ)
is valid. Observe that ∗ and −−∗ are not interdefinable since typically the for-
mula ((φ∗ψ)⇒ ϕ)⇔ (φ⇒ (ψ −−∗ ϕ)) is not valid. This shall be strengthened
in the sequel by establishing that SL(∗) is decidable whereas SL(−−∗) is not.

Septraction. We also introduce a slight variant of the dual connective for the
magic wand, also called the septraction: φ −−∗¬ ψ is defined as the formula
¬((φ) −−∗ (¬(ψ))). It is easy to check that (s, h) |= φ1 −−∗¬ φ2 iff there is h′ ⊥ h
such that (s, h′) |= φ1 and (s, h∗h′) |= φ2. Septraction is nothing else than an
existential version of magic wand. Hence, the septraction operator is quite
natural since it states the existence of a disjoint heap satisfying a formula
and for which the addition to the original heap satisfies another formula.

Adding the constant null. The current version of SL does not contain the
constant null interpreted by nil such that any h is undefined for the value
nil. Any formula φ possibly with the constant null can be easily translated
into a formula φ′ of SL such that φ is satisfiable iff φ′ is satisfiable. Indeed,
φ′ can be defined as ∃ null (¬∃z null ↪→ z) ∧ φ, where null is understood
as a distinguished variable. In the sequel, we might use the constant null
without further notice.

Here are some lemmas that shall be used in the sequel.

Lemma 2.1 Let (s, h) be a model, E be an environment, and ψ be a formula
in DSO. Let l, l′ be locations such that

• l /∈ dom(h) ∪ ran(h).

• l′ /∈ dom(h) ∪ ran(h) ∪ {s(x) : x ∈ FV(ψ)}.

8

• l′ is not in the finite graph of E(P) for any second-order variable P

occurring in ψ.

Then (s[l← l′], h), E [l← l′] |= ψ iff (s, h), E |= ψ.

In the above statement, s[l ← l′] [resp. E [l ← l′]] denotes the store
obtained from s [resp. the environment obtained from E] by replacing every
occurrence of l by l′ (in the range). Its proof is by simple induction on the
structure of ψ.

Lemma 2.2 For all s, h, E, s′, ψ, if s| FV(ψ) = s′| FV(ψ), then (s, h), E |= ψ iff
(s′, h), E |= ψ.

The proof of Lemma 2.2 is also by an easy verification.

Let F and F′ be two fragments of SL or SO. We say that F′ is at least as
expressive as F (written F v F′) whenever for every sentence φ ∈ F, there is
φ′ ∈ F′ such that for every model (s, h), we have (s, h) |= φ iff (s, h) |= φ′.
We write F ≡ F′ if F v F′ and F′ v F. A translation from F to F′ is a
computable function t : F→ F′ such that for every sentence φ ∈ F, for every
model (s, h), we have (s, h) |= φ iff (s, h) |= t(φ).

Arithmetical constraints. Observe that SL does not contain explicitly arith-
metical constraints as in [25, 32, 7]. However, in Section 5 we show how to
compare number of predecessors. Similar developments can be performed to
compare lengths of lists but this will come as a corollary of the equivalence
between SL and SO.

Another model with data. A more realistic approach to model lists consists in
considering two selectors. However, SL behaves as separation logic with two
selectors for which one selector is never used (separation with one selector
can only speak about the structure and not about data values). Indeed, we
already know that an unrestricted use of the two selectors leads to undecid-
ability. In the paper, we show that even SL satisfiability/validity is already
undecidable. It is open how to refer to data values while preserving the decid-
able results for SL fragments. Possible directions consist either in imposing
syntactic restrictions (like the guarded fragment for classical predicate logic)
or in forbidding a direct access to data values but allowing predicates of the
form “there is a list from x to y with increasing data values”, see e.g. [2].

9

2.2. A Selection of Properties
We present below a series of properties that can be expressed in SL(∗).

• The value of x is in the domain of the heap: alloc (x) , ∃y x ↪→ y.

• The domain of the heap is restricted to the value of x, and maps it to
that of y: x 7→ y , x ↪→ y ∧ ¬∃y (y 6= x ∧ alloc (y)).

• The domain of the heap is empty: emp , ¬∃x alloc (x).

Predecessors and special nodes. A predecessor of the variable x in the model
(s, h) is a location l such that h(l) = s(x). There are formulae in SL(∗),
namely]x ≥ n and]x = n, such that]x ≥ n [resp.]x = n] holds true
exactly in models such that x has at least n predecessors [resp. exactly n
predecessors]. For instance,]x ≥ n can be defined in the following ways:

n times︷ ︸︸ ︷
(∃y y ↪→ x) ∗ · · · ∗ (∃y y ↪→ x) ∗> or ∃x1, . . . , xn

∧
i 6=j

xi 6= xj ∧
n∧
i=1

xi ↪→ x

It is worth noting that the first formula has a unique additional variable y but
n occurrences of ∗ whereas the second formula has no separating connectives
but n additional variables.

Reachability and list predicates. Reachability in a graph is a standard prop-
erty that can be expressed in monadic second-order logic. In separation logic,
very often a built-in predicate for lists is added, sometimes noted ls(x, y).
Adapting some technique used in the graph logics [18], we show below how
this very predicate can be expressed in SL(∗) as well as the reachability pred-
icate x→∗y.

A cyclic list in a model (s, h) is a non-empty finite sequence l1, . . . , ln
(n ≥ 1) of locations such that h(ln) = l1 and for every i ∈ {1, . . . , n − 1},
h(li) = li+1. A model (s, h) is a list segment between x and y if there are
locations l1, . . . , ln (n ≥ 2) such that s(x) = l1, s(y) = ln, l1 6= ln, dom(h) =
{l1, . . . , ln−1}, and for every i ∈ {1, . . . , n − 1}, h(li) = li+1. Consider the
formula below

x
	−→

+
y ,]x = 0 ∧ alloc (x)

∧]y = 1 ∧ ¬alloc (y)
∧∀z z 6= y⇒ (]z = 1⇒ alloc (z))
∧∀z]z ≤ 1

10

Lemma 2.3 Let (s, h) be a model. (s, h) |= x
	−→

+
y iff h is undefined for

s(y) and there are unique heaps h1, h2 such that h1 ∗ h2 = h, (s, h1) is a list
segment between x and y and (s, h2) can be decomposed uniquely as a (finite)
collection of cyclic lists.
Proof A location l is shared whenever]l ≥ 2. A location l is initial [resp.
final] whenever l ∈ dom(h) \ ran(h) [resp. l ∈ ran(h) \ dom(h)]. It is easy to
show that (s, h) � x

	−→
+
y if and only if

• s(x) is initial,

• s(y) is final,

• s(y) is the only final location,

• h has no shared location.

It is easy to check that if h is of the form h1 ∗ h2 having the properties
stated in Lemma 2.3, then it satisfies the formula x

	−→
+
y, which shows one

implication. Let us prove the other implication.
Assume (s, h) � x

	−→
+
y. Since dom(h) is finite, the set of descendants of

s(x) forms either a cyclic list, or a lasso (a list segment followed by a cycle)
or a list ended by a final location. Since there are no shared locations, there
is no lasso; and since s(x) is initial, it does not belong to a cyclic list. So
s(x) has a descendant that is final. It can only be s(y), so h contains a list
segment from s(x) to s(y). To end the proof, we must show that the rest of
the heap contains cyclic lists only. This is equivalent to say that no location
different from s(x) is initial. The proof is ad absurdum. Suppose that l is an
initial location distinct from s(x). Then by the same reasoning as for s(x),
we have s(y) is a descendant of l, so two distinct paths reach s(y), which
contradicts the absence of shared locations. �

Now, we can introduce additional formulae (in SL(∗)) that are useful in the
sequel.

ls(x, y) , x
	−→

+
y ∧ ¬(x

	−→
+
y ∗ ¬emp)

x→+ y , > ∗ ls(x, y)

x→∗y , x = y ∨ x→+ y

These formulae express the properties below.

Lemma 2.4 Let (s, h) be a model.

11

(I) (s, h) |= ls(x, y) iff (s, h) is a list segment between x and y.

(II) (s, h) |= x→∗y [resp. (s, h) |= x→+y] iff y is a descendant [resp. strict
descendant] of x.

2.3. Preliminary Translations
Before showing advanced results in the forthcoming sections, we show

below how SL can be encoded into SO by simply internalizing the semantics
and how SO can be encoded in its fragment DSO by representing multi-edges
by finite sets of edges.

Proposition 2.5 There is a logarithmic-space translation from SL to SO

(hence SL v SO).
Proof For all variables P, Q, R in VAR2, let us define the SO formulae below
with free occurrences of P, Q, R:

• init(P) , ∀x, y xPy⇔x↪→y,

• heap(P) , ∀x, y, z xPy ∧ xPz⇒ y = z (functionality),

• P = Q ∗ R , ∀x, y (xPy⇔(xQy ∨ xRy)) ∧ ¬(xQy ∧ xRy).

Let φ be a formula in SL and P be a variable in VAR2. One can show that
for every model (s, h), we have (s, h) |= φ iff (s, h) |= ∃P init(P) ∧ tP(φ)
where tP(·) is inductively defined as follows (tP(·) is homomorphic for Boolean
connectives and first-order quantification):

tP(x↪→y) , xPy

tP(ψ ∗ ϕ) , ∃Q, Q′ P = Q ∗ Q′ ∧ tQ(ψ) ∧ tQ′(ϕ)

tP(ψ −−∗ ϕ) , ∀Q((∃Q′ heap(Q′) ∧ Q′ = Q ∗ P) ∧ heap(Q) ∧ tQ(ψ))
⇒ (∃Q′ heap(Q′) ∧ Q′ = Q ∗ P ∧ tQ′(ϕ))

In the above clauses, the second-order variables Q and Q′ are fresh. �

Proposition 2.6 There is a logarithmic-space translation from SO to DSO

(hence SO v DSO).
Proof We use the standard graphical representation of a multigraph: a
tuple (l1, . . . , ln) is represented by n edges (l1, l), . . . , (ln, l) for some location
l. To each variable P in VARn, we associate n distinct variables P1, . . . , Pn in

12

VAR2. Let us define the map t, homomorphic for Boolean connectives and
first-order quantification, such that t preserves the semantics:

t(∃P ψ) , ∃P1, . . . , Pn t(ψ)

t(P(x1, . . . , xn)) , ∃y
n∧
i=1

Pi(xi, y).

Correctness of the translation makes an essential use of the fact that in
SO, the second-order quantification is over finite sets of locations. Indeed,
let R1, . . . ,Rn be n finite binary relations and R be a finite n-ary relation
(over Loc). We say that (R1, . . . ,Rn) corresponds to R whenever for all
(l1, . . . , ln) ∈ Locn, (l1, . . . , ln) ∈ R iff there is l ∈ Loc such that for 1 ≤ k ≤
n, (lk, l) ∈ Rk. We have the following properties:

1. For all finite binary relations R1, . . . ,Rn, there is a finite n-ary relation
R such that (R1, . . . ,Rn) corresponds to R.

2. Reciprocally, for every finite n-ary relation R, there are n finite binary
relations R1, . . . ,Rn such that (R1, . . . ,Rn) corresponds to R.

�

Sections 5 and 6 are devoted to prove that DSO v SL(−−∗). We will obtain
that SL(−−∗), SL, DSO and SO have the same expressive power (via logspace
translations). Consequently, this implies undecidability of the validity prob-
lem for any of these logics by the undecidability of classical predicate logic
with one binary relation [37]. By contrast, we prove below that SL(∗) is
decidable.

3. On the Complexity of SL(∗)

In this section, we show that SL(∗) satisfiability is decidable but with non-
elementary recursive complexity (by reduction from the first-order theory of
finite words).

Lemma 3.1 MSO satisfiability is decidable.
Proof The weak monadic second-order theory of unary functions is the
theory over structures of the form (D, f,=) where D is a countable domain,
f is a unary function, and = is equality. This theory is decidable, see e.g. [4,
Corollary 7.2.11]. Since in such a logical language it is possible to express

13

that D is infinite and to simulate that f is a partial function with finite do-
main (use a monadic predicate symbol to be interpreted as the finite domain
of f), one can specify that (D, f,=) augmented with a first-order valuation
is isomorphic to a heap. Based on these elementary facts, we define a trans-
lation tP(.), computable in logarithmic space, such that a MSO sentence φ is
satisfiable iff

infinity︷ ︸︸ ︷
(¬∃P ∀x P(x))∧∃P tP(φ)

is satisfiable in the weak monadic second-order theory of one unary function,
where tP(·) is defined as follows:

tP(x ↪→ y) , P(x) ∧ f(x) = y

tP(x = y) , x = y

tP(Q(x)) , Q(x)

tQ is homomorphic for the Boolean connectives and for quantifications.
�

Using a technique similar to the proof of Lemma 3.1, we can translate
SL(∗) into MSO.

Proposition 3.2 SL(∗) v MSO via a logspace translation.
Proof Any formula φ in SL(∗) is satisfiable iff

∃P (∀x P(x)⇔ (∃y x ↪→ y)) ∧ tP(φ)

is satisfiable where tP(·) is defined as in the proof of Lemma 3.1 with the
following clauses:

• tP(x↪→y) , P(x) ∧ x↪→y,

• tP(x = y) , x = y,

• tP(φ ∗ ψ) , ∃Q, Q′ P = Q] Q′ ∧ tQ(φ) ∧ tQ′(ψ) where P = Q] Q′ is an
abbreviation for ∀x (P(x)⇔(Q(x) ∨ Q′(x))) ∧ ¬(Q(x) ∧ Q′(x)).

tQ is homomorphic for the Boolean connectives and for first-order quantifica-
tion. �

14

As conjectured in [9], recently it has been shown that MSO is strictly more
expressive than SL(∗) [1].

Corollary 3.3 SL(∗) satisfiability is decidable.

In order to show that satisfiability in SL(∗) is not elementary recursive,
we explain below how to encode finite words as memory states. Let Σ =
{a1, . . . , an} be a finite alphabet. A finite word w = ai1 · ai2 · · · aim is usually
represented as the first-order structure ({1, . . . ,m}, <, (Pa)a∈Σ) where Pa is
the set of positions labelled by the letter a. Similarly, the word w can be
represented as a memory state (sw, hw) in which

• xbeg→+xend holds true and, xbeg and xend are distinguished variables
marking respectively, the beginning and the end of the encoding of w
(they do not encode any of its letters),
• the list segment induced from the satisfaction of xbeg→+xend has exactly
m+2 locations, and any location l of position j ∈ {2, . . . ,m+1} in the
list segment (hence excluding sw(xbeg) and sw(xend)) has exactly ij−1

predecessors. Since sw(xbeg) and sw(xend) do not encode any position
in w, there is no constraint on them.

In Figure 1, we present a memory state encoding the finite word a1a2a3a1.
Throughout the paper, a memory state (s, h) is encoded as a graph repre-
senting the heap such that there is an edge from l to l′ iff h(l) = l′. Locations
are represented by letters l (representing themselves), variables x (represent-
ing s(x)) or a joker locationF (representing an unspecified location different
from all the other locations present in the graph). Although the graph of
h is fully specified, we may omit irrelevant variables in the representation
of (s, h). In Figure 1, note that each position of the word corresponds to a
unique location in the memory state. For instance, the location l4 has one
predecessor encoding the fact that the fourth letter in the word is precisely
the first letter a1. The location l3 has 3 predecessors encoding that fact that
the third letter of the word is precisely the third letter a3.

Similarly, any memory state (s, h) containing a list segment between xbeg
and xend and such that any location on the list segment that is different from
s(xbeg) and s(xend) has at most card(Σ) predecessors corresponds to a unique
finite word with the above encoding. In this direction, the memory state may
contain other dummy locations but they are irrelevant for the representation
of the finite word. Moreover, a memory state can encode only one word since
xbeg and xend are end-markers.

15

Figure 1 Memory state encoding the finite word a1a2a3a1

l1

xbeg

l2 l3 l4

xendF F F

Proposition 3.4 SL(∗) is not elementary recursive (even its restriction
with 5 variables).
Proof Satisfiability of the first-order theory of finite words [36] is not el-
ementary recursive (this result holds already with three variables). Let us
reduce this problem to satisfiability in SL(∗). Let ψword be the formula spec-
ifying a word model:

(xbeg →+ xend) ∧ (∀x ((xbeg →+ x) ∧ (x→+ xend))⇒]x ≤ card(Σ))

It is then easy to show that given a first-order formula φ over the signature
(<, (Pa)a∈Σ), φ is satisfiable over finite words iff ψword ∧ t(φ) is satisfiable in
SL(∗) where t is defined as follows:

t(x < y) , (x→+ y)

t(∀x ψ) , ∀x. ((xbeg →+ x) ∧ (x→+ xend))⇒ t(ψ)

t(Pai(x)) ,]x = i.

The translation t is homomorphic for Boolean connectives and remember
that]x = i is a shortcut for a formula in SL(∗) of size O(i) (see Section 2.2).
Similarly, x→+ y and]x ≤ card(Σ) belongs to SL(∗) (see Section 2.2). One
can check that if φ contains at most three variables, then ψword∧t(φ) contains
at most five variables.

�

As a corollary of Corollary 3.3, we obtain an alternative decidability proof
of the entailment problem for the fragment of SL considered in [3]. We have
established decidability for a fragment of SL larger than the one considered
in [3] (for which the entailment problem is shown to be in conp) but of higher
complexity.

16

It is probable that the number of variables can be reduced further while
preserving non-elementarity, but it is not very essential at this point, for
instance by identifying the limits of the words by unique patterns instead of
distinguished variables.

4. A Decidable Fragment of SL with a Restricted Use of −−∗

In Section 3, we have seen that SL(∗) satisfiability is decidable whereas
satisfiability for full SL will be shown to be undecidable. However, SL(∗) is
certainly not the largest decidable fragment of SL. In this section, we inves-
tigate another decidable extension of SL(∗) thanks to a restricted use of the
magic wand; quantification over disjoint heaps is done only for heaps whose
domain has cardinality smaller than some fixed n (details will follow). Since
the forthcoming extension is closed under negation, this also corresponds to
a restricted use of the operator −−∗¬.

4.1. A Restricted Use of −−∗¬

Let us define SL(∗ +
n

−−∗¬) as an extension of SL(∗) by adding the binary
operators

n

−−∗¬ for every n ∈ N. Unlike the plain operator −−∗¬, a formula with
outermost connective

n

−−∗¬ states the existence of a disjoint heap for which the
cardinality of the domain is bounded by n. More formally, we require that
(s, h) |= φ1

n

−−∗¬ φ2 iff there is h′ ⊥ h such that card(dom(h′)) ≤ n, (s, h′) |= φ1

and (s, h ∗ h′) |= φ2.
SL(∗ +

n

−−∗¬) allows to encode the restricted use of the magic wand in the
Hoare-like proof systems as in the backward-reasoning form rule (MUBR)
recalled below, see also [35]:

{(∃z x 7→ z) ∗ ((x 7→ y) −−∗ φ)} [x] := y {φ}

It is easy to show that (x 7→ y) −−∗ φ is equivalent to ¬((x 7→ y)
1

−−∗¬ ¬φ).
Typically, whenever the left argument of a formula with outermost connective
−−∗ has only models of bounded size, this trick can be applied again. Let us
push a bit further this idea.

17

4.2. Bounding the Cardinal of Heap Domains
Let SL−(∗) be the fragment of SL(∗) defined by the grammar below and

whose formulae are also interpreted over memory states:

φ ::=⊥ | x 7→ y | size ≤ k | size = k | φ ∗ φ | φ ∨ φ | φ ∧ φ | ∃ x φ

where k ∈ N. Since SL−(∗) is not closed under negation, it makes sense to
consider both size ≤ k and size = k. Anyhow, we shall show that size ≤ k
can be expressed differently. The satisfaction relation is defined as for SL

with the obvious following update: (s, h) |= size ≤ k iff card(dom(h)) ≤ k.
Observe that size = k with k ≥ 1 is also equivalent to the formula below
(in SL−(∗)):

∃ x1, . . . , xk ((∃ y x1 7→ y) ∗ · · · ∗ (∃ y xk 7→ y))

Let |φ | denote the size of a formula φ in SL−(∗) with the natural numbers
encoded with a unary representation.

Lemma 4.1 For any φ ∈ SL−(∗), if (s, h) |= φ then card(dom(h)) ≤ |φ |.

The proof is by a straightforward structural induction. Since computing
|φ | from φ can be done in polynomial-time, we obtain the following reduction
that becomes especially interesting after showing decidability of SL(∗ +

n

−−∗¬).

Lemma 4.2 There is a polynomial-time reduction from satisfiability for SL
restricted to formulae such that the left argument of any −−∗-formula belongs
to SL−(∗) to satisfiability for SL(∗ +

n

−−∗¬).

In order to establish the above lemma, it is sufficient to observe that

φ −−∗ ψ is equivalent to ¬(φ
|φ |
−−∗¬ ¬ψ) whenever φ ∈ SL−(∗) and ψ ∈ SL.

4.3. Symbolic Disjoint Heaps

In order to show decidability for SL(∗ +
n

−−∗¬), we define a reduction into
SL(∗). The translation is based on a simple observation: since a formula
with outermost connective

n

−−∗¬ requires the existence of a disjoint heap whose
domain size is at most n, this new heap can be encoded by a set of pairs of
variables of cardinality n. Hence, a heap of size at most n disjoint from (s, h)
can be represented symbolically by a set C = {(y1, z1), . . . , (yn, zn)} such

18

that {s(y1), . . . , s(yn)} ∩ dom(h) = ∅ and s(yi) = s(yj) implies s(zi) = s(zj),
naturally encoding the heap h(C) = {s(yi) 7→ s(zi) : s(yi) 6= nil, 1 ≤ i ≤ n}
assuming that nil is a distinguished value represented by some dedicated
variable null. This is the only place in the paper where nil shall be used
and as usual we require that nil cannot belong to the domain of heaps (see
Section 2.1). The set C = {(y1, z1), . . . , (yn, zn)} represents a heap with at
most n memory cells, even though C contains exactly n pairs. However,
whenever s(yi) = nil, the pair (yi, zi) does not encode any new memory cell.
In terms of formulae, (yi, zi) encodes a memory cell iff yi 6= null holds true.
This shall be intensively used in forthcoming formulae.

Let us provide now the formal definitions. A symbolic disjoint heap C for
the memory state (s, h) is a finite set of pairs of variables {(y1, z1), . . . , (yn, zn)}
such that

• {s(y1), . . . , s(yn)} ∩ dom(h) = ∅.
• For 1 ≤ i, j ≤ n, s(yi) = s(yj) implies s(zi) = s(zj).

The heap represented by C, written h(C), is defined by h(C)
def
= {s(yi) 7→

s(zi) : s(yi) 6= nil, 1 ≤ i ≤ n}. Observe that card(dom(h(C))) ≤ n and
h(C) ⊥ h. C is said to be of length n.

Lemma 4.3 Given a memory state (s, h) and h′ such that h′ ⊥ h and
card(dom(h′)) ≤ n, there exists a symbolic disjoint heap C of length n such
that h′ = h(C) and s′ may differ from s at most for the variables occurring
in C.

The proof is by an easy verification by symbolically representing h′ with
new variables, whence the store s′.

Below we introduce simple formulae useful to separate a symbolic disjoint
heap or to extend a symbolic disjoint heap by another symbolic disjoint
heap. Given C = {(y1, z1), . . . , (yn, zn)}, C0 = {(y0

1, z
0
1), . . . , (y0

n, z
0
n0

)} and
C1 = {(y1

1, z
1
1), . . . , (y1

n, z
1
n1

)}, we write C = C0 ∗ C1 to denote the conjunction
of the formulae below:

• h(C) is included in h(C0) ∪ h(C1):∧
1≤i≤n

(
∨

1≤i≤n0

y0
j = yi) ∨ (

∨
1≤i≤n1

y1
j = yi)

19

• h(C0) ∪ h(C1) is included in h(C):∧
1≤i≤n0

(
y0
j 6= null ⇒

∨
1≤i≤n

yi = y0
j

)
∧

∧
1≤i≤n1

(
y1
j 6= null

)
⇒

∨
1≤i≤n

yi = y1
j

)
• h(C0) and h(C1) encode a function:∧

1≤j,j′≤n0

(y0
j = y0

j′ ⇒ z0
j = z0

j′) ∧
∧

1≤j,j′≤n1

(y1
j = y1

j′ ⇒ z1
j = z1

j′)

• h(C0) and h(C1) are disjoint:∧
1≤i≤n0

∧
1≤i≤n1

((y0
j 6= null) ∨ (y1

j′ 6= null))⇒ (y0
j 6= y1

j′)

We provide a few lemmas whose easy proofs are omitted. However, they
will be helpful to prove correctness in Section 4.4.

Lemma 4.4 Let C be a symbolic disjoint heap of length n for (s, h) and C0 =
{(y0

1, z
0
1), . . . , (y0

n, z
0
n0

)} and C1 = {(y1
1, z

1
1), . . . , (y1

n, z
1
n1

)} be symbolic disjoint
heaps whose variables do not occur in C. Let s′ be a store that may differ
from s at most for the variables occurring in C0 and C1. Assume moreover
that (s′, h) |= C = C0 ∗ C1. Then, h(C0) and h(C1) are symbolic disjoint heaps
for (s′, h), h(C0) ⊥ h(C1) and h(C0) ∗ h(C1) = h(C).

Again, the proof is by easy verification and we can also get a converse
property.

Lemma 4.5 Let C be a symbolic disjoint heap of length n for (s, h). Let
h0 ∗ h1 = h(C). There exist symbolic disjoint heaps C0 and C1 for (s′, h) such
that variables in C, C0 and C1 are mutually disjoint, s′ may differ from s at
most for the variables occurring in C0 and C1, h0 = h(C0), h1 = h(C1) and
(s′, h) |= C = C0 ∗ C1.

Let us now consider the corresponding lemmas to build disjoint heaps.

Lemma 4.6 Let C0 be a symbolic disjoint heap for (s, h), C and C1 be
symbolic disjoint heaps whose variables do not occur in C0, and such that
(s′, h) |= C = C0 ∗ C1, where s′ may differ from s at most for the variables
occurring in C and C1. Then, C and C1 are symbolic disjoint heaps for (s′, h).

20

We can also get a converse property.

Lemma 4.7 Let C0 be a symbolic disjoint heap for (s, h) and, h′ be disjoint
from h ∗ h(C0) and the cardinal of its domain is less than n. There exists
a symbolic disjoint heap C1 of length n for (s, h) such that h′ = h(C1), h′ ∗
h(C0) = h(C0 ∪ C1) and (s′, h) |= (C0 ∪ C1) = C0 ∗ C1 (s′ may differ from s at
most for the variables occurring in C1).

4.4. The Translation
The recursive translation function is of the form t(ψ, C, F) where ψ is a

subformula to be translated, C has the format of some symbolic disjoint heap
and F ∈ {0, 1} is a flag that specifies whether ψ is evaluated under h(C)
(F = 0) or under h ∗ h(C) (F = 1).

Before defining the recursive map t, let us mention that a formula φ is
translated into t(φ, ∅, 1).

• t(x = x′, C, F) = x = x′.

• t(x ↪→ x′, C, 1) = (x ↪→ x′) ∨ t(x ↪→ x′, C, 0).

• t(x ↪→ x′, C, 0) =
∨

(y,z)∈C
(y 6= null ∧ y = x ∧ z = x′).

• t is homomorphic for Boolean connectives and first-order quantification
(up to renaming quantified variables to avoid capturing variables of C).

• t(ψ
0

−−∗¬ ψ′, C, F) = t(ψ, ∅, 0) ∧ t(ψ′, C, F)

• t(ψ
n

−−∗¬ ψ′, C, F) for n ≥ 1 is equal to

∃v (C ∪ C′) = C ∗ C′ ∧ t(ψ, C′, 0) ∧ t(ψ′, C ∪ C′, F) ∧
∧

(y,z)∈C′
¬alloc (y)

where v is a sequence of n pairs of fresh variables from the symbolic
disjoint heap C′.

• t(ψ ∗ ψ′, C, F) with C of length n is equal to

∃v (t(ψ, C0, F) ∗ t(ψ′, C1, F)) ∧ C = C0 ∗ C1

where v is a sequence of 2n pairs of fresh variables from the symbolic
disjoint heaps C0 and C1 of length n.

21

Even though in the worst-case there is an exponential number of ways to
divide a heap into two disjoint heaps, our translation remains in polynomial
time. The soundness of the translation is guaranteed by the lemma below
whose proof is by structural induction and uses the previous lemmas.

Lemma 4.8 Let C be a symbolic disjoint heap for (s, h). For all formulae
ψ in SL(∗ +

n

−−∗¬), we have

• (s, h(C)) |= ψ iff (s, h) |= t(ψ, C, 0), and

• (s, h ∗ h(C)) |= ψ iff (s, h) |= t(ψ, C, 1).
Proof The proof is by structural induction on ψ. The induction hypothesis
is of the following form: for every ψ′ whose size is strictly smaller than the
size of ψ, if C′ be a symbolic disjoint heap for (s′′, h′′), then we have

(1) (s′′, h(C′)) |= ψ′ iff (s′′, h′′) |= t(ψ′, C′, 0), and
(2) (s′′, h′′ ∗ h(C′)) |= ψ′ iff (s′′, h′′) |= t(ψ′, C′, 1).

The base case for atomic formulae is by an easy verification as well as the cases
in the induction step for Boolean connectives and first-order quantification.
We treat below the case ψ = ψ1 ∗ ψ2, the case ψ = ψ1

n

−−∗¬ ψ2 can be treated
analogously using Lemmas 4.6 and 4.7.

Suppose (s, h(C)) |= ψ1∗ψ2. There exist h1 and h2 such that h1∗h2 = h(C),
(s, h1) |= ψ1 and (s, h2) |= ψ2. By Lemma 4.5, there exist symbolic disjoint
heaps C1 and C2 (with fresh variables) for (s′, h) such that s′ may differ from s
at most for the variables occurring in C1∪C2, h1 = h(C1) and h2 = h(C2). Since
each Ci is a disjoint symbolic heap for (s′, hi), by the induction hypothesis,
(s′, h) |= t(ψ1, C1, 0) and (s′, h) |= t(ψ2, C2, 0). Moreover, (s′, h) |= C = C1 ∗ C2

(observe that satisfaction of C = C1 ∗ C2 depends only on the store). Hence,

(s, h) |= ∃v (t(ψ1, C1, 0) ∗ t(ψ2, C2, 0)) ∧ C = C1 ∗ C2

where v is the sequence of variables from C1 and C2. Consequently, we have
(s, h) |= t(ψ1 ∗ ψ2, C, 0).

Similarly, suppose (s, h ∗ h(C)) |= ψ1 ∗ ψ2. There exist h1, h2, h′1 and h′2
such that

h1 ∗ h2 = h(C), h′1 ∗ h′2 = h, (s, h′1 ∗ h1) |= ψ1, (s, h′2 ∗ h2) |= ψ2.

22

By Lemma 4.5, there exist symbolic disjoint heaps C1 and C2 (with fresh
variables) for (s′, h) such that s′ may differ from s at most for the variables
occurring in C1, C2, h1 = h(C1) and h2 = h(C2). Since each Ci is a symbolic
disjoint heap for (s′, hi), by the induction hypothesis,

(s′, h′1 ∗ h(C1)) |= t(ψ1, C1, 1) and (s′, h′2 ∗ h(C2)) |= t(ψ2, C2, 1).

Moreover, (s′, h) |= C = C1 ∗ C2. Hence,

(s, h) |= ∃v (t(ψ1, C1, 1) ∗ t(ψ2, C2, 1)) ∧ C = C1 ∗ C2

So, (s, h) |= t(ψ1 ∗ ψ2, C, 1).
Now suppose (s, h) |= t(ψ1 ∗ ψ2, C, 0), that is

(s, h) |= ∃v (t(ψ, C0, F) ∗ t(ψ′, C1, F)) ∧ C = C0 ∗ C1

where v corresponds to the sequence of variables from the fresh symbolic
disjoint heaps C0 and C1. Hence there exists a store s′ that may differ from
s at most for the variables occurring in v such that

(s′, h) |= (t(ψ1, C
0, 0) ∗ t(ψ2, C

1, 0)) ∧ C = C0 ∗ C1

By the induction hypothesis, (s′, h(C1)) |= ψ1 and (s′, h(C2)) |= ψ2. By
Lemma 4.4, h(C1) ⊥ h(C2) and h(C1) ∗ h(C2) = h(C). Consequently, we have
(s′, h(C)) |= ψ1 ∗ ψ2. Since variables in v do not occur in ψ1 ∗ ψ2, we get
(s, h(C)) |= ψ1 ∗ ψ2.

Similarly, (s, h) |= t(ψ1 ∗ ψ2, C, 1) implies (s, h ∗ h(C)) |= ψ1 ∗ ψ2 by
Lemma 4.4. �

This leads to the main result of this section.

Theorem 4.9

(I) There is a polynomial-time reduction from SL(∗ +
n

−−∗¬) satisfiability prob-
lem to SL(∗) satisfiability problem.

(II) SL(∗ +
n

−−∗¬) satisfiability is decidable.
Proof (II) is a consequence of (I) by using the decidability of SL(∗) satis-
fiability (see Section 3).
(I) By Lemma 4.8, for every memory state (s, h), we have (s, h ∗ h(∅)) |= ψ
iff (s, h) |= t(ψ, ∅, 1) where t(ψ, ∅, 1) is an SL(∗) formula and ∅ denotes the
empty symbolic disjoint heap. Moreover, we have seen that t(ψ, ∅, 1) can be
built in polynomial-time assuming that the natural numbers are represented
with a unary encoding in ψ. Since h ∗ h(∅) is equal to h, the formulae ψ and
t(ψ, ∅, 1) hold true at the same memory states. �

23

We then obtain the following interesting corollary.

Corollary 4.10 Satisfiability for SL restricted to formulae such that the left
argument of any −−∗-formula belongs to SL−(∗) is decidable.

5. Expressing Advanced Arithmetical Constraints in SL(−−∗)

In this section, we show how SL(−−∗) can be used to express cardinality
constraints on finite sets of locations that are defined by logical predicates.
Given a formula φ(x) with free variable x and a model (s, h), we write]φ
to denote the number of locations l such that (s[x 7→ l], h) |= φ(x). As a
consequence of SL ≡ SO, for all formulae φ(x) and ψ(x) from either SL or SO,
there is a formula that can capture a constraint of the form]φ <]ψ. However,
in order to show SL ≡ SO, we shall need to establish this expressiveness
result for some specific formulae φ and ψ. More precisely, this is done with
the predicates “immediate successor of z”, φ(x) = x ↪→ z, whence]φ is the
number of predecessors of z. In Section 5.2, numbers of predecessors are
compared. The proof of this result is subject to technical complications but
its essence is not so intricate, and it is better illustrated by encoding other
kinds of cardinality constraints. For this reason, we make a slight detour in
our presentation by first sketching the encoding of the cardinality constraints
for the predicate reachablez(x) = z→∗x. This turns out to be a bit simpler
to define, and already it provides the key ingredients of our proof. This can
be viewed as a warm-up before dealing with the predicate x ↪→ z.

5.1. Comparing Two List Lengths
Let us first restrict our attention to models composed of two acyclic lists

starting at x and y respectively, with no other allocated cells, and with the
additional constraint that no location is reachable from x and y simultane-
ously. We aim now at expressing the fact that both lists have the same length
n using the magic wand. To do so, we can say that there exist n locations
l1, . . . , ln that are not allocated and for which there is a one-one correspon-
dence between these locations and the ones of the list starting at x, and on
the other hand there is another one-one correspondence between these same
locations and the ones of the list starting at y. The gain for considering
non allocated cells is that the one-one correspondence can be materialized
by allocating l1, . . . , ln so that each of them points to the cell it is in corre-
spondence with. The trickiest point is then how to materialize the guess of

24

the locations l1, . . . , ln in such a way that it is possible to refer to them later
without confusing them with the cells that were initially allocated. To do
so, we may observe that in the original model, all locations have at most one
predecessor. We can thus identify some extra locations l1, . . . , ln if we impose
them to admit exactly two predecessors. With these intuitions in mind, the
property that the length of the list starting at x is equal to the length of the
list starting at y can be expressed by a formula of the form below:

φ −−∗¬
(
(ψ −−∗¬ ϕ(x, y)) ∧ (ψ −−∗¬ ϕ(y, x))

)
where:

• φ expresses that all the locations have either 0 or 2 predecessors,

• ψ expresses that all the locations have either 0 or 1 predecessor,

• ϕ(x, y) expresses the situation depicted in Figure 2:

1. all the locations reachable from x have exactly two immediate
predecessors, except x that has one predecessor only;

2. among these one or two predecessors, the one that is not reach-
able from x has itself exactly two immediate predecessors which
themselves do not have immediate predecessors;

3. all extra allocated locations are only the ones of the list y.

Figure 2 How to compare the length of two lists: situation ϕ(x, y), with
sub-model satisfying φ in bold, and sub-model satisfying ψ in broken line.

l1 l2 l3 l4

x F F F

y F F F

F F F F F F F F

We claim that there exist such formulae φ, ψ, and ϕ(x, y) in SL, although we
do not plan to provide details herein. We shall do it for constraints about

25

the numbers of predecessors. Before doing so, let us first notice that it is not
difficult to adapt this technique to express richer constraints on the length
of two lists, as for instance the property that one list is one cell longer than
another one, and thus using a reduction to counter machines similar with [7],
this entails the undecidability of SL(−−∗). However, we were not able to encode
SO by using cardinality constraints on list lengths, but rather on comparing
numbers of predecessors.

Let us also remark that the above construction relies on the fact that
in the considered models, all the locations have at most one predecessor.
In the general case, it could be harder to distinguish the locations that are
initially allocated in the models, and the ones that correspond to the guessed
locations l1, . . . ln. This last point justifies why the construction presented at
the next section is a bit more technical. Actually, we shall rely on a reduction
to models where all the locations have at least three predecessors. However,
the key ideas are essentially the same.

5.2. Comparing the Numbers of Predecessors
In this section, we show how SL(−−∗) can express properties of the form

]x+c 1]y+c′ with c, c′ ∈ N and 1∈ {=,≥,≤} where]x denotes the number
of predecessors of s(x) in a model. This is a key property in the forthcoming
proof establishing that weak second-order logic is equivalent to SL(−−∗). Note
that]x 1 c can be easily expressed in SL(−−∗), even without magic wand
(indeed c is a fixed value). By contrast, expressing a constraint]x 1]y+ c is
natural in second-order logic, for instance by introducing an adequate finite
binary relation between the predecessors of x and those of y. We show below
that this can be done also in SL(−−∗) but requires much more work.

In a nutshell, expressing constraints of the form]x + c 1]y + c′ will be
done as follows. First, thanks to Boolean connectives it is sufficient to express
properties of the form]x+c ≤]y+c′ with c, c′ ∈ N (strictly speaking, we can
assume that c× c′ = 0). Moreover,]x + c ≤]y + c′ is precisely equivalent to
the fact that for all n ∈ N,]y−c ≤ n implies]x−c′ ≤ n (indeedN ≤ N ′ iff for
every M ≥ 0, we have N ′ ≤M implies N ≤M). Quantification over the set
of natural numbers will be simulated by a quantification over disjoint heaps
in which n is exactly the cardinal of their domains. Such a quantification is
performed thanks to the magic wand and we require that disjoint heaps are
segmented and current heap is flooded (to be defined below). A model (s, h)
is segmented whenever dom(h)∩ran(h) = ∅ and no location has strictly more
than one predecessor. For instance, the heap h2 in Figure 4 restricted to

26

cells labelled by 2 is segmented. (s, h) is flooded when no location has one or
two predecessors. The store s is indeed irrelevant for these concepts. These
conditions on heaps are needed in order to guarantee that the heaps obtained
from the original heap and the disjoint heaps easily determine which part of
the heap has been added. A nice feature is that the fact of being flooded or
segmented can be naturally expressed in SL(−−∗) (see Lemma 5.1). Finally,
any heap such that]x,]y ≥ 3 can be extended to a flooded heap without
modifying the numbers of predecessors for x and y, respectively. This explains
why the term ’flooded’ has been chosen. In the case]x ≤ 2 or]y ≤ 2,
we perform a simple case analysis and we obtain Boolean combinations of
constraints of the form]x 1 c′′ or]y 1 c′′ (that can be easily handled, details
will follow).

Lemma 5.1 There are formulae flooded and seg in SL(−−∗) such that for
every model (s, h),

(I) (s, h) |= flooded iff (s, h) is flooded,

(II) (s, h) |= seg iff (s, h) is segmented.
Proof It is easy to check that the formulae below do the job.

• flooded , ∀x. (]x = 0 ∨]x > 2).

• seg , ∀x, y. (x ↪→ y⇒ (]y = 1 ∧ ¬(∃z z ↪→ x ∨ y ↪→ z))).

Note that the formulae]x = 0,]x > 2 and]y = 1 are indeed formulae
without separating connectives. �

Now, we present a few crucial definitions about specific patterns in mem-
ory states, namely markers. A [resp. strict] marker in (s, h) is a sequence of
distinct locations l, l0, . . . , ln for some n ≥ 0 such that

• h(l0) = l [resp. and dom(h) = {l0, . . . , ln}],
• for every i ∈ {1, . . . , n}, h(li) = l0 and]li = 0,

•]l0 = n.

The marker is said to be of degree n with endpoint l (n-marker). Markers
have simple structure with natural graphical representation. In Figure 3, we
present an heap h containing a 2-marker and a 3-marker, both having the
same endpoint l. Note that there are disjoint heaps h1 and h2 such that
h = h1 ∗ h2, h1 has a strict 2-marker and h2 has a strict 3-marker.

27

Figure 3 An heap with a 2-marker and a 3-marker.

F

F
F

F

l

F

F F

A model (s, h) is said to be k-marked whenever there is no location in
dom(h) that does not belong to a marker of degree k. Moreover, it is strictly
k-marked when no distinct markers share the same endpoint (no aliasing).

Markers are essential building blocks to express a constraint of the form
]x − c ≤ n with c, n ∈ N. Before presenting the formal treatment, let us
explain the principle of the encoding. Assume that h1 is a flooded heap (i.e,
no location has one or two predecessors), and h2 is a segmented heap such
that

1. h1 and h2 are disjoint,
2. card(dom(h2)) = n,
3. h1 ∗ h2 does not contain locations with two predecessors,
4. if a location l has exactly one predecessor l′ in h1 ∗ h2 then l′ has no

predecessor and l does not belong to dom(h1 ∗ h2).

Hence, h1 ∗ h2 is almost flooded since the only reason for not being flooded
is possibly to contain isolated memory cells from h2. Figure 4 presents two
heaps h1 and h2 satisfying the above conditions. Cells of the heap h2 are
labelled by 2. Note also that h1 ∗ h2 is not flooded because of some isolated
cells from h2 such as l 7→l′.

Obviously, h1 ∗ h2 does not contain any 2-marker and in particular no
predecessor of s(x) is the endpoint of some 2-marker.

A c-completion of h1 ∗ h2 consists in adding a disjoint heap h′ = h′1 ∗ h′2
such that

1. h′1 is 1-marked,
2. h′2 is strictly 2-marked and contains exactly c distinct 2-markers.

Consider the number of 2-markers in the heap h1 ∗ h2 ∗ h′ resulting from
such a completion. First, observe that strictly more than c 2-markers can be

28

Figure 4 h1 and h2 satisfying the conditions 1.-4.

F

F

F

l

F

F

F

l′

F

F

F

F

F

F

2

2

2

2

present since an isolated memory cell from h2 and a 1-marker from h′1 may
produce a 2-marker in h1∗h2∗h′ (see the locations l1, l2, l3 and l4 in Figure 5)
Second, observe that at least the c 2-markers from h′ are still in h1 ∗ h2 ∗ h′,
because the definition of * prevents a 2-marker from combining with a 1-
marker to form a 3-marker. Observe also that the insertion of markers of
degree strictly less than 3 in the almost flooded heap allows to safely identify
them as markers in the new model. Consequently, there are at most n + c
predecessors of s(x) that are endpoints of 2-markers in h1 ∗ h2 ∗ h′. Now, we
say that h1 ∗ h2 ∗ h′ is x-completed whenever all the predecessors of s(x) are
endpoints of 2-markers.

Figure 5 presents a 2-completion of h1 ∗ h2 (cells in h1 are those pointing
to x and cells in h2 are labelled by 2 whereas the cells of the 2-completion are
represented by dashed arrows. The heap restricted to dashed edges satisfies
complete2 – it is composed of two 2-markers and two 1-markers. Moreover,
the total resulting heap is x-completed: every predecessor of x is an endpoint
of some 2-marker.

It is easy to observe that]x − c ≤ n iff there is a c-completion h′ of
h1 ∗ h2 such that h1 ∗ h2 ∗ h′ is x-completed (see the exact statement in
Lemma 5.3). Lemma 5.2 below states that the heaps obtained by completion
can be specified in SL(−−∗).

29

Figure 5 A 2-completion of h1 ∗ h2 that leads to a x-completed heap.

x

F

F

F

l1

F

F

F
F

F

F
F

F

F
l2

l3

l4

2

2

Lemma 5.2 There are formulae completed(x) and completec (c ≥ 0) in
SL(−−∗) such that for every model (s, h),

(I) (s, h) |= completed(x) iff all the predecessors of s(x) are endpoints of
2-markers,

(II) (s, h) |= completec iff there are h1, h2 such that h = h1 ∗ h2, (s, h1)
is 1-marked and (s, h2) is strictly 2-marked with exactly c distinct 2-
markers.

Proof The formulae below do the job.

(I) completed(x) is equal to:

∀y y ↪→ x⇒ (∃z z ↪→ y ∧]z = 2 ∧ ∀z′ z′ ↪→ z⇒]z′ = 0))

(II) In order to define completec we perform a case analysis and introduce
below a few formulae. First, ψ0 , > and let ψn be the formula below:

∃x1 · · · xn, y1 · · · yn

(
∧
i 6=j

xi 6= xj) ∧ (
n∧
i=1

((yi ↪→ xi) ∧]yi = 2 ∧ ∀z z ↪→ yi ⇒]z = 0))

30

ψc ∧ ¬ψc+1 states that the model contains exactly c 2-markers with
disjoint endpoints. Let ψcases be the formula below:

∀x alloc (x)⇒ (ψ1
extr(x) ∨ ψ2

extr(x) ∨ ψ1
end(x) ∨ ψ2

end(x))

where ψiextr(x) [resp. ψiend(x)] states that h(s(x)) [resp. h(h(s(x)))] is
the endpoint of some i-marker. By way of example, ψ1

extr(x) is defined
as follows:

]x = 1 ∧ (∀y (y ↪→ x)⇒]y = 0) ∧ (∃y x ↪→ y ∧ ¬∃z y ↪→ z)

The formula completec is defined as the conjunction ψc∧¬ψc+1∧ψcases.
�

We say that two heaps h1 and h2 are completely disjoint if (dom(h1)∪ran(h1))∩
(dom(h2)∪ran(h2)) = ∅. Moreover, a pair of heaps (h1, h2) is said to be com-
patible whenever

• (s, h1) is flooded,

• (s, h2) is segmented,

• h1 and h2 are completely disjoint.

Note that h1 and h2 from Figure 4 are not compatible since ran(h1) ∩
ran(h2) 6= ∅.

Lemma 5.3 below presents the formal statement related to the intuitive
explanations that were already presented.

Lemma 5.3 Let s be a store and (h1, h2) be a compatible pair of heaps such
that x has i predecessors in h1 for some i ≥ 1. Then the following two are
equivalent:

(i) (s, h1 ∗ h2) |= completec −−∗¬ completed(x),

(ii) card(dom(h2)) ≥ (i− c).
Proof Proof of (i) → (ii).
Assume (i). Let h′1 be an 1-marked heap, h′2 be a strict 2-marked heap with
exactly c 2-markers, and h = h1 ∗ h2 ∗ h′1 ∗ h′2 with (s, h) |= completed(x).
Then, the set of endpoints from 2-markers in h includes h−1

1 (s(x)) and its
cardinal b satisfies b ≥ i. Markers of degree 2 witnessing the satisfaction of
completed(x) do not come from h1 since h1 is flooded. So, either they come

31

directly from h′2 or they are markers of degree 1 which have been converted
into markers of degree 2 thanks to isolated cells from h2. Let a be the number
of converted markers, then b ≤ a+ c. Since none of h1, h

′
2 contributes to the

conversion of an 1-marker, the amount of converted markers is bounded by
card(dom(h2)), i.e. card(dom(h2)) ≥ a. Consequently,

i− c ≤ b− c ≤ a ≤ card(dom(h2)).

Proof of (ii) → (i).
Assume (ii). In the sequel, we shall introduce locations that are involved in 2-
markers; the exponents below in the locations refer to the following intended

positions in the schema
A
↘ C

↓
D

B
↙ for 2-markers (of course “A” and “B” could

have been permuted). By letting N = i−c, we have card(dom(h2)) ≥ N . The
set of locations h−1

1 (s(x)) (set of predecessors of s(x) in h1) contains N+c ele-
ments that can be written lD1 , . . . , lDN+c. Since card(dom(h2)) = card(ran(h2)),
there exist at least N locations lC1 , . . . , lCN in ran(h2). Moreover, since X =
dom(h1 ∗ h2) ∪ ran(h1 ∗ h2) is finite, there exist distinct locations lB1 , . . . , lBN
that are not in X. Let h′1 be the heap disjoint from (h1∗h2) with the memory
cells below:

h′1 = {lB1 7→lC1 , lC1 7→lD1 , . . . , lBN 7→lCN , lCN 7→lDN}

Let h′2 be heap disjoint from (h1 ∗ h2 ∗ h′1) that contains c 2-markers with
endpoints lDN+1, . . . , l

D
N+c respectively. It is easy to check that (s, h′1 ∗ h′2) |=

completec and (s, h1 ∗ h2 ∗ h′1 ∗ h′2) |= completed(x), which is sufficient to
guarantee (i). �

Satisfying that for all n ∈ N,]y − c ≤ n implies]x − c′ ≤ n suggests
a simple contest between two players: Spoiler aims at disproving that the
constraint holds, and Duplicator tries to prove it. The whole play of the
contest is depicted on Figure 6. The steps of context go as follows:

1. We start with an initial heap h0 without any hypothesis; if]x ≤ 2
or]y ≤ 2, the contest is over (these cases are handled elsewhere),
otherwise the contest may start.

2. Spoiler reduces to the case of a flooded model h1 (whole heap on the
second frame of Figure 6) by adding cells (the five new arrows in the
second frame) in a controlled way- this will be formalized later.

3. Spoiler picks a segmented heap h2 (the three new arrows in the third
frame) such that card(dom(h2)) equals n and (h1, h2) is compatible.

32

Figure 6 A contest won by Duplicator. n = 3, c = c′ = 0

x

?
?

? ?

y

?
?

?

?
?

?

1

x

?
?

? ?

y

?
?

?

?
?

?

2

?

?

?

??

x

?
?

? ?

y

?
?

?

?
?

?

3

?

?

?

??

?

?

?

?

?

?

x

?
?

? ?

y

?
?

?

?
?

?

4

?

?

?

??

?

?

?

?

?

?

? ? ?

x

?
?

? ?

y

?
?

?

?
?

?

5

?

?

?

??

?

?

?

?

?

?

? ? ?

33

4. Spoiler proves that]y− c ≤ n using the previous scenario.
5. Then Duplicator plays and wins if it can prove]x − c′ ≤ n (note that

Duplicator wins on Figure 6).

Figure 6 summarizes a contest with a successful outcome for Duplicator.
The above contest supposes that it is possible to characterize the heaps

h1 ∗ h2 such that (h1, h2) is compatible. A heap h is said to be almost
flooded whenever there exist h1 and h2 such that h = h1 ∗ h2 and (h1, h2) is
compatible.

Lemma 5.4 Let (s, h) be a memory state. h is almost flooded iff (s, h) |=
˜flooded with

˜flooded , (∀x, y (x ↪→ y∧]y = 1)⇒ (]x = 0∧¬alloc (y)))∧(¬(∃x]x = 2)).

The proof of Lemma 5.4 is by an easy verification. It remains to define
the formula contest(x, y, c, c′) that defines a contest and that is essential to
establish Theorem 5.5 below.

flooded ∧ ((seg ∧]x = 0 ∧]y = 0) −−∗ (˜flooded

⇒ ((completec −−∗ completed(y))⇒ (completec′ −−∗ completed(x))))).

Theorem 5.5 For c, c′ ≥ 0, there is a formula φ in SL(−−∗) of quadratic size
in c+c′ such that for every model (s, h), we have (s, h) |= φ iff]x+c ≤]y+c′.
Proof By packing the previous developments, we shall show that

(♥) When h is flooded, (s, h) |= contest(x, y, c, c′) iff]x + c ≤]y + c′.

Even though h is not necessarily flooded, when]x ≥ 3 and]y ≥ 3 it can be
safely extended to a flooded heap without modifying the number of prede-
cessors of x and y. When]x ≤ 2 or]y ≤ 2 such an extension is not anymore
possible. Nevertheless, by a simple case analysis,]x+c ≤]y+c′ is equivalent
to
∨
i≤2(]x = i ∧]y ≥ i + c − c′) ∨

∨
i≤2(]y = i ∧]x ≤ i + c′ − c), which

can be easily expressed in SL(−−∗). Let us consider φ def
= φspecial ∨ φmain with

φmain , (]x = 0 ∧]y = 0) −−∗¬ contest(x, y, c, c′) and

φspecial ,
∨
i≤2

(]x = i ∧]y ≥ i+ c− c′) ∨
∨
i≤2

(]y = i ∧]x ≤ i+ c′ − c)

First, it is clear that]x + c ≤]y + c′ and (]x ≤ 2 or]y ≤ 2) is equivalent to
(s, h) |= φspecial. Now, suppose that]x ≥ 3 and]y ≥ 3. Assuming that (♥)
holds, we have the following equivalences:

34

(1) (s, h) |= (]x = 0 ∧]y = 0) −−∗¬ contest(x, y, c, c′).

(2) There is h′ ⊥ h such that (s, h′) |= (]x = 0 ∧]y = 0) and (s, h ∗ h′) |=
contest(x, y, c, c′).

(3) There is h′ ⊥ h such that (s, h′) |= (]x = 0 ∧]y = 0) and (s, h ∗ h′) |=
flooded and]y + c′ ≥]x + c (in h ∗ h′) by (♥).

(4)]y + c′ ≥]x + c in h.

Observe that]x and]y in h are equal to their values in h ∗ h′ since (s, h′) |=
(]x = 0 ∧]y = 0). Moreover, (4) implies (3) since it is always possible to
extend a model into a flooded one while preserving]x and]y (when]x ≥ 3
and]y ≥ 3).

It remains to show that (♥) holds true. The statements below are equiv-
alent (h is assumed to be flooded):

1. (s, h) |= contest(x, y, c, c′).
2. for every segmented disjoint heap he such that (s, he) |=]x =]y = 0, if

(s, h∗he) |= completec −−∗¬ completed(y) and h∗he is almost flooded,
then (s, h ∗ he) |= completec′ −−∗¬ completed(x).

3. for every segmented disjoint heap he such that (s, he) |=]x =]y = 0,
there exist h′ ∗ h′e = h ∗ he such that (h′, h′e) is compatible and the
number of predecessors of x and y in h are equal to those of x and y in
h′, if card(dom(h′)) ≥]y− c, then card(dom(h′)) ≥]x− c′.

4. for every n ≥ 0, we have n ≥]y− c in h implies n ≥]x− c′ in h.
5.]x + c ≤]y + c′.

Lemma 5.4 is used from (1) to (2). Lemma 5.3 is used for the equivalence
between (2) and (3). Moreover, one needs to observe that h is flooded, he is
a disjoint segmented heap, (s, he) |=]x =]y = 0 and h ∗he is almost flooded
iff there are h′ ∗h′e = h∗he such that (h′, h′e) is compatible and the number of
predecessors of x and y in h are equal to those of x and y in h′. Equivalence
between (3) and (4) is due to the fact that for every n ≥ 0 there is a heap he
such that card(dom(he)) = n, (h, he) is compatible and (s, he) |=]x =]y = 0.

�

In Section 6, only constraints of the form]x + c ≤]y + c′ with c, c′ ≤ 3
are used. In particular, this means that for the forthcoming formulae using
advanced arithmetical constraints, c+ c′ can be viewed as a constant.

35

6. SL(−−∗) is Equivalent to SO

By combining Proposition 2.5 and Proposition 2.6, we know that DSO is
at least as expressive as SL and there is a logarithmic-space translation from
SL into DSO (logarithmic-space reductions are closed under compositions).
Now, we show the converse.

A syntactic convention. In the sequel, without any loss of generality, we
require that the sentences in DSO satisfy the Barendregt convention as far as
the second-order variables are concerned. Assuming that a sentence contains
the second-order variables P1, . . . , Pn, quantifications over Pj can only occur
in the scope of quantifications over P1, . . . , Pj−1 (we call this restriction the
extended Barendregt convention). Typically, we exclude sentences of the form
∃P2 ∃P1 φ. Observe that any sentence in DSO can be transformed in logspace
into an equivalent sentence verifying this convention. The quantifier depth of
the occurrence of a subformula ψ in φ is therefore the maximal i such that
this occurrence is in the scope of ∃Pi (by convention it is zero if it is not in
the scope of any quantification).

Encoding environments as specific parts of the memory state. Before defining
the translation of a DSO sentence φ, let us explain how environments can be
encoded in SL. First, let us introduce some terminology. We say that a
location l is an extremity in a given model if l has at least one predecessor
and no predecessor of l has a predecessor. The following formula states that
s(x) is an extremity: extr(x) , (¬∃y. (y ↪→ x ∧ ∃z.z ↪→ y)) ∧ (∃y. y ↪→ x).
In the particular case of a marker, an extremity is the location that points
to the endpoint of the marker.

An environment is encoded as a finite set of new markers distinct from the
original heap; this heap is called the environment heap (and it is written hE).
The main idea is that a pair of locations (l, l′) belongs to the interpretation
of a dyadic second-order variable if l and l′ are the endpoints of two markers
of hE that have respectively degrees d and d+ 1.

Let us illustrate this idea on a simple example. Assume we want to
express in SL the pure SO sentence “all finite orders have a minimal element”,
stated by the formula ∀P.φmin(P), with φmin(P) , ∀x, y.P(x, y)⇒

(
P(x, x) ∧ P(y, y)

)
∧ ∀x, y.

(
P(x, y) ∧ P(y, x)

)
⇒ x = y

∧ ∀x, y, z.
(
P(x, y) ∧ P(y, z)

)
⇒ P(x, z)

⇒ ∃x.∀y.P(y, x)⇒ x = y.

36

We could actually illustrate the idea with any other SO sentence using one SO
variable only, with this variable quantified in outermost position. Let P̂(x, y)
be the SL formula

P̂(x, y) , ∃x′, y′.(x′ ↪→ x ∧ y′ ↪→ y ∧]x′ + 1 =]y′).

This formula expresses that x and y are the endpoints of two markers of
consecutive degrees. To any heap h, we can associate the binary relation P̂h
composed of pairs of such locations. Conversely, any finite binary relation on
locations is realized by some P̂h. As a consequence, the SO formula ∀P.φmin(P)
is satisfied by the empty heap if and only if the SL formula > −−∗ φmin(P̂)

)
is.

The generalization of this encoding to arbitrary formulas raises several
problems. The first problem is to distinguish the environment heap from the
the original one (in the example above, this is solved by restricting ourselves
to an original empty heap, but this is not possible in general). In the previous
section, we solved this issue by first extending the original heap to a flooded
heap, and then by using markers of small degrees (one or two) that were
clearly distinct from the original heap. The same approach is not possible
here, because one may need arbitrarily large degrees. Transforming an orig-
inal heap into a flooded one in a controlled way is possible for counting the
number of predecessors (see Section 5), but it might be much more difficult if
the property of interest is not just a property on the number of predecessors,
but an arbitrary second-order property. For all these reasons, we adopt a
different strategy, and we ensure that the degree of a marker in hE is strictly
greater than the maximal number of predecessors of any location from the
original heap. Nonetheless, our investigation on counting the number of pre-
decessors is precious (see Section 5), and will be used when expressing that
two endpoints l, l′ are consecutively marked.

The second problem is, given a pair (l, l′) of locations marked by mark-
ers of consecutive degrees, to determine the second-order variable Pi whose
interpretation contains (l, l′). In the example above, we only had one second-
order variable, but we may not reduce to the case of a unique second-order
variable in general. To do so, we impose some more structure on hE. First,
for any natural number n, there is at most one extremity with degree n in
hE. The spectrum of hE is then defined as the finite set of natural numbers
n for which there is a marker of degree n in hE. Second, we require that the
spectrum of hE, depicted as a marking of the sequence of naturals, has the

37

following shape

empty︷ ︸︸ ︷
. . . ◦ ◦ ◦ ◦ • ◦ • • ◦ • • · · · ◦ • • ◦ • • ◦ • • · · · ◦ • • ◦ •

empty︷ ︸︸ ︷◦ ◦ ◦ ◦ . . .

(a symbol ’•’ on position n indicates the presence of a marker of degree n,
and ’◦’ its absence). In other words, the spectrum is a finite set of naturals
of the form

{n | a ≤ n ≤ b and n 6= a+ 1 (mod 3)}

for some a, b ∈ N (we later call such a spectrum a clean spectrum). This
simple and regular structure makes the characterisation of well-formed en-
vironment heaps easier at every step of the translation (in particular, every
time the environment is extended by a new quantified second-order vari-
able). In order to identify markers that are attached to a given second-order
variable,

1. we ensure that the markers of a given second-order variable follow each
others in a given interval,

2. these intervals do not overlap for two distinct second-order variables,
3. there is no unused space between these intervals.

This is achieved by introducing, for each Pj, two variables zmj and zMj that are
placed on the upper and lower bound of the interval of the interpretation of
Pj. For technical reasons, mainly related to bootstrapping, we also consider
the two distinguished variables zm0 and zM0 . So, the spectrum of hE can be
graphically depicted as

. . .◦◦◦◦
]zm0• ◦

]zM0•︸ ︷︷ ︸
bootstrap

]zm1• ◦ • • · · · ◦
]zM1•︸ ︷︷ ︸

code of P1

]zm2• ◦ • · · · • ◦
]zM2•︸ ︷︷ ︸

code of P2

]zm3• · · · ◦••◦
]zMn• ◦◦◦◦ . . .

6.1. Encoding Environments
First, let us show how to express structural properties about the envi-

ronment heap. In the proof of Lemma 6.1 below, advanced arithmetical
constraints are expressed thanks to Theorem 5.5.

Lemma 6.1 There is a formula PseudoEnv(z, z′) in SL(−−∗) such that the
conditions below hold true iff (s, hE) |= PseudoEnv(z, z′):

•]z <]z′,]z ≡]z′ + 2 (mod 3) and z and z′ are extremities.

38

• for all i in []z, . . . ,]z′],

– if i ≡]z + 1 (mod 3) then there is no extremity l in (s, hE) such
that]l = i,

– if i 6≡]z + 1 (mod 3), then there is exactly one location l such
that l is an extremity and]l = i. This unique location l belongs to
dom(hE).

Proof The formula PseudoEnv(z, z′) is the conjunction of the formulae
below expressing the following properties:

1.]z <]z′ and z,z′ are extremities:]z <]z′ ∧ extr(z) ∧ extr(z′).
2. There is no extremity with number of predecessors equal to either]z+1

or]z′ − 1.

(¬∃x extr(x) ∧]z + 1 =]x) ∧ (¬∃x extr(x) ∧]z′ = 1 +]x)

3. There is an extremity with number of predecessors equal to]z+2 [resp.
]z′ − 2].

∃x (extr(x) ∧ (]z + 2 =]x)) ∧ ∃x (extr(x) ∧ (]z′ = 2 +]x))

4. For every extremity x with a number of predecessors strictly between
]z and]z′, there is an extremity with a number of predecessors equal
to either]x + 1 or]x− 1.

∀x [extr(x) ∧]x >]z ∧]x <]z′]⇒ (∃y]y = 1 +]x ∨ ∃y]y + 1 =]x)

5. Constraint on two extremities with two consecutive numbers of prede-
cessors:

∀x.∀y [extr(x) ∧ extr(y) ∧ (]x >]z) ∧ (]x <]z′) ∧ (]y >]z)∧
(]y <]z′) ∧ (]y + 1 =]x)]⇒

[(¬∃y′]y′ = 1 +]x) ∧ (∃y′]y′ = 2 +]x)∧
(¬∃y′]y′ + 1 =]y) ∧ (∃y′.]y′ + 2 =]y)]

6. There are no two distinct extremities with an equal number of prede-
cessors.

∀x[extr(x) ∧]x ≥]z ∧]x ≤]z′]⇒ ¬∃y (extr(y) ∧]x =]y ∧ x 6= y)

It is then easy to check that the above conjunction satisfies the statement.
By induction on k ranging from 1 to (]z′ −]z− 2)/3, one can show that

there is no extremity l in (s, hE) such that]l =]z + 3k − 2, and there are
extremities l and l′ such that]l =]z+3k−1 and]l =]z+3k. This concludes
the proof. �

39

Consequently, if (s, hE) |= PseudoEnv(z, z′), then hE has a clean spec-
trum:

]z
• ◦ • • ◦ • • · · · ◦ • • ◦ • • ◦ • • · · · ◦ • • ◦

]z′

•

In that case, (s, hE) is called a pseudo-environment between z and z′.
An environment between z and z′ is a memory state (s, hE) such that

(P1) (s, hE) |= PseudoEnv(z, z′).

(P2) If l ∈ dom(hE), then either l or hE(l) is an extremity in hE.

(P3) For every extremity l in hE, l ∈ dom(hE) and hE(l) 6∈ dom(hE).

(P4) For every extremity l in hE,]z ≤]l ≤]z′.

Roughly speaking, (s, hE) is a finite set of markers with the above-
mentioned spectrum. Figure 7 presents a simple environment with]z = 1
and]z′ = 6, which allows to encode a single pair ((l, l) in the present figure).
Note that in full generality, the number of pairs that can be encoded by an
environment between z and z′ is equal to]z′−]z−2

3
.

Figure 7 A simple environment encoding the pair (l, l)

z F F z′

F

F

F F F

l

F F F F F F F F F F

F

Lemma 6.2 There exists a formula Env(z, z′) ∈ SL(−−∗) such that for every
memory state (s, h), we have (s, h) |= Env(z, z′) iff (s, h) is an environment
between z and z′.
Proof Let us consider the conjunction Env(z, z′) of the formulae below.

(F1) PseudoEnv(z, z′).

(F2) ∀x (alloc (x)⇒ (extr(x) ∨ ∃y x ↪→ y ∧ extr(y))).

40

(F3) ∀x extr(x)⇒ (alloc (x) ∧ ∃y x ↪→ y ∧ ¬alloc (y)).

(F4) ∀x extr(x)⇒ (]z ≤]x ∧]x ≤]z′).

Formula (Fi) captures the condition (Pi). �

Consequently, if (s, hE) |= Env(z, z′), then hE is equal to a set of markers
of the clean spectrum

]z
• ◦ • • ◦ • • · · · ◦ • • ◦ • • ◦ • • · · · ◦ • • ◦

]z′

•

A j-marked environment is a memory state (s, h) such that

(PM0) (s, h) is an environment between zm0 and zMj .

(PM1) for every variable x in {zm1 , . . . , zmj } ∪ {zM0 , . . . , zMj−1}, s(x) is an
extremity in (s, h) and]zm0 <]x <]zMj .

(PM2) For j ≥ i > 0,]zMi−1 + 1 =]zmi .

Consequently, when (s, h) is a j-marked environment, the spectrum of hE
contains the following values:

]zm0• ◦ • • · · · ◦
]zM0•

]zm1• ◦ • • · · · ◦
]zM1•

]zm2• ◦ • · · · • ◦
]zM2•

]zm3• · · · ◦ • • ◦
]zMj•

Moreover, if (s, h′) is another j-marked environment with identical store,
then h and h′ have the same spectrum.

Definition 6.3 below specifies how a heap can be divided into a base
part and an environment part with constraints on the values]zm0 ,]zM0 , . . . ,
]zmj ,]zMj . These values are helpful to determine the range of marker de-
grees that should be considered to encode the interpretation of second-order
variables.

Definition 6.3 A memory state (s, h) is j-well-formed for some j ≥ 0 iff
there are heaps hB, hE with h = hB ∗ hE satisfying the properties below:

(WF1) (s, hE) is a j-marked environment.

(WF2) There is no location l such that]l in (s, hB) is strictly greater than
]zm0 − 2 in (s, h).

(WF3) dom(hE) ∩ ran(hB) = ∅.

(s, hB) is called the base part and (s, hE) the environment part.

41

Condition (WF3) guarantees that when (s, h) is j-well-formed, for every
extremity l in hE,]l in hE is equal to]l in h. Consequently, any extremity in h
with more than]zm0 predecessors has all predecessors in dom(hE). Moreover,
(s, h) |= PseudoEnv(zm0 , z

M
j), that is (s, h) is a pseudo-environment between

zm0 and zMj .
We establish below a few lemmas that are helpful in the sequel.

Lemma 6.4 Let hE be the environment part of some j-well-formed model.
For every location l ∈ ran(hE), either l is an extremity in hE or there is l′
such that hE(l′) = l and l′ is an extremity.

Note that the above property holds true for any environment but we shall
use it for j-well-formed models only.
Proof If l ∈ ran(hE), then there is a location l′ such that hE(l′) = l. By
(P2) on (s, hE), either hE(l′) is an extremity or l′ is an extremity. �

Lemma 6.5 below states unicity of decomposition when a memory state
is j-well-formed.

Lemma 6.5 (Unicity) Whenever (s, h) is j-well-formed with base part hB
and environment part hE, there is no (h′B, h

′
E) 6= (hB, hE) such that (s, h) is

j-well-formed with base part h′B and environment part h′E.
Proof Let k0 = (]zMj −]zm0 − 2)/3 and S = {k : k 6≡ 1 (mod 3) and 0 ≤
k ≤ 3×k0 +2} be the spectrum of hE and h′E. Indeed, (s, hE) and (s, h′E) are
both j-marked environments and there are precisely card(S) extremities l in
(s, h) such that]zm0 ≤]l ≤]zMj . For each k ∈ S, we write lk to denote the
unique extremity such that]lk =]zm0 + k. Notice that each location lk has
no predecessor in hB by Definition 6.3(WF3), l0 = s(zm0) and l3k0+2 = s(zMj).

The set dom(hE) contains at least the following locations: for every k ∈ S,
the location lk and the]zm0 +k predecessors of lk in h. Let X be the set of the
above locations. Assume there is some l ∈ (dom(hE)\X). By (P2), either l or
hE(l) is an extremity in hE (let us call it l′). Since each predecessor of some
location in X is also in X and l 6∈ X, l is not a predecessor of an element in
X. Consequently, l′ is an extremity that does not belong to {lk : k ∈ S} (let
us call this set Y). Since]zm0 ≤]l′ ≤]zMj , either l′ has as many predecessors
as an element in Y or]l′ ≡]zm0 + 1 (mod 3). This entails that (s, hE) does
not satisfy PseudoEnv(zm0 , z

M
j) which leads to a contradiction. Consequently,

dom(hE) = X, hE = h|X (restriction of h to X) and hB = h|(dom(h)\X). �

42

In the sequel, when (s, h) is j-well-formed, by default hE denotes the
environment part and hB the base part.

We state below a crucial result, basically stating that adding an environ-
ment heap to a j-well-formed memory state leads to a (j + 1)-well-formed
memory state. This is central to interpret a new second-order variable (ex-
tending the environment part) and this can be performed thanks to −−∗ (de-
tails will follow).

Lemma 6.6 (Composition) Let (s, h) be a j-well-formed memory state
and (s′, h′E) be a memory state such that

1. h′E is disjoint from h and s′ differs from s at most for the variables
zmj+1 and zMj+1.

2. s′(zmj+1) and s′(zMj+1) do not belong to dom(h) ∪ ran(h).
3. (s′, h′E) is an environment between zmj+1 and zMj+1.
4. (s′, h ∗ h′E) |=]zMj + 1 =]zmj+1.
5. dom(h′E) ∩ ran(h) = ∅.

Then, (s′, h ∗ h′E) is (j + 1)-well-formed with the base part hB and the envi-
ronment part hE ∗ h′E.

The proof of Lemma 6.6 is tedious and requires some care. We provide
the details below.
Proof The proof mainly rests on establishing the property below.

(♠) Any extremity in hE or in h′E is an extremity in h ∗h′E with exactly the
same number of predecessors.

Consequently, this implies that in the model (s′, h∗h′E) we have the following
relationships:

(z)]zm0 <]zMj =]zmj+1 − 1 <]zMj+1 − 1,]zm0 + 2 ≡]zMj+1 (mod 3) and
]zmj+1 ≡]zm0 (mod 3).

Assuming (♠) and (z), let us check the conditions from Definition 6.3
for ensuring that (s′, h ∗ h′E) is (j + 1)-well-formed with base part hB. After
doing that, we shall establish that (♠) holds true.

First, we show that (s′, hE ∗ h′E) is a (j + 1)-marked environment.

(P1) Let us prove that (s′, hE∗h′E) |= PseudoEnv(zm0 , z
M
j+1). Below, the num-

bers of predecessors are relative to (s′, hE∗h′E). Let i ∈ {]zm0 , . . . ,]zMj+1}.

43

– Assume i ≡]zm0 + 1 (mod 3). Ad absurdum, suppose that there is
a location l such that l is an extremity and]l = i. Then l is an
extremity with i predecessors either in hE or in h′E, which leads
to a contradiction since (s′, h′E) is an environment between zmj+1

and zMj+1 and (s, hE) is an environment between zm0 and zMj .
– Assume i 6≡]zm0 + 1 (mod 3). If i ∈ {]zm0 , . . . ,]zMj }, then by

(♠) there is a unique extremity lk such that]lk = i. Otherwise
(i ∈ {]zmj+1, . . . ,]z

M
j+1}), by (♠), there is a unique extremity lnewk

such that]lnewk = i.

(P2) Suppose that l ∈ dom(hE ∗ h′E). Two cases are distinguished below.

– l ∈ dom(hE).
We distinguish again two subcases since h is j-well-formed.

∗ In the case l is an extremity in hE, the location l is an ex-
tremity in h ∗ h′E by (♠). Consequently, l is an extremity in
hE ∗ h′.
∗ In the case h(l) is an extremity in hE, the proof is analogous.

– l ∈ dom(h′E).
The proof is analogous.

(P3) Let l be an extremity in hE. Let us show that h(l) /∈ dom(hE ∗ h′E).
Since (s, h) is j-well-formed, h(l) /∈ dom(hE). Ad absurdum, suppose
that h(l) ∈ dom(h′E). Then, either h(l) is an extremity in h′E or h(l)
is a predecessor of an extremity l′ in h′E. In the first case, it leads
to a contradiction since the extremities of h′E are not in ran(hE), by
hypothesis (5). In the second case, l′ is not an extremity in h∗h′E which
is in contradiction with (♠). Consequently, h(l) /∈ dom(hE ∗ h′E).

Let l be an extremity in h′E. Since (s′, h′E) is an environment between
zmj+1 and zMj+1, we know that h′E(l) /∈ dom(h′E). It remains to check that
h′E(l) 6∈ dom(hE). Ad absurdum, suppose that h′E(l) ∈ dom(hE). Then
there is l′ ∈ {h′E(l), h(h′E(l))} such that l′ is an extremity in hE. By
(♠), l′ is an extremity in hE ∗ h′E. This leads to a contradiction since l
has predecessors in hE ∗ h′E.

(P4) Let l be an extremity in hE. We have]zm0 ≤]l ≤]zMj <]zMj+1 since
(s, h) is j-well-formed and (♠). Let l be an extremity in h′E. The values
]l,]zmj+1 and]zMj+1 do not change from h′E to h ∗ h′E. Since (s′, h′E) is

44

an environment between zmj+1 and zMj+1,]zmj+1 ≤]l ≤]zMj+1. So in
(s′, h ∗ h′E), we have]zm0 <]zmj+1 ≤]l ≤]zMj+1.

(PM1) By (♠), for each variable x in {zm0 , . . . , zmj+1}∪{zM0 , . . . , zMj+1}, the value
]x remains unchanged from h or h′E to h ∗ h′E. Considering that h is
j-well-formed, h′E is an environment between zmj+1 and zMj+1 and (s′, h ∗
h′E) |=]zMj +1 =]zmj+1, we conclude that for every x ∈ {zm1 , . . . , zmj+1}∪
{zM0 , . . . , zMj }, s(x) is an extremity and]zm0 <]x <]zMj+1.

(PM2) Let 0 < i ≤ j + 1. If i ≤ j, then since (s, h) is j-well-formed we obtain
(s, h) |=]zMi +1 =]zmi+1. By (♠), (s′, h∗h′E) |=]zMi +1 =]zmi+1 (s′ and
s agree for these variables). If i = j + 1, then hypothesis (4) precisely
states that (s′, h ∗ h′E) |=]zMj + 1 =]zmj+1.

It remains to verify the conditions (WF2) and (WF3).

(WF2) Since h and h ∗h′E have the same base part and (s, h) is j-well-formed,
we get that there is no location l such that]l in (s, hB) is strictly greater
than]zm0 − 2 in (s, h ∗ hE) (equal to]zm0 − 2 in (s, h) by (♠)).

(WF3) Since (s, h) is j-well-formed, we have dom(hE) ∩ ran(hB) = ∅. By
hypothesis (5), dom(h′E) ∩ ran(h) = ∅. Consequently, dom(hE ∗ h′E) ∩
ran(hB) = ∅.

Now, let us prove that (♠) holds true. First, we prove the case when
an extremity is a location of the form s′(z�k) with k ∈ {0, . . . , j + 1} and
� ∈ {m,M}. By hypothesis (2), s′(zmj+1) and s′(zMj+1) do not belong to
ran(h). So the values]zmj+1 and]zMj+1 remain unchanged from (s′, h′E) to
(s′, h ∗ h′E). Now let k ∈ {0, . . . , j} and � ∈ {m,M}. Assume that]z�k
has changed from (s′, h) to (s′, h ∗ h′E). Consequently, s′(z�k) ∈ ran(h′E). By
Lemma 6.4, there are two possibilities.

1. s′(z�k) is an extremity in (s′, h′E).
As (s′, h′E) is an environment between zmj+1 and zMj+1, every extremity
belongs to dom(h′E), whence s′(z�k) ∈ dom(h′E). This leads to a con-
tradiction since h and h′E are disjoint: s′(z�k) ∈ dom(hE) since (s, h) is
j-well-formed.

2. There is a location l such that h′E(l) = s′(z�k) (also equal to s(z�k)) and
l is an extremity. So s′(z�k) is not an extremity in h ∗ h′E, which also
leads to a contradiction.

45

Consequently, for all k ∈ {0, . . . , j} and � ∈ {m,M},]z�k is unchanged
from h to h ∗ h′E. Based on these preservations and since (s′, h′E) is an
environment between zmj+1 and zMj+1, (s′, h) is j-well-formed and (s′, h∗h′E) |=
]zMj + 1 =]zmj+1, we can conclude (z).

Before treating the proof for the other types of extremities, let us provide
a few basic definitions and facts. We define the natural numbers α, β and γ
as follows:

3α = (]zMj+1 −]zm0)− 2 3β = (]zMj −]zm0)− 2 3γ = (]zMj+1 −]zmj+1)− 2

Notice that γ = α− β − 1. These values are simply related to the spectrum
below where the first value is]zm0 and the last one is]zMj+1.

β pairs in hE︷ ︸︸ ︷
]zm0• ◦ • • ◦ • • · · · ◦ •

]zm0 +3β
• ◦

]zMj•

γ pairs in h′E︷ ︸︸ ︷
]zmj+1• ◦ • • ◦ • • · · · ◦ •

]zmj+1+3γ
• ◦

]zMj+1•︸ ︷︷ ︸
α=β+γ+1 pairs in hE∗h′E

For N ≥ 1, let FN , {k : k 6≡ 1 (mod 3) and 0 ≤ k ≤ 3N + 2} and
we pose Eα , Fα, Eβ , Fβ and Eγ , {n + (3β + 3) : n ∈ Fγ}. Since
(s, hE) is an environment between zm0 and zMj (remember (s, h) is j-well-
formed) and (s′, h′E) is an environment between zmj+1 and zMj+1, we get that
(s′, h ∗ h′E) |= PseudoEnv(zm0 , z

M
j+1). So, for every k ∈ Eα, there is a location

l∗k verifying the properties below in (s′, h ∗ h′E):

•]l∗k =]zm0 + k,

• l∗k is an extremity,

• there is no location l such that]l =]l∗k, l 6= l∗k and l is an extremity.

Notice that]l∗3×α =]zMj+1−2 in (s′, h∗h′E), l∗3×β+2 = s′(zMj) and l∗3×β+3 =
s′(zmj+1).

Similarly, as (s′, h) |= PseudoEnv(zm0 , z
M
j), for every k ∈ Eβ, there is a

location lk verifying the properties below in (s′, h):

•]lk =]zm0 + k,

• lk is an extremity,

• there is no location l such that]l =]lk, l 6= lk and l is an extremity.

46

Observe that all the extremities in hE are either of the form lk, or s′(zm0)
or s′(zMj). Moreover,]l3β =]zMj − 2 in (s′, h).

Finally, as (s′, h′E) |= PseudoEnv(zmj+1, z
M
j+1), for every k ∈ Eγ, there is a

location lnewk verifying the properties below in (s′, h′E):

•]lnewk = (]zmj+1 − (3β + 3)) + k,

• lnewk is an extremity,

• there is no location l such that]l =]lnewk , l 6= lnewk and l is an extremity.

Observe that all the extremities of h′E are either of the form lnewk , or
s′(zmj+1) or s′(zMj+1). We can establish additionnal arithmetical properties:
]lnew3×γ =]zMj+1 − 2 in (s′, h′E) and]lnewk in (s′, h′E) is equal to]zm0 + k in
(s′, h ∗ h′E).

We are going to prove that for all k ∈ Eβ, lk = l∗k, and for all k ∈ Eγ,
lnewk = l∗k. This will terminate the proof of (♠) since the only extremities
in hE are {lk : k ∈ Eβ} ∪ {s′(zm0), s′(zMj)} and the only extremities in h′E
are {lnewk : k ∈ Eγ} ∪ {s′(zmj+1), s′(zMj+1)}. The proof is ad absurdum and we
distinguish two cases (each of them will therefore lead to a contradiction):

(I) There is k ∈ Eβ such that lk 6= l∗k.

(II) There is k ∈ Eγ such that lnewk 6= l∗k.

(I) Let us first establish that l∗k ∈ ran(h′E) (proof ad absurdum). Suppose
that l∗k 6∈ ran(h′E). So,]l∗k remains unchanged from (s′, h) to (s′, h ∗ h′E). As
in (s′, h ∗ h′E), we have]zm0 <]l∗k <]zMj , and zm0 and zMj remain unchanged
from (s′, h) to (s′, h ∗ h′E), we can infer that]zm0 <]l∗k <]zMj in (s′, h).
Additionnally, as in (s′, h ∗ h′E), we have]l∗k =]zm0 + k, this is also true in
(s′, h). Finally, as l∗k is an extremity in (s′, h ∗ h′E), it is also an extremity
in (s′, h). Consequently, l∗k = lk, which leads to a contradiction. We have
established that l∗k ∈ ran(h′E). By Lemma 6.4, there are two possibilities:

• l∗k is an extremity in h′E.
Consequently, in h′E, we have]l∗k >]zmj+1. As]zmj+1 remains unchanged
from (s′, h′E) to (s′, h ∗ h′E), in h ∗ h′E we obtain]l∗k >]zmj+1 =]zMj + 1,
which leads to a contradiction since]l∗k =]lk =]zm0 + k and]lk <]zMj .

• There is a location l0 such that l0 is an extremity in h′E and h′E(l0) = l∗k.
So l∗k is not an extremity in h′E, and it cannot either be an extremity
in h ∗ h′E, which leads to a contradiction.

47

(II) Let k be the smallest element of Eγ such that lnewk 6= l∗k. In (s′, h∗h′E), we
know that]l∗k >]zmj+1 >]zMj . Moreover, as l∗k is an extremity in (s′, h ∗ h′E),
either l∗k is an extremity in (s′, h) too or l∗k has no predecessor in (s′, h). Since
no extremity of (s′, h) has more than]zMj predecessors (in both h and h∗h′E),
the location l∗k cannot have all of its predecessors in dom(h). Let l0 be one of
the predecessors of l∗k that belongs to dom(h′E), i.e. h′E(l0) = l∗k.

Recall that (s′, h′E) is an environment between zmj+1 and zMj+1. Since l0 ∈
dom(h′E), there is l ∈ {l0, h′E(l0)} such that in h′E:

(a) l is an extremity,

(b) l ∈ dom(h′E),

(c)]zmj+1 ≤]l ≤]zMj+1,

(d) no other extremity has exactly]l predecessors.

Indeed, (a) comes from (P2), the conditions (b) and (d) come from (s′, h′E) |=
PseudoEnv(zmj+1, z

M
j+1), (c) from satisfaction of (P4).

In the case l = l0, l∗k is not an extremity in h′E and hence l∗k is not an
extremity in h ∗ h′E. This leads to a contradiction. Consequently, we have
l = h′E(l0) = l∗k. Let us conclude the proof.

In h′E, the location l∗k is an extremity. As (s′, h′E) is an environment
between zmj+1 and zMj+1, we have l∗k ∈ dom(h′E) and]zmj+1 ≤]l∗k ≤]zMj+1 in
(s′, h′E). Since s(zmj+1) 6= l∗k and s(zMj+1) 6= l∗k, we obtain]zmj+1 <]l∗k <]zMj+1

in h′.
So there is p ∈ Eγ such that l∗k = lnewp . We have that the value]lnewp

changes from h′E to h ∗ h′E, and therefore lnewp 6= l∗p. Since]lnewp can only
increase from h′E to h ∗ h′E, we can conclude that]lnewp in (s′, h′E) is strictly
smaller than]lnewp =]l∗k in (s′, h ∗ h′E). By definition of the locations l∗k and
lnewp , we obtain p < k, which leads to a contradiction by minimality of k. �

6.2. The Translation
In this section, we provide the translation from DSO into SL(−−∗). First, we

introduce additional formulae that will be useful in the translation process.
It is worth observing that in order to translate first-order quantification, we
should guarantee that first-order variables x are not interpreted as locations
from the domain of the environment part. Typically, the number of prede-
cessors of s(x) and h(s(x)) (if it exists) should be less than]zM0 and none of

48

these locations is an extremity. The formula notonenv(·) is introduced for
this purpose:

notonenv(x) , ¬(∃y (y = x ∨ x ↪→ y) ∧ (]y ≥]zm0) ∧ extr(y)).

Lemma 6.7 Let (s, h) be a j-well-formed model. Then (s, h) |= notonenv(x)
iff s(x) 6∈ dom(hE).
Proof As (s, h) is j-well-formed, by Definition 6.3, for any location l, we
have l ∈ dom(hE) iff there is a location l′ ∈ {l, h(l)} such that in the heap
hE, we have]l′ ≥]zm0 and l′ is an extremity. Moreover, by Definition 6.3, we
get in the heap h that]l′ ≥]zm0 and l′ is an extremity. Assume that s(x) ∈
dom(hE), then thanks to the explanations just above, (s, h) 6|= notonenv(x).
Now, ad absurdum, suppose that s(x) 6∈ dom(hE) and (s, h) 6|= notonenv(x).
Then there is l ∈ {s(x), h(s(x))} such that]l ≥]zm0 and l is an extremity, by
definition of notonenv. Furthermore, by Definition 6.3(WF3), the location
l is not an extremity in hE, all of its precedessors are in hB. Then by
Definition 6.3,]l ≥]zm0 − 2, which leads to a contradiction. �

The formula relationj,X defined below is helpful to build environments.

Proposition 6.8 Let j ≥ 0 and X be a finite set of variables disjoint from
{zm0 , zM0 , . . . , zmj , zMj }. Then, there is a formula relationj,X such that for
every model (s, h), we have (s, h) |= relationj,X iff (s, h) is an environment
between zmj and zMj and for every x ∈ X, s(x) 6∈ dom(h).

The formula relationj,X is simply

Env(zmj , x
M
j) ∧

∧
y∈X

¬alloc (y).

The translation of the formula φ, written T (φ), is defined with the help
of the translation tj where j records the quantifier depth.

T (φ) , ∃zm0 zM0 isol(zM0) ∧ isol(zm0)∧

[((∀x. alloc (x)⇒ (x ↪→ zM0 ∨x ↪→ zm0 ∨x = zM0 ∨x = zm0))∧alloc (zM0)∧alloc (zm0)) −−∗¬

(∀x.x 6= zM0 ∧x 6= zm0 ⇒ (]zm0 ≥ 2+]x))∧(]zM0 = 2+]zm0)∧extr(zm0)∧extr(zM0)∧t0(φ))]

The formula isol(x) is an abbreviation for ¬∃y (x ↪→ y) ∨ (y ↪→ x); this
guarantees that s(x) 6∈ dom(h) ∪ ran(h). It remains to define recursively the
map tj(·).

49

• tj(x = y) , x = y,

• tj(x ↪→ y) , x ↪→ y,

• for i ≤ j, tj(Pi(x, y)) is defined by

∃z, z′ (z ↪→ x) ∧ (z′ ↪→ y) ∧ (]z >]zmi) ∧ (]z′ <]zMi) ∧

(]z′ = 1 +]z) ∧ extr(z) ∧ extr(z′)

So (s(x), s(y)) belongs to the interpretation of Pi when s(x) and s(y)
are endpoints of markers with consecutive degrees between]zmi and
]zMi .

• tj is homomorphic for Boolean connectives.

• tj(∃x ψ) , ∃x notonenv(x) ∧ tj(ψ).

• tj(∃Pj+1, ψ), is defined by

∃zmj+1, z
M
j+1 isol(zmj+1) ∧ isol(zMj+1)∧

(relationj+1,FV(ψ) −−∗¬ (PseudoEnv(zm0 , z
M
j+1)∧]zMj +1 =]zmj+1∧tj+1(ψ)))

In order to translate ∃Pj+1 ψ, we introduce two locations whose num-
bers of predecessors determine the bounds for the degrees for any
marker used to encode a pair for the interpretation of Pi. There is
a way to add markers (expressed thanks to the connective −−∗¬) that
guarantees that the new part of the heap encodes the interpretation of
the variable Pj+1 by using the above formula relationj+1,X .

Observe that T (φ) and φ have the same first-order free variables.

6.3. Correctness
Before stating the correctness of the translation T (·), we need to formally

define how to extract an environment from a j-well-formed model (but now,
that is easy).

Definition 6.9 Let (s, h) be a j-well-formed model, and let hE be the asso-
ciated environment heap. The environment E extracted from h is

E(Pi)
def
= {(hE(l), hE(l′)) :]zmi <]l,]l + 1 =]l′,]l′ <]zMi in hE}

for all i ∈ {1, . . . , j}.

50

Correctness of T (·) is based on Proposition 6.10 below. The proof shall
use several results established earlier.

Proposition 6.10 Let φ be a DSO formula using the extended Barendregt
convention and ψ be a subformula of φ at quantifier depth j. Let (s, h) be
a j-well-formed model, with base part (s, hB) and environment part (s, hE),
such that for each x ∈ FV(ψ), s(x) 6∈ dom(hE). Let Ej be the environment
extracted from hE. Then, (s, h) |= tj(ψ) iff (s, hB), Ej |= ψ.
Proof Let us start by a preliminary definition. We say that a location l
occurs in a binary relation R when there is a location l′ such that (l, l′) ∈ R
or (l′, l) ∈ R. Let φ be a DSO sentence satisfying the extended Barendregt
convention. We want to show by induction on ψ that given:

• ψ is a subformula of φ of quantifier depth j,

• (s, h) is j-well-formed with base part hB and environment part hE such
that for every variable x ∈ FV(ψ), we have s(x) 6∈ dom(hE),

• Ej is the environment {P1 7→ R1, . . . , Pj 7→ Rj} extracted from hE,

• no location occurring in R1 ∪ · · · ∪ Rj belongs to dom(hE),

we have (s, h) |= tj(ψ) iff (s, hB), Ej |= ψ.

Base cases.
The base cases x = y and x ↪→ y are by an easy verification since tj restricted
to them is the identity map. Let us consider the more interesting base case,
i.e. when ψ = Pk(x, y) with k ≤ j.
(→) Suppose that (s, h) |= tj(Pk(x, y)). Then, in the heap h, the locations
s(x) and s(y) have predecessors in h that are also extremities, let us call them
respectively lx and ly. In the heap h, we have]zmk <]lx =]ly− 1 <]zMk − 1.
By Definition 6.3, both lx and ly have predecessors in dom(hE) and all of
their predecessors are also in dom(hE). Since zmk and zMk have also all of their
predecessors in dom(hE), we have]zmk <]lx,]lx + 1 =]ly and]ly <]zMk in
hE. By Definition 6.9, we get (h(lx), h(ly)) ∈ Rk, that is (s(x), s(y)) ∈ Rk.
Consequently, (s, hB), Ej |= Pk(x, y).
(←) Suppose that (s, hB), Ej |= Pk(x, y). By definition of |= and Ej, we have
(s(x), s(y)) ∈ Rk. So s(x) and s(y) have respectively predecessors lx and ly in
dom(hE). In the heap hE, lx and ly are extremities and]zmk <]lx =]ly− 1 <
]zMk − 1. By Definition 6.3, the predecessors of any location among s(zmk),

51

lx, ly and s(zMk) belong to dom(hE). So the above inequalities and equality
are also true in h. By Definition 6.3, the locations s(zmk), lx, ly and s(zMk)
are extremities in h. So (s, h) |= tj(Pk(x, y)).

Induction step. Our induction hypothesis is the following: for every sub-
formula ψ′ of size strictly less than the size of ψ, for j ∈ {0, . . . , n} (n is the
quantifier depth of φ) and for any j-well-formed model (s, h) such that for
every variable x ∈ FV(ψ), we have (s, h) |= tj(ψ

′) iff (s, hB), Ej |= ψ′.
Case 1: ψ = ∃x ψ′. The statements below are equivalent:

(0) (s, h) |= tj(∃x ψ′),
(1) there is l ∈ Loc such that (s′, h) |= tj(ψ

′) and (s′, h) |= notonenv(x)
with s′ = s[x 7→ l] (by definition of tj),

(2) there is l ∈ Loc such that (s′, h) |= tj(ψ
′) and l 6∈ dom(hE) with s′ =

s[x 7→ l] (by Lemma 6.7),

(3) there is l ∈ Loc such that (s′, hB), Ej |= ψ′ and l 6∈ dom(hE) with
s′ = s[x 7→ l] (by induction hypothesis since FV(ψ′) ⊆ FV(∃x. ψ′)∪{x}),

(4) there is l ∈ Loc such that (s′, hB), Ej |= ψ′ with s′ = s[x 7→ l],

(5) (s, hB), Ej |= ψ (by definition of |=).

Let us justify below why (4) implies (3). Suppose (4) and l ∈ dom(hE). Since
(s, h) is j-well-formed, l /∈ (dom(hB) ∪ ran(hB)). Since Loc is an infinite set,
there is a location l′ ∈ (Loc\ (dom(hB)∪ran(hB)∪dom(hE)) such that l′ does
not occur in (R1 ∪ · · · ∪ Rj). By Lemma 2.1, (s[x 7→ l′], hB), Ej[l← l′] |= ψ′.
Suppose ad absurdum that l occurs in Rk for some 1 ≤ k ≤ j. So, l has a
predecessor that is an extremity in dom(hE) and by (P3), l 6∈ dom(hE), which
leads to a contradiction. Hence, Ej[l ← l′] = Ej. We have established that
(s[x 7→ l′], h1), Ej |= ψ′ and l′ 6∈ dom(hE).

Case 2: ψ = ∃Pj+1 ψ
′.

(←) Suppose that (s, hB), Ej |= ∃Pj+1 ψ
′. By definition of the satisfaction

relation |=, there is R ∈ Pf (Loc2) such that (s, hB), Ej[Pj+1 7→ R] |= ψ′.
Since we aim at having locations in hE that do not interfere with the store,
we need to be more restrictive about R.

Replacing R by some R′. We build below a finite binary relation R′ from R
such that no location in dom(hE) occurs inR′ and (s, hB), Ej[Pj+1 7→ R′] |= ψ′.

52

More precisely, R′ will be obtained from R by replacing its image under a
permutation of the set of locations that leaves the locations in s and hB
fixed. The relation R′ is constructed by successively replacing the locations
in dom(hE) that occur also in R. Suppose that for some l ∈ dom(hE), l
occurs also in R. By the induction hypothesis, for every variable x ∈ FV(ψ′),
l 6= s(x). By Definition 6.3 on (s, h), we have l /∈ (dom(hB) ∪ ran(hB)). So
l /∈ (dom(hB) ∪ ran(hB) ∪ {s(x) : x ∈ FV(ψ′)}). As l ∈ dom(hE) and Ej is
extracted from hE, l does not occur in (R1 ∪ · · · ∪ Rj). Moreover, for every
location l′ that does not occur in R1 ∪ · · · ∪ Rj, we have Ej[l← l′] = Ej.

Since {s(x) : x ∈ FV(ψ′)}), dom(h), ran(h) and R1, . . . ,Rj are finite sets,
there is l′ ∈ Loc such that:

• l′ /∈ (dom(hB) ∪ ran(hB) ∪ {s(x) : x ∈ FV(ψ′)}) and l′ /∈ dom(hE),

• l′ does not occur in R1 ∪ · · · ∪ Rj.

By Lemma 2.1, there is l′ /∈ dom(hE) such that(
s[l← l′] , hB

)
, Ej[Pj+1 7→ R][l← l′]

satisfies ψ′. As l /∈ {s(x) : x ∈ FV(ψ)}, we also have s[l ← l′] = s. Let R′′ be
R[l← l′]. Since Ej[l← l′] = Ej, we obtain (s, hB), Ej[Pj+1 7→ R′′] |= ψ′.

If p ≥ 1 locations in dom(hE) occur in R, then p− 1 locations in dom(hE)
occur in R′′. Applying the above transformation iteratively p times, we
can build a relation R′ such that no location in dom(hE) occurs in R′ and
(s, hB), Ej[Pj+1 7→ R′] |= ψ′.

Hence, (s, hB), Ej |= ∃Pj+1 ψ
′ if and only if there is a finite binary relation

R ∈ Pf (Loc2) such that (s, hB), Ej[Pj+1 7→ R] |= ψ′ and no location in
dom(hE) occurs in R.

Defining (s′, h′E). Let us build s′ and h′E such that

(A) (s′, h′E) is an environment between zmj+1 and zMj+1.

(B) (s′, h ∗ h′E) is (j + 1)-well-formed with the environment part hE ∗ h′E.

Suppose that R contains α ≥ 0 pairs, say R = {(l′1, l′′1), . . . , (l′α, l
′′
α)}. Let

us build an environment (s′, h′E) whose spectrum, for β =]zMj + 1, can be
depicted as

β
• ◦

α times the pattern ••◦︷ ︸︸ ︷
(• • ◦ . . . • • ◦)

β+3α+2
•

53

Its set of natural numbers S is equal to

{β, β + 3α + 2} ∪ {β + 3k + 2, β + 3k + 3 : 0 ≤ k ≤ α− 1}.

A location l is said to be fresh if l is not in the set

({l′k, l′′k : 1 ≤ k ≤ α} ∪ dom(h) ∪ ran(h) ∪ {s(x) : x ∈ FV(ψ′)}).

By finiteness of the involved objects, let X be the following set of fresh
locations (there is no need to provide here precise values):

{lγ : γ ∈ S} ∪ {lγ′γ : γ ∈ S, 1 ≤ γ′ ≤ γ} ∪ {l′′0 , l′α+1}.

The store s′ is defined from s by only imposing that s′(zmj+1) = l′′0 and
s′(zMj+1) = l′α+1. The heap h′E has domain X and it is defined as follows:

• h′E(lγ
′
γ) = lγ for γ ∈ S and 1 ≤ γ′ ≤ γ,

• h′E(lβ+3k+2) = l′k and h′E(lβ+3k+3) = l′′k for 0 ≤ k ≤ α− 1,

• h′E(lβ) = l′′0 and h′E(lβ+3α+2) = l′α+1.

By an easy (and long) verification, one can check that (A) and (B) hold
true. Moreover, the relations extracted from hE ∗ h′E (see Definition 6.9) are
precisely R1, . . . ,Rj,R and for every x ∈ FV(ψ′), s′(x) 6∈ dom(hE ∗ h′E). By
the induction hypothesis, (s′, hB), Ej[Pj+1 7→ R] |= ψ′ iff (s′, h∗h′E) |= ψ′. By
Lemma 2.2, (s′, h ∗ h′E) |= ψ′.

By (A), (s′, h′E) |= relationj+1,FV(ψ′). Additionally, by definition of l′′0 and
l′α+1, we have (s′, h) |= isol(zmj+1) and (s′, h) |= isol(zMj+1). Finally, since
(s, h ∗ h′E) is (j + 1)-well-formed, we have (s, h ∗ h′E) |= PseudoEnv(zm0 , z

M
j+1)

(Lemma 6.1) and (s, h ∗ h′E) |=]zMj + 1 =]zmj+1. As a conclusion, we have
shown (s, h) |= tj(∃Pj+1 ψ

′).

(→) Suppose that (s, h) |= tj(∃Pj+1 ψ
′). In other words, there are locations

l, l′ /∈ (ran(h)∪dom(h)), and a disjoint heap h′E⊥h such that the claims below
are true

1. h′E is disjoint from h and s′ differs from s at most for the variables zmj+1

and zMj+1.
2. s′(zmj+1) = l and s′(zMj+1) = l′ do not belong to dom(h).
3. (s′, h′E) is an environment between zmj+1 and zMj+1.
4. (s′, h ∗ h′E) |=]zMj + 1 =]zmj+1.

54

5. dom(h′E) ∩ ran(h) = ∅.

These claims essentially follow from the definition of formula tj(∃Pj+1 ψ
′),

the only difficult part being claim 5. Let us detail this last point: while
merging h and hE, no new marker can be created so any marker in h ∗ hE is
a marker either from hE or from h, with the same degree. Moreover, h ∗ hE
satisfies PseudoEnv(zm0 , z

M
j+1), so the spectrum of hE is included in the one

of h ∗ hE. Combining these two facts, it follows that all markers of hE are
still markers of the same degree in h ∗ hE, and in particular claim 5 holds.

Now, claims 1-5 are precisely the assumptions from Lemma 6.6 and there-
fore (s′, h∗h′E) is (j+1)-well-formed. Observe that (5) is consequence of (3).
Since (s′, h ∗ h′E) |= tj(ψ

′) and for every x ∈ FV(ψ′) s(x) /∈ dom(hE ∗ h′E), we
can then apply the induction hypothesis and obtain (s, hB), Ej+1 |= ψ′, that
is (s, hB), Ej |= ∃Pj+1 ψ

′ where Ej+1 is extracted from hE ∗ h′E. �

Here is our main result about the expressive power of SL.

Theorem 6.11 SL(−−∗) ≡ SL ≡ SO ≡ DSO.
Proof The proof follows from the following properties:

• SL(−−∗) v SL and DSO v SO by simply considering syntactic fragments.

• SL v DSO and SO v DSO by Proposition 2.6.

• DSO v SL(−−∗).

It remains to show that DSO v SL(−−∗) by using Proposition 6.10. Let φ
be a DSO sentence. Without any loss of generality, we can assume that φ
has no free occurrence of first-order variables of the form z�j (otherwise,
other auxilliary variables are used) and φ satisfies the extended Barendregt
convention since every DSO sentence can be reduced to an equivalent one in
logspace. Let (s, h) be a model. The statements below are equivalent

• (s, h) |= T (φ),

• There are h′E ⊥ h, l, l′ and s′ = s[zm0 7→ l, zM0 7→ l′] such that

– l and l′ /∈ dom(h) ∪ ran(h),
– l, l′ ∈ dom(h′) and for every location l′′ ∈ dom(h′E)\{l, l′}, we have
h′E(l′′) ∈ {l, l′}.

– In (s′, h ∗ h′E),]zM0 = 2 +]zm0 and for every l′′ ∈ dom(h), we have
]zm0 ≥ 3 +]l′′.

55

– l and l′ are extremities in (s′, h ∗ h′E).
– (s′, h ∗ h′E) |= t0(φ).

(by definition of T (·) and |=)

• There are h′ ⊥ h, l and l′ such that

– (s′, h ∗ h′E) is an environment with]zM0 = 2 +]zm0 .
– (s′, h ∗ h′) |= t0(φ).

(by Definition 6.3 and Lemma 6.5)

• There are h′ ⊥ h, l and l′ such that

– (s′, h ∗ h′E) is an environment with]zM0 = 2 +]zm0 .
– (s′, h), E0 |= φ for any environment E0 extracted from h′E.

(by Proposition 6.10)

• (s, h) |= φ since

– the variables zm0 and zM0 do not occur in φ and φ is a sentence.
– h′E can always be built since h is essentially a finite structure.

�

Observe that all the equivalences are obtained with logarithmic-space
translations. Consequently,

Corollary 6.12 SL(−−∗) satisfiability problem is undecidable.
Proof We have seen that for every sentence such that φ in DSO, there is
an effective way to compute φ′ in SL(−−∗) such that φ and φ′ hold on exactly
the same models. In order to show undecidability of SL(−−∗), it is sufficient
to provide a reduction from finitary satisfiability for classical predicate logic
restricted to a single binary predicate symbol (see e.g. [37]) to DSO. Let φ
be a first-order formula built over the binary predicate symbol R. One can
easily show that φ is satisfiable iff

∃D ∃R (∀x y R(x, y)⇒ D(x, x) ∧ D(y, y)) ∧ t(φ)

is satisfiable. The map t is the identity map for atomic formulae, homo-
morphic for Boolean connectives and performs a relativization for first-order
quantification: t(∀x ψ) = ∀x D(x, x)⇒ t(ψ). The intention is obviously that
D(x, x) holds true whenever x belongs to the finite model. �

56

Undecidability of SL(−−∗) can be obtained much more easily by encoding
the halting problem for Minsky machines by using the fact that]x =]y and
]x =]y + 1 can be expressed in SL(−−∗) (Section 5). Indeed, computations
of length n can be encoded as lists of length 3n; three successive locations
encode a configuration of the machine and for two of those locations, counter
values are encoded by the numbers of predecessors. Corollary 6.12 is obtained
with the stronger result SL(−−∗) ≡ DSO since DSO is undecidable.

7. Extensions with More Than one Selector

In order to express advanced arithmetical constraints (see Section 5) or
to encode finite sets of pairs of locations (see Section 6), we have introduced
additional parts in the heaps via markers. In order to distinguish these
auxiliary markers from the original heap, we have decided to use markers of
small degree (as in Section 5) or markers of large degree (as in Section 6).
However, in the presence of memory cells with strictly more than one selector
it is even easier to identify these auxiliary markers; for example, the memory
cells l 7→ l′ introduced in a model to check arithmetical constraints or to
encode environments can be replaced by memory cells of the form

l 7→ l′,

(k−1) times︷ ︸︸ ︷
⊥, . . . ,⊥

where ⊥ is a location that is not present in the original model (i.e. not in
ran(h) ∪ dom(h)). We write kSL [resp. kSO] to denote the variant of SL
[resp. SO] with k selectors. In that case, a heap h is defined as a partial
function h : Loc ⇀ Lock with finite domain. The atomic formulae of the
form x ↪→ y from SL are replaced by x ↪→ y1, . . . , yk. Obviously 1SL [resp.
1SO] corresponds to SL [resp. SO]. We write kSOk′ to denote the restriction
of kSO to second-order variables in VARk′ .

In the rest of this section, we assume that k > 1. We dedicate the rest of
this section to show Theorem 7.1 below can be proved by adapting what we
did for a unique selector. We may overload symbols but no confusion should
occur. The case k = 1 requires a lot of care but a simpler direct proof is
possible for k 6= 1. Indeed, for k = 1 the identification of auxiliary memory
cells is performed thanks to structural properties whereas for k > 1, this
could be done by simply checking the presence of distinguished values.

Theorem 7.1 For every k > 1, kSL ≡ kSL(−−∗) ≡ kSO.

57

We establish Theorem 7.1 by adapting the proof for k = 1. However, a
simpler proof for k > 1 is possible but it would require a different approach
that cannot find its place in this paper. First, an obvious adaptation of the
proof of Propositions 2.5 and 2.6 allows us to show the statement below.

Lemma 7.2 kSL v kSOk+1 and kSOk+1 v kSO2.

It remains to show that kSO2 v kSL(−−∗). The basic observation is that all
the auxiliary memory cells l 7→ l′ introduced in a model to check arithmetical
constraints or to encode environments are replaced by memory cells of the
form

l 7→ l′,

(k−1) times︷ ︸︸ ︷
⊥, . . . ,⊥

where ⊥ is a location that is not present in the original model. Observe that
it is easy to check that a memory cell is auxiliary by simply inspecting the
presence of ⊥. We shall also enforce that in a new memory cell, l′ is different
from ⊥ and the (k − 1) remaining locations are exactly ⊥.

Before explaining the adaption, we introduce alternative definitions:

• Given (s, h) and a location l, we write]l to denote the cardinal of
{l′ ∈ Loc : h(l′) = (l, . . .)} (number of 1-predecessors of the location l
in (s, h)).

• We write x ↪→ y as a shortcut for ∃y2 · · · yk x ↪→ y, y2, . . . , yk.

• A [resp. strict] marker in (s, h) is a sequence of distinct locations
l, l0, . . . , ln for some n ≥ 0 (all distinct from ⊥) such that

– h(l0) = (l,

k−1 times︷ ︸︸ ︷
⊥, . . . ,⊥) [resp. and dom(h) = {l0, . . . , ln}],

– for every i ∈ {1, . . . , n}, h(li) = (l0,

k−1 times︷ ︸︸ ︷
⊥, . . . ,⊥) and]li = 0,

–]l0 = n.

• We define an extremity as a location l in a model such that l has at
least one 1-predecessor and no 1-predecessor l′ of l appears in some
tuple from ran(h).

58

Let ϕ⊥ be the formula specifying that auxiliary memory cells are of the
above shape:

∀x, x1, . . . , xk. x ↪→ x1, . . . , xk ⇒ (x 6= x⊥ ∧ x1 6= x⊥ ∧
k∧
i=1

xi = x⊥)

Following the developments from Section 5, we can show the following
theorem.

Theorem 7.3 For c, c′ ≥ 0, there is a formula φ in kSL(−−∗) of quadratic
size in c+ c′ such that for every model (s, h), we have (s, h) |= φ iff]x+ c ≤
]y + c′.

Basically, we consider the formula from Section 5 in which we add to the
first argument to any subformula with outermost connective either −−∗¬ or −−∗
the conjunct ϕ⊥, exactly when we need to introduce markers. Moreover,
in some cases, formulae of the form x ↪→ y for the one selector case from
Section 5 are replaced by x ↪→ y, x⊥, . . . , x⊥ when markers are involved.

Let us consider the reduction from kSO2 into kSL. Given a sentence in
kSO2 satisfying the extended Barendregt convention and with n second-order
variables, its translation is defined below

∃x⊥ ¬(∃x, x1, . . . , xk (x ↪→ x1, . . . , xk) ∧ (x = x⊥ ∨
k∨
i=1

xi = x⊥)) ∧ T ′(φ)

where T ′(φ) is a variant of the map T (φ) for the one selector case in which
the definition of tj(ψ) is modified as follows.

1. T ′(φ) takes the value below:

∃zm0 zM0 isol(zM0) ∧ isol(zm0)∧

[((∀x. alloc (x)⇒ (x ↪→ zM0 ∨ x ↪→ zm0 ∨ x = zM0 ∨ x = zm0))∧
alloc (zM0) ∧ alloc (zm0)) ∧ ϕ⊥ −−∗¬

(∀x.x 6= zM0 ∧ x 6= zm0 ⇒ (]zm0 > 2 +]x)) ∧ (]zM0 = 2 +]zm0)∧
extr(zm0) ∧ extr(zM0) ∧ t0(φ))]

The formula isol(x) is an abbreviation for

∀ y, y1, . . . , yk (y ↪→ y1, . . . , yk)⇒ ((y 6= x) ∧
i=k∧
i=1

(yi 6= x)).

59

2. notonenv(x) is defined by

¬(∃y x ↪→ y, x⊥, . . . , x⊥ ∨ y ↪→ x, x⊥, . . . , x⊥) ∧ x 6= x⊥.

3. tj(x = y) , x = y,
4. tj(x ↪→ y) , x ↪→ y,
5. for i ≤ j, tj(Pi(x, y)) is defined by

∃z, z′ (z ↪→ x) ∧ (z′ ↪→ y) ∧ (]z >]zmj) ∧ (]z′ <]zMj) ∧

(]z′ = 1 +]z) ∧ extr(z) ∧ extr(z′)

6. tj is homomorphic for Boolean connectives.
7. tj(∃x ψ) , ∃x notonenv(x) ∧ tj(ψ).
8. tj(∃Pj+1, ψ), is defined by

∃zmj+1, z
M
j+1 isol(zmj+1) ∧ isol(zMj+1∧

((relationj+1,FV(ψ) ∧ ϕ⊥) −−∗¬

(PseudoEnv(zm0 , z
M
j+1) ∧]zMj + 1 =]zmj+1 ∧ tj+1(ψ)))

in which relationj+1,FV(ψ) and PseudoEnv(zm0 , z
M
j+1) are slightly up-

dated in order to take into account that the markers are made of mem-
ory cells of the form l 7→ l′,⊥, . . . ,⊥.

Adapting Definition 6.9 with 1-predecessors, we can state a proposition
similar to Proposition 6.10 leading to Theorem 7.1.

8. Concluding Remarks

In the paper, we have mainly studied first-order separation logic with one
selector SL for which we have shown the following results:

1. SL(∗) is decidable with non-elementary complexity.
2. SL(∗+

n

−−∗¬), extending SL(∗) with bounded septraction is also decidable.
3. SL is as expressive as weak second-order logic SO.
4. SL is as expressive as SL(−−∗) as a by-product of our proof technique.
5. SL(−−∗) satisfiability is undecidable.

60

This solves two central open problems: the decidability status of SL and the
characterization of its expressive power. Moreover, the above results about
expressive power extend naturally to the case with k selectors, for some k ≥ 1:
kSL ≡ kSL(−−∗) ≡ kSO.

Acknowledgments. We would like to thank the following colleagues
for fruitful discussions related to this work: Anuj Dawar, Arnaud Durand,
Didier Galmiche, Dominique Larchey-Wendling, Daniel Méry. Moreover, we
wish to thank the anonymous referees for their numerous helpful suggestions
and comments on an earlier version of this paper. This has been a great help
to improve the quality of the paper.

References

[1] Antonopoulos, T., Dawar, A., 2009. Separating graph logic from MSO.
In: FOSSACS’09. Vol. 5504 of Lecture Notes in Computer Science.
Springer, pp. 63–77.

[2] Bansal, K., Brochenin, R., Lozes, E., 2009. Beyond shapes: Lists with
ordered data. In: FOSSACS’09. Vol. 5504 of Lecture Notes in Computer
Science. Springer, pp. 425–439.

[3] Berdine, J., Calcagno, C., O’Hearn, P., 2004. A decidable fragment of
separation logic. In: FST&TCS’04. Vol. 3328 of Lecture Notes in Com-
puter Science. Springer, pp. 97–109.

[4] Börger, E., Grädel, E., Gurevich, Y., 1997. The Classical Decision Prob-
lem. Perspectives in Mathematical Logic. Springer.

[5] Bouajjani, A., Habermehl, P., Moro, P., Vojnar, T., 2005. Verifying
programs with dynamic 1-selector-linked structured in regular model-
checking. In: TACAS’05. Vol. 3440 of Lecture Notes in Computer Sci-
ence. Springer, pp. 13–29.

[6] Bozga, M., Iosif, R., Lakhnech, Y., 2004. On logics of aliasing. In:
SAS’04. Vol. 3148 of Lecture Notes in Computer Science. Springer, pp.
344–360.

[7] Bozga, M., Iosif, R., Perarnau, S., 2008. Quantitative separation logic
and programs with lists. In: IJCAR’08. Vol. 5195 of Lecture Notes in
Computer Science. Springer, pp. 34–49.

61

[8] Brochenin, R., Demri, S., Lozes, E., 2008. On the almighty wand. In:
CSL’08. Vol. 5213 of Lecture Notes in Computer Science. Springer, pp.
322–337.

[9] Brochenin, R., Demri, S., Lozes, E., 2008. On the almighty wand. Tech.
rep., LSV, ENS de Cachan.

[10] Brochenin, R., Demri, S., Lozes, E., 2009. Reasoning about sequences
of memory states. Annals of Pure and Applied Logic 161 (3), 305–323.

[11] Brotherston, J., Kanovich, M. I., 2010. Undecidability of propositional
separation logic and its neighbours. In: LICS’10. pp. 130–139.

[12] Büchi, J., 1960. On a decision method in restricted second-order arith-
metic. In: Logic, Methodology, and Philosophy of Science. pp. 1–11.

[13] Calcagno, C., Gardner, P., Zarfaty, U., 2007. Context logic as modal
logic: completeness and parametric inexpressivity. In: POPL’07. pp.
123–134.

[14] Calcagno, C., Yang, H., O’Hearn, P., 2001. Computability and complex-
ity results for a spatial assertion language. In: APLAS’01. pp. 289–300.

[15] Calcagno, C., Yang, H., O’Hearn, P., 2001. Computability and com-
plexity results for a spatial assertion language for data structures.
In: FST&TCS’01. Vol. 2245 of Lecture Notes in Computer Science.
Springer, pp. 108–119.

[16] Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J., 2011.
Tractable reasoning in a fragment of separation logic. In: CONCUR’11.
Vol. 6901 of Lecture Notes in Computer Science. pp. 235–249.

[17] Dawar, A., Gardner, P., Ghelli, G., 2004. Adjunct elimination through
games in static ambient logic. In: FST&TCS’04. Vol. 3328 of Lecture
Notes in Computer Science. Springer, pp. 211–223.

[18] Dawar, A., Gardner, P., Ghelli, G., 2007. Expressiveness and complexity
of graph logic. Information & Computation 205 (3), 263–310.

[19] Etessami, K., Vardi, M., Wilke, T., 2002. First-order logic with two
variables and unary temporal logic. Information & Computation 179 (2),
279–295.

62

[20] Galmiche, D., Méry, D., 2010. Tableaux and resource graphs for separa-
tion logic. Journal of Logic and Computation 20 (1), 189–231.

[21] Gorogiannis, N., Kanovich, M., O’Hearn, P., 2011. The complexity of
abduction for separated heap abstractions. In: SAS’11. Vol. 6887 of
Lecture Notes in Computer Science. pp. 25–42.

[22] Ishtiaq, S., O’Hearn, P., 2001. BI as an assertion language for mutable
data structures. In: POPL’01. pp. 14–26.

[23] Jensen, J., Jorgensen, M., Klarlund, N., Schwartzbach, M., 1997. Auto-
matic verification of pointer programs using monadic second-order logic.
In: PLDI’97. ACM, pp. 226–236.

[24] Kamp, J., 1968. Tense logic and the theory of linear order. Ph.D. thesis,
UCLA, USA.

[25] Klaedtke, F., Rueb, H., 2003. Monadic second-order logics with cardi-
nalities. In: ICALP’03. Vol. 2719 of Lecture Notes in Computer Science.
Springer, pp. 681–696.

[26] Kuncak, V., Rinard, M., October 2004. On spatial conjunction as
second-order logic. Tech. rep., MIT CSAIL.

[27] Larchey-Wendling, D., Galmiche, D., 2010. The Undecidability of
Boolean BI through Phase Semantics. In: LICS’10. pp. 140–149.

[28] Lev-Ami, T., Sagiv, M., 2000. TVLA: A system for implementing static
analyses. In: SAS’00. Vol. 1824 of Lecture Notes in Computer Science.
Springer, pp. 280–301.

[29] Löding, C., Rohde, P., 2003. Model checking and satisfiability for sab-
otage modal logic. In: FST&TCS’03. Vol. 2914 of Lecture Notes in
Computer Science. Springer, pp. 302–313.

[30] Lozes, E., 2004. Separation logic preserves the expressive power of clas-
sical logic. In: 2nd Workshop on Semantics, Program Analysis, and
Computing Environments for Memory Management (SPACE’04).

[31] Lozes, E., 2005. Elimination of spatial connectives in static spatial logics.
Theoretical Computer Science 330 (3), 475–499.

63

[32] Magill, S., Berdine, J., Clarke, E., Cook, B., 2007. Arithmetic strength-
ening for shape analysis. In: SAS’07. Vol. 4634 of Lecture Notes in
Computer Science. Springer, pp. 419–436.

[33] Rabin, M., 1969. Decidability of second-order theories and automata on
infinite trees. Transactions of the American Mathematical Society 41,
1–35.

[34] Ranise, S., Zarba, C., 2006. A theory of singly-linked lists and its exten-
sible decision procedure. In: SEFM’06. IEEE, pp. 206–215.

[35] Reynolds, J., 2002. Separation logic: a logic for shared mutable data
structures. In: LICS’02. IEEE, pp. 55–74.

[36] Stockmeyer, L., 1974. The complexity of decision problems in automata
theory and logic. Ph.D. thesis, Department of Electrical Engineering,
MIT.

[37] Trakhtenbrot, B., 1950. The impossibility of an algorithm for the de-
cision problem for finite models. Dokl. Akad. Nauk SSSR 70, 596–572,
english translation in: AMS Transl. Ser. 2, vol.23 (1063), 1–6.

[38] van Benthem, J., 2005. An essay on sabotage and obstruction. In: Mech-
anizing Mathematical Reasoning. Essays in Honor of Jorg Siekmann on
the Occasion of his 69th Birthday. Springer-Verlag, pp. 268–276.

[39] Yorsh, G., Rabinovich, A. M., Sagiv, M., Meyer, A., Bouajjani, A., 2005.
A logic of reachable patterns in linked data structures. In: FOSSACS’05.
Vol. 3441 of Lecture Notes in Computer Science. Springer, pp. 94–110.

64

