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Capacity Results on Multiple-Input Single-Output
Wireless Optical Channels

Stefan M. Moser™, Senior Member, IEEE, Ligong Wang™, Member, IEEE,
and Michele Wigger™, Senior Member, IEEE

Abstract— This paper derives upper and lower bounds on the
capacity of the multiple-input single-output free-space optical
intensity channel with signal-independent additive Gaussian noise
subject to both an average-intensity and a peak-intensity con-
straint. In the limit where the signal-to-noise ratio (SNR) tends
to infinity, the asymptotic capacity is specified, while in the limit
where the SNR tends to zero, the exact slope of the capacity is
given.

Index Terms— Average- and peak-power constraint, channel
capacity, direct detection, Gaussian noise, infrared commu-
nication, multiple-input single-output (MISO) channel, optical
communication.

I. INTRODUCTION

PTICAL wireless communication is a form of com-

munication in which visible, infrared, or ultraviolet
light is transmitted in free space (air or vacuum) to carry a
message to its destination. Recent works suggest that it is a
promising solution to replacing some of the existing radio-
frequency (RF) wireless communication systems in order to
prevent future rate bottlenecks [1]—[3]. Particularly attractive
are simple intensity-modulation—direct-detection (IM-DD) sys-
tems. In such a system, the transmitter modulates the intensity
of optical signals coming from light emitting diodes (LEDs)
or laser diodes (LDs), and the receiver measures incoming
optical intensities by means of photodetectors. The electrical
output signals of the photodetectors are essentially propor-
tional to the incoming optical intensities, but are corrupted by
thermal noise of the photodetectors, relative-intensity noise
of random intensity fluctuations inherent to low-cost LEDs
and LDs, and shot noise caused by ambient light. In a first
approximation, noise coming from these sources is usually
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modeled as being additive Gaussian and independent of the
transmitted light signal; see [1], [2].

The free-space optical intensity channel has been exten-
sively studied in the literature. In the single-input single-
output (SISO) scenario, where the transmitter employs a single
transmit LED or LD, and the receiver a single photodetector,
the works [4], [5] established upper and lower bounds on
the capacity of this channel that are asymptotically tight
in both high-signal-to-noise-ratio (SNR) and low-SNR lim-
its. Improved bounds at finite SNR have subsequently been
presented in [6]-[9]. For the multiple-input and multiple-
output (MIMO) optical intensity channel, where the transmitter
is equipped with multiple LEDs or LDs, and the receiver with
multiple photodetectors, the recent work [10] determined the
asymptotic capacity in the high-SNR limit when the channel
matrix is of full column rank. A special case of this MIMO
result was independently solved in [11].

Previous to [10], [11], various code constructions for this
setup have been proposed in [12]-[15]. When there is no
crosstalk so the MIMO channel can be modeled through a
diagonal channel matrix, bounds on capacity were presented
in [9] and [16].

The current work is concerned with the multiple-input and
single-output (MISO) channel. (Clearly, the channel matrix of
the MISO channel cannot have full column rank.) Our main
results, some of which presented in part in [10] and [17],
include

« several upper and lower bounds on the capacity;

« high-SNR asymptotic capacity for all parameter ranges;

and

o low-SNR capacity slope in terms of a maximum variance

on the input.

The high-SNR asymptotic capacity is proven based on two
capacity lower bounds (Propositions 5 and 6) derived using the
Entropy Power Inequality (EPI), and an upper bound (Proposi-
tion 10) derived using the duality technique [18]. These proof
techniques are similar to those in [5], [9], and [10], but also
involve some nontrivial optimization. In particular, the optimal
input distribution at high SNR involves LED cooperation
(compared to independent signaling in the MIMO full-column-
rank case [10]), and, with certain probabilities, assigns to each
LED a truncated exponential distribution, whose parameters
must be carefully chosen.

The low-SNR capacity slope is proven using a simple upper
bound (Proposition 9) and a classic asymptotic lower bound by
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Prelov and Van der Meulen [19]. The expression of this slope
involves a maximization of variance, which can be computed
numerically (Lemma 8).

All the above-mentioned bounds (except the asymptotic
one from [19]) hold at all SNR, and not only in the high-
or low-SNR limits. They are compared numerically, together
with another indirect upper bound (Proposition 7), which
utilizes upper bounds on the capacity of the SISO channel
from [5], [6], and [9].

The remainder of this paper is structured as follows. After
a few remarks on notation, Section II lays out the specific
details of the investigated channel model. Section III reviews
the known capacity results from [10] and proves a funda-
mental proposition giving the optimal structure of an input
to the MISO channel with both active average- and peak-
power constraints. Section IV then presents all new upper and
lower bounds on the capacity and gives the correct high-SNR
and low-SNR asymptotics. The detailed proofs for the lower
bounds can be found in Section V and the proof for one of the
upper bounds in Section VI. Section VII shows the analysis of
the high-SNR capacity. The paper is concluded in Section VIII.

We meticulously distinguish between random and determin-
istic quantities. A random variable is denoted by a capital
Roman letter, e.g., Z, while its realization is denoted by the
corresponding small Roman letter, e.g., z. Vectors are bold-
faced, e.g., X denotes a random vector and x its realization.
Constants are typeset either in small Romans, in Greek let-
ters or in a special font, e.g., £ or A. Entropy is typeset as H(-),
differential entropy as h(-), and Z(-;-) denotes the mutual
information [20]. The relative entropy (or Kullback-Leibler
divergence) [21, Sec. 2.3] is denoted by D(p|/q) for some
probability vectors p and q. The logarithm function log(-)
denotes the natural logarithm.

II. CHANNEL MODEL

Consider a communication link where the transmitter is
equipped with nt LEDs (or LDs), nt > 2, and the receiver
with a single photodetector. The photodetector receives a
superposition of the signals sent by the LEDs, and we assume
that the crosstalk between LEDs is constant. Hence, the chan-
nel output is given by

Y=h'x+2Z (1)

where the nt-vector X = (x,...,x,;)" denotes the channel
input, whose entries are proportional to the optical intensities
of the corresponding LEDs, and are therefore nonnegative:

xweRT, k=1,...,n7; (2)

where the length-nt row vector h' = (hy, ..., hy,,) is the

constant channel state vector with nonnegative entries, which,

without loss of generality, we assume to be ordered:
hy>hy>->hy > 0; 3)

and where Z ~ N (0,02) is additive Gaussian noise. Note
that, in contrast to the input x, the output ¥ can be negative.
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Inputs are subject to a peak-power (peak-intensity) and an
average-power (average-intensity) constraint:

Pr[Xp > Al =0, Vke{l,...,n1) @
SE[X] <€ 5)
k=1

for some fixed parameters 4, £ > 0. Note that the average-
power constraint is on the expectation of the channel input and
not on its square. Also note that A describes the maximum
power of each single LED, while £ describes the allowed
average total power of all LEDs together.

We denote the ratio between the allowed average power and
the allowed peak power by a:

aéi (6)

=~

where 0 < o < nt. For o = nt the average-power con-
straint is inactive in the sense that it is automatically satisfied
whenever the peak-power constraint is satisfied. Thus, a = nt
corresponds to the case with only a peak-power constraint.

We denote the capacity of the channel (1) with allowed peak
power A and allowed average power £ by Cyr ,2(A, £). The
capacity is given by [20]

Chr 52(A, E) =supZ(X; Y) (7
Ox

where the supremum is over all laws Qx on X satisfy-
ing (2), (4), and (5). When only an average-power constraint
is imposed, capacity is denoted by Cpr ,2(£). It is given as
in (7) except that the supremum is taken over all laws Qx on
X satisfying (2) and (5).

III. EQUIVALENT CAPACITY FORMULAS

Denote
5020 (8a)
k
sk =D hp, ke{l,... nr} (8b)
kK'=1
and
nt
X 20X =) X )
k=1
Also, define the random variable U over the alphabet {1, ...,
nt} to indicate in which interval X lies:
(U - 1) — (X c [Aso,Asl]) (10a)
and for k € {2, ..., nt}:
(U - k) — ()'( c (Ask_l,.Ask]). (10b)

Now notice that because X —o— X —o— Y form a Markov
chain and because X is a function of X, we have

IX;Y)=Z(X;Y). (11)
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Hence the MISO channel (1) is equivalent to a SISO channel
with input X and output ¥ = X + Z with the power-
constraints (4) and (5) on X transformed to a set of admissible
distributions for X. So,

Cpr »2(A, E) = max Z(X; Y) (12)
, 0

where Q5 is restricted to the set of admissible distributions.

Characterizing this set of admissible distributions is relatively

straightforward when there is only an average- or only a peak-

power constraint, but is more involved in general. This is the

subject of the following three propositions.

If X is only subject to an average-power constraint £ (and no
peak-power constraint), then X is only subject to an average-
power constraint 4.

Proposition 1 (Only Average-Power Constraint): Without a
peak-power constraint,

Chr,p2(E) = max I(X:;Y)
Qx: X€l0,00),

E(X]<mh &

=Cy2(m&)  (13)

where C; ;2(h1£) denotes the capacity of a SISO channel with
unit channel gain under average-power constraint /#;&.
Proof: When X satisfies (5), we have
nr
E[)’(]:thE[xk]ghlg (14)
k=1
s0 Cpr,2(6) =< Cj,2(m€). For the reverse direc-
tion, to achieve any target distribution on X satisfying
E [X] < h1€, the transmitter can let the LED corresponding
to h; send X /h1 and all the other LEDs send zero. [ |
When X is only subject to a peak-power constraint A
(and no average-power constraint), then X is only sub-
ject to a peak-power constraint s,..4. Moreover, for a >
"TT, the average-power constraint is inactive because the
capacity-achieving input distribution on X in the absence
of a peak-power constraint can be shown to be symmetric
[10, Prop. 1].
Proposition 2 (Only Peak-Power Constraint is Active):

When o > F,

Cht p2(A, 0 A) = max I(X;Y) (15)
’ Ox: Xel0,5,p Al
n A
= Cl,gz (SnTA, 5 ; ) (16)

where C; 2 (snT.A, S"TZA) denotes the capacity of a SISO

channel with unit channel gain under peak-power con-

straint s,.A and average-power constraint S”TT

Proof: When X satisfies the peak-power constraint (4),
X must satisfy X < s,..4 with probability one. Hence
Chr,52(A, @A) cannot exceed the capacity of the SISO channel
with allowed peak power s,..A. By [5, Prop. 9], for a SISO

channel with allowed peak power s,.A, adding an average-

power constraint of "T does not affect its capacity. We hence
know that the left—hand side (LHS) of (16) is upper-bounded
by its right-hand side (RHS).

For the reverse direction, consider any target distribution on
X satisfying peak-power constraint snp A and average-power

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 11, NOVEMBER 2018

constraint %snTA. We need only to show that such an X can
be generated by some distribution for X satisfying peak- and
average-power constraints .4 and a.A, respectively. To this end,
we let the transmitter send the same signal on all LEDs:

X
Xk = >

Snt

kell,...,nt} 17)
One can easily check that both constraints are indeed satisfied
by this choice. |

As already mentioned, describing the set of admissible

distributions is more complicated when a < %. Recall
the definition of U in (10) and let py £ Pr[U =k] for

k=1,...,n7
Proposition 3 (Active Average-
straints): When a < 2,

and Peak-Power Con-

Chrp2(A, aA) = néaxl'()_(; Y) (18)
%

where the maximization is over all laws on X ¢ Rg
satisfying

Pr[X > s,; A =0 (19a)
and
nr E X =kl — _
Zpk( RV =61 A +(k_1)A) <A (19)
k
k=1

The proof of Proposition 3 is based on the following lemma,
which will be of further interest in this paper.

Lemma 4: Without loss in optimality, the maximization
in (7) can be restricted to distributions Qx of the input vector
X satisfying for all k € {1, ..., nt}, with probability one,

(xe>0) = (x1= (20)

Proof: Fix X1, ..., Xy satisfying the peak- and average-
power constraints (4) and (5) and let X and U be defined as

- = Xk-1 ZA).

in (9) and (10). Define also a set of new inputs X7, ..., XZT
that with probability py = Pr [U = k] take on values
XT:---:X,’;l:A (21a)
X — Asi—
Xp= 22t (21b)
hi U=k
Xfy = =X. =0. 21c)
Notice that
nt
a thx;; (22)
= Z pi thxk (23)
=1 k=1 U=k’
k=1
7 ASk/ 1
= Z i th.A-FhH Xly=s (24)
k=1 hie
> ekl (25)
k=1
=X (26)
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and hence by (11)

IX:Y)=Z(X* V)=Z(X;Y)=Z(X:Y). (27

Moreover, the new inputs X7, ..., X ,*;T are admissible because
they trivially satisfy the peak-power constraint (4) and their
average power does not exceed the average power of the
original inputs Xy, ..., X,:

> E[x;] =D ElXi].
k=1 k=1

In fact, it is not hard to see that among all input assignments
generating a sum-input X € (sg_1.A4, sp.A], the choice in (21)
consumes least input energy ZZL E [X,f] [ ]

Proof of Proposition 3: By Lemma 4, we can restrict
attention to distributions on X satisfying the implication
in (20). Notice that for these distributions there is a one-
to-one correspondence between X and X. The average
input power E [ZZL Xk] can thus entirely be expressed in
terms of X. In fact, since the input power consumed for
X e (sk—1A, sp Al is

(28)

nr e
> X, = A%ty 1ya
hi
k=1
(conditional on X € (si—1 A, st A (29)
the average input power is
nt
E [Z Xk/:|
k=1
= Zpk E [Z Xp|U = k} (30)
k=1
< E[X|U = k]—Asg—
= Zpk( X p 7 A% 1)A). G1)
— k

The proposition now follows from (12) and (31) and because
X € [0, s, Al |

Bounds on the capacities C; ,2(h1€) and C; ;2 (sap A, S"TTA)
were presented in [5], [6], [9], and [22]. Moreover, [5]
also characterizes exactly the high-SNR asymptotic behav-
ior of these two capacities and the low-SNR asymptotic
behavior of C; ,2(snp A, M) In the rest of this paper we
focus on the case with active average- and peak-power con-
straints, S0 o < "TT, and we bound the RHS of (18) under
constraints (19).

IV. BOUNDS ON CAPACITY WHEN o < F

Throughout this section we assume o < 7. Some of our
bounds depend on whether a is larger or smaller than the
threshold

1
am = —+—zhk(k_1)

(32)
2 Smr k=1

This threshold represents the smallest a such that X can be
made uniformly distributed over [0, s,..A]; we discuss this
toward the end of Section IV-A.
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A. Lower Bounds
We first present the lower bounds.
Proposition 5 (Lower Bound for a < owm): If o < om,

the capacity is lower-bounded as

1 A2s2
}’Z
Ch 52(A, aA) > 3 log(l > eaTZ 2") (33)
with
A
V é sup 1 — IOg L
1 —e—H&)

AE(maX{O 5 +a—op },min{ a})

B w(A)e #A D(

1 — e—1(4) B

h
p —)] (34)
Snp

where u(A) is the unique positive solution to the following
equation in u:

1 M
— - (35)
u  l—e
and where
h k
= X4 kefl,.. . nr) (36a)

Z phjal”
with a being the unique positive solution to

>kL hika*
Z?L] hjal

Proof: See Section V-A. [ |
We remark that v in (34) is the maximum differential
entropy of ﬁ under the power constraints; see discussion
after the next proposition. We shall plot v after stating our
asymptotic high-SNR result; see Figure 2.

—a—A+1. (36b)

Proposition 6 (Lower Bound for a > ow): If o > o,
the capacity is lower-bounded as
1 s2 A?
Chrp2(A, ad) > Elog 1+ o0l (37)
Proof: See Section V-B. [ |

The lower bounds are obtained by choosing the inputs
so as to maximize the differential entropy h(X) under the
constraints (19). To find these entropy-maximizing inputs in
the general situation under both a peak- and an (active)
average-power constraint, we need two insights. First, relying
on Lemma 4, we note that in order to reach a certain range
of amplitude levels X € (sp_1.A, sp.Al, it is most energy-
efficient to set all strong LEDs (i.e., those with large channel
gains) to the maximum level, X; = A, j=1,...,k—1;to
switch the weaker LEDs off, X; =0, j = k+1,...,n71;
and to choose X; = X — s;_1.A. Second, conditional on a
given range (sy—1.A4, sx.A], the entropy-maximizing input Xy
has a truncated exponential distribution. It then only remains
to optimize over the probability masses assigned to each of
the different amplitude ranges and over the parameters of the
truncated exponentials.
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Thus, for @ < am, we let with probability py,
kefl,..., nt},
Xj=A, jell,...,k—1} (38a)

X ~ truncated exponential of parameter ©(4) (38b)
X;=0, jelk+1,...,n7} (38c)

where (1) is the unique positive solution to (35) and p is
given in (36). This choice results in a concatenation of nt
truncated exponentials for X, with h(X) = log(s,;.A) + v,
where v is given in (34).

For a > ag, the average-power constraint on X becomes
inactive, and we can replace the truncated exponential dis-
tribution in (38b) by a uniform distribution and choose the
probability vector p as px = hy /sy, for k € {1, ..., nt}. This
choice yields a uniform distribution on [0, s,,;.4] for X, with
h(X) = log(sy;A). )

That the described choices maximize h(X) under con-
straints (19) can be proved, e.g., using [21, Th. 12.1.1].

B. Upper Bounds

We next present our upper bounds. First we present a simple
upper bound by the SISO capacity.

Proposition 7 (Upper Bound by SISO Capacity): The
capacity is upper-bounded as

(39)

Chr o2 (A, aA) < C; 2 (s,,TA, S%A) .

Proof: The bound follows by the equivalence in (16),
and because the capacity is nondecreasing in the parameter
o (as the transmitter can always choose not to use all of its
available power). u

Note that the SISO capacity Ci ,2 (s,,TA, #) is
itself unknown to date. Upper bounds on it were given
in [5], [6], [9], and [22]. In fact, under a peak-power constraint

. osupA L .
SnTA, the average-power constraint 5 1S not active.

Our next upper bound, like Proposition 7, is valid for all
values of a < "TT It depends on the maximum variance of X
under constraints (19):

A > S\ 2
Viax(A, 2.4) £ max E [(x —Ex)’] (40)

X

where the maximization is over all distributions on X > 0 that
satisfy constraints (19). This maximum variance is calculated
numerically using the following lemma.

Lemma 8: Consider the maximum variance Vpmax (A, aA)
as defined in (40).

1) The maximum variance can be achieved by restricting
QO to the support set

{0,514, 524, ..., spp A} 41)
2) The maximum variance satisfies
Vinax (A, a.d) = A%y 42)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 11, NOVEMBER 2018

TABLE I
MAXIMUM VARIANCE FOR DIFFERENT CHANNEL COEFFICIENTS

channel gains « Vmax Q % achieving Viax
h=(3,22,01) 09 6.692442  Qx(0) = 0.55, Q5 (s2.A) = 0.45
h= (32211 07 7100142 Qx(0) = 0.7667, Qx (s3.A) = 0.2333
h=(3,1503) 095 5115842 Qg (0) =0.5907, Qx(s2.A) = 0.2780,
Qx(s3A) =0.1313
where
nt nt 2
A 2
y = max _ S qk — (Zsqu) . (43)
(11,..’.1, an_ . k=1 k=1
Zkll qr=1
ik kqr<a
Proof: See Appendix. [ ]

For a three-LED MISO channel, some examples of vari-
ances Vmax are shown in Table I. The last column of the table
indicates the probability mass function that achieves Vpax.

Proposition 9 (Upper Bound in Terms of Vmax): The
capacity is upper-bounded as

(44)

Cur 52(A, 0 A) < llog (1 i M;,OLA)) ‘
: 5 :

Proof: Since X and Z are independent, we know that the
variance of ¥ cannot exceed Vipax (A, @A) + 02, and therefore

h(Y) < % log2me (VmaX(A, aA) + 02) . (45)

The bound follows by subtracting h(Z) = 1 log27ea? from
the above. [ ]
Our last upper bound is more involved than the previous
two. It holds only when a < ag.
Proposition 10 (Upper Bound for o < am): If a < om,
then the capacity is upper-bounded as

Chr,p2(A, 2 A)

< inf 11 AZSY%T 1 1 1-209 o
=P =02 B agegz ~ CBHTOBN T SENG
0 0 _2 h
of2) e E o)
o 2w o Snt

T s 5
—i—ZPk log (eAhk - e_”(1+7“'—k))
k=1
+- 27 S ﬁ(ez(jr_zz —e%ﬁ)
A2 = i

+u(a =2 ik~ 1))]
k=1

where the supremum is over all probability vectors p = (py,
.., Pny) satisfying

(46)

D ek —1) < e

k=1
Proof: See Section VI. [ |

(47)
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w5 | [~ Vis-Upper Bound Prop. 9) A
|-~ Prop. 7 with SISO-U.B. [5, (20)] s
Al Prop. 7 with SISO-U.B. [6] g
-~ Prop. 7 with SISO-UB. [9, (17)] | ,*
3.5 — Duality-Upper Bound (Prop. 10) [/ ,.'(
3| |— Lower Bound (Prop. 5) ' <

Cht o2 (A, tA) [nats]

—15

—-10 -5 0 5 10 15 20

A [dB]

Fig. 1. Bounds on the capacity of the MISO channel with three LEDs and
channel gains h = (3, 2, 1.5) for the case & = 0.6. Note that the threshold
of this channel is ag, = 1.2692 (and "TT = 1.5). The upper bound from
Proposition 7 is plotted in combination with three known SISO capacity
bounds taken from [5], [6], and [9]. Note that the bound from [9] is only
valid for A < —1.97 dB.

Figure 1 shows our lower and upper bounds for the MISO
channel with gains h = (3,2, 1.5). It suggests that the upper
bound in Proposition 10 and the lower bound in Proposi-
tion 5 are asymptotically tight as .4 — oco. This is indeed
the case, as we show in Proposition 11 below. In the low-
SNR regime, all our upper and lower bounds, except the
upper bound in Proposition 10, tend to zero, but not with
the same slope. To characterize the capacity slope at low
SNR, we shall use an asymptotic lower bound from [19]; see
Proposition 13.

C. Asymptotic Results
Proposition 11 (High-SNR Asymptotics): If a > am, then

. 1 S
Jgnoo{Cthaz(A,aA) —log A} = —1og2 ”TGQ. (48)
If o < aw, then
1 2
lim {Cyr ,2(A, aA) —log A} = log s +v (49)
A—oc0 ’ 2w

where v < 0 is defined in Proposition 5 (see (34)).

Proof: Achievability of (48) and (49) follows immediately
from the lower bounds in Propositions 6 and 5, respectively.
The converse to (48) is based on the upper bound (39) in
Proposition 7 and the high-SNR analysis of the SISO capacity
in [5, Cor. 6]. The converse to (49) is based on Proposition 10
and is given in detail in Section VII.

Example 12: Consider a MISO channel with two LEDs and
with channel parameters 71 = 3 and h> = 1. We plot v against
o in Figure 2. Note that v characterizes the capacity gap to
the case with no average-power constraint in the high-SNR
limit. As expected, the gap becomes zero when o reaches
ot = 0.75, and approaches infinity when o tends to zero. ¢

CAPACITY RESULTS ON MULTIPLE-INPUT SINGLE-OUTPUT WIRELESS OPTICAL CHANNELS
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v [nats]
|
[\&]

0 010203040506 07 0809 1
o

Fig. 2. The parameter v, see (34) and (49), is depicted as a function of
a € (0,1) for the two-LED MISO channel with gains 7; = 3 and hy = 1.
This represents the asymptotic capacity gap to the case with no average-power
constraint, i.e., to ChT, o2 (A, A).

We now turn to the low-SNR asymptotic regime. In this
regime the capacity is determined by Vmax (A, aA).
Proposition 13 (Low-SNR Asymptotics): The
asymptotic capacity is
Chrp2(A,aAd)
im———==
Ao A%/o? 2
where y is defined in (43).
Proof: The converse follows immediately from the upper

bound (44) in Proposition 9. Achievability follows from [19,
Th. 2], which states that

low-SNR

(50)

Chr o2 (A, 2 A) > 7])‘““(? A, (A?%) (51)
where 0(A?) decreases to 0 faster than A2, i.e
_o(A?)
%% = =0 (52)

Note that the MISO channel under consideration in this paper
satisfies the technical conditions A-F in [19]. [ |

Example 14: We return to the example from before and
reconsider the two-LED MISO channel of Figure 2 with
channel gains 71 = 3 and hy = 1. Figure 3 plots the low-SNR
slope of its capacity y /2 as a function of the parameter a.
We notice that the low-SNR slope y /2 does not reach a
constant value when a > agy,, but it is strictly increasing for
all values of o < . O

V. ACHIEVABILITY PROOFS (PROOFS OF LOWER BOUNDS)

A. Proof of Proposition 5

Fix
1 .1
/le(max[O,E—i—a—am],mln[z,a]) (53)
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Fig. 3. The low-SNR asymptotic slope y /2, see (50), is depicted as a function
of a € (0, 1) for the two-LED MISO channel with gains 41 =3 and hy =1
(the same channel as considered in Figure 2).

and choose a probability vector p = (p1, ..., pny) satisfying

nrt

D k=) =a—4

k=1

(54)

Such a choice always exists. To see this, first note 0 < a—4 <
nt/2. When we choose p = (1,0, ...,0), the LHS of (54)
equals 0; when we choose p = (0, ...,0, 1), it equals nT — 1,
which is larger than or equal to nt/2 for all nt > 2. The
existence of a p satisfying (54) then follows by the continuity
of the LHS of (54) in p.

Now let X have the following probability density func-
tion (PDF): for every k € {1, ..., nt}, for X € (sp_1 A, si.Al,

y) A E—sp_1 A)

WA T — e i 4

where u (1) is the unique positive solution to (35); and let U
be the random variable (RV) defined in (10) corresponding
to this choice of X. It is easy to check that the choice (55)
indeed constitutes a PDF. Further, it satisfies (19) because it
has positive probability only on the interval [0, s,.A], and
because

nr E[XIU = k] — Ase_
ZPk( [ | h] k1+(k—1)A)
k=1 k
S 1 "
- képk w(d)  1—er A+ (k—1)A) (56)
nt
= Zpk LA+ (k — 1)A) 57
k=1
nt
= 2A+ D prlk—1)A 58)
k=1
= aA. 5

Here, (57) follows from (35), and (59) from (54). We then
evaluate the mutual information in (18) for this X and use the
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Entropy Power Inequality (EPI) [21, Th. 17.7.3] to obtain
Ch 52(A, aA)

>I(X; X+ 2) (60)

=h(X+2)—-h(2) (61)

> %log(ezh()_() +62h(Z)) —h(2) (62)

= %log(eZh(X) + 27re02) — %log 2req? (63)
1 e2h(X)

= Elog(l + 277,'60'2). (64)

We next evaluate the differential entropy for the chosen X:

h(X) = HU) — HU|X) +h(X|U) (65)
=0
nr _
=H) + > peh(X|U = k) (66)
k=1
S 1A
= H(p) + Zpk loghk + IOgA — IOg m
k=1
w2y e HA
LR = 7
_ h u(d)
= —-D (p a) + lOgSnTA — IOg m
p@)e
LR = (68)

where (67) follows from the differential entropy expression of
a truncated exponential RV.

The proposition then follows by plugging (68) into (64)
and by maximizing the lower bound over the choice of the
probability vector p = (p1, ..., puy) subject to constraint (54)
and then maximizing over the choice of A.

It only remains to show that the optimal choice of p in (34)
indeed has the form given in (36). To that goal note that the
first three terms inside the supremum in (34):

1 (2) u(2) e

vy R p——y (69)

1 —log

correspond to the differential entropy of a truncated exponen-

tial RV V € [0, 1] with mean E[V] = Z for 1 € (0, 3).

This expression is monotonically strictly increasing in A and

approaches its maximum for 4 — % (in which case V

approaches a uniformly distributed random variable on [0, 1]).
The last term inside the supremum in (34):

h
—D(p|— (70)
Snp
is nonpositive and equals zero if, and only if, p = f, in which
case !
nr 1
D ek = 1) = ap — 5. 71)
k=1
Thus, as long as
1
OC—/1<OCth—§ (72)
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the constraint (54) is active and [21, Probl. 12.2] tells us that
the unique optimal p that maximizes (70) and simultaneously
satisfies (54) has the form given in (36).

B. Proof of Proposition 6

We choose X to be uniform on [O_, snpAl. Let U be the RV
defined in (10) for this choice of X, then Pr[U = k] = pi
where

(73)

and, conditional on U = k, X is uniform over (s;—1.A, st.Al.
The chosen X satisfies (19) because it has positive probability
only on the interval [0, s,,.4] and because

n (B[R = k] -
> p
k=1 k

Asi—1

+ (k — I)A)

nr .A
=S (3 . 1)A) (74)
k=1
A h
=7 Azs—k(k—l) (75)
k=1""T
= (; +—th(k— 1)) (76)
-
= apA (77)
<aA (78)

where (77) follows from the definition of ay, in (32). Like in
(60)—(64), we obtain

1 £2h(3)
Cthaz(.A, aA) > 5 log{ 1+ W (79)

for the above choice of X. Since X is uniform, we have

h(X) = log s, .A. (80)

Plugging this into (79) yields the desired bound.

VI. PROOF OF PROPOSITION 10

Choose X ~ Q} to be a maximizer of the capacity expres-
sion in (18). That means in particular that Q’;‘-( satisfies (19),
and thus that the conditional expectations

X —si_1 A
FAE | ————Z U=k 81
O 0% A (81)
satisfy
nt
Pi (a,f + (k — 1)) <a (82)
k=1
where U is the RV defined in (10) and p; = Pr[U = k].
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The capacity is upper-bounded as follows:

Chr 02 (A, 0 A)

=I(X;:X+2) (33)
<I(X;X+2Z,1U) (84)
=I(X;U)+I(X; X + Z|U) (85)
nt
=HU) -HWUIX) + D piIX: X+ ZIU =k)  (86)
0 k=1
nrt _ B
=HE" + D> piI(X: X + Z|U = k) (87)
k=1
nrt
= HE") + D pi T(Xe: Xk + Z|U = k) (88)
k=1
nt
< H®") + D piC 2 (A, afhi A) (89)
k=1

where the inequality in (89) holds because, by Lemma 4, given
U = k we have X = sp_1. A + hyXi, where X lies on the
interval [0, A] and is of average power o

The SISO capacity Cy ,2(hxAx, ahrA) has been upper-
bounded in [5, Eq. (12)]. Plugging this bound into (89) and
performing some simple bounding steps prove that for every
choice of positive parameters ¢ and u:

Chr 2 (A, @A)
oA _ (1)

Varu(1-22(2)

Ahg

nt
< H@") + D plog
k=1

o(2) Lo
- — — e 20
2 o 2ro

nt
+ﬂZPk0‘k
k=1

T p* 2 Ahy+0)?
P 2 ,%L
Pk o2 — N 90
W ; 3 (e e (90)
nt h
< Zpk log p_ +log A — = 10g(27re02) — log u
k=1
5
—10g(1—2Q(—))+ e P
o 2no
T uo —ul1 J b
*1 Ahy ”( +7V'_k) _
+ Zpk og (e e +Q .
(Al +0)?
.A\/27r z ( e )
'Hl(fl - szac - 1)) (01)
k=1

where (91) follows from (82) and by rearranging terms.
Since (91) holds for all d, u > 0, it must also hold when
we take the infimum of its RHS over J, # > 0. Then we
relax this bound by further taking a supremum' over p, which
establishes (46).

lHere we also need to make sure that p is chosen such that
Zk | Pk —1)=0.
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VII. AsYMPTOTIC HIGH-SNR ANALYSIS—CONVERSE
PROOF TO (49)

Recall that, throughout this section, we are only concerned
with the case where

o < amp. 92)

Consider the upper bound in Proposition 10. We relax this
bound by choosing specific values for 6 and x depending
on p = (p1,..., pny) and A. The relaxed upper bound will
establish the converse to (49).

Fix A > 1. For any p = (p1, ..., pay) satisfying (47),
define
nt
L=ip)Ea— plk—1) 93)
k=1
and fix some 0 < ¢ < 1. We choose
0 =log(l1+ A 94
and
u*(p) i W < /1(P) j
AT (95)
7 ez %
where ux*(p) is the unique positive solution to
1 e M
— = — = (p). 96
Prap— (p) (96)
Note that in the first case of (95),
1 1 e '@ 1 o7
— <
AT e S e 7
and thus
wrp) < AT (98)
Our choice (95) thus guarantees in all three cases that
u<A"¢ for A>1 (99)

and we can bound

uo

Dk _(;_22 _(Ahk;—ﬁ)z
—fl e 200 —¢e 20
A2 P hy

,)2 (.Ahk+¢5)2
e 22 —e¢ 27 (100)
AC\/ 2T Z hy ( )

and

1o

T 1o
5% a8 -+ 1)
k=

JA—C . sA¢
= Zpk 1og( M ) (101)
sA—C B ¥ '
= log (e by e hny ) (102)

where we have also used py <1 and Ay > hy;,.
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With the described choices of u, ¢ and the proposed relax-
ations, upper bound (46) becomes

1 .Azs,%T
Cpr 52(A, 0 A) < = log L+ f(A) + sup g(A, p, 1)
’ 2 2weo P
(103)
with
fA) = Q(M) — log (1 -20 (M))
o o
_log? (1+A) (Ahg+log(1+.A))2
—e 252
X «/271' Z hi ( ¢ )
log(1 + A) _log?(1+.4)
= 104
V2o ¢ (104)
and

g(A,p,p) & —D(p

h <
s—)—loguw(a—Zpk(k— 1))

nr k=1
A~ ¢ log(1+.A4) —u— A~¢ log(1+.A4)
+logle nr —e By . (105)

We note that

lim f(A) =0. (106)
A— o0
Next, we bound g(A, p, ) by bounding the function indi-
vidually for the three different cases defined in (95), and then
taking the maximum over the three obtained bounds. Notice
first that when A(p) = a — le pk(k — 1) lies in the open
interval (A'=¢, 1/2),

g(A,p, 1)
h * *
=—-D|p|— ) —logu () + u"(P)A(p)
Spp
A ¢ log(1+.A4) B A¢ log(1+.A)
—i—log(eh”T T ) (107)
h
=-D (p —) — log u*(p)
Snr
1 e~ 1 ()
* [—
+u (p)(#*(p) 1_6,,*@))
A~ ¢ log(1+.A4) sy A log(1+A4)
+1og(e7hw T ) (108)
h *
< sup —-D\p - —log 1™ (p)
Hoe(i 1) "
1 e~ 1" ()
* [—
+u (p)(#*(p) 1—eﬂ*(p>)
—¢ log(1+.A) * A~ Cloo(1+A)
—Hog(eA o Ty )}
(109)
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u*(p)

h 1
= su — ) —log —————
p Snt g 1 —e—#*P)

|6

p: A(P)E(ﬁ,z

* —u*(p)
IR (p)e

1 —e—#*(P)
2A ¢ log(1+.A4)
e Tinp e (P
+log 1 —e—1*@)
log(1+ A
_M (110)
A hpy
2 g1(A). (111)

Here, (108) follows from (96); the inequality in (109) holds
because A(p) € (A(_l , 1/2); and (110) follows by rearranging
terms.

When A(p) < AL,

g(A,p, 1)
h Al=¢
=-—D|p|— ) —log—— —
SnT A~ log(1+.A) 7A1_§7A ¢ log(1+.A4)
e h”T _ hnT
+ A" A (p) (112)
h Al=¢
<—-D{p|— ) —log—— —
SnT A7¢ log(1+.A4) 7A1_§7A ¢ log(1+.A4)
e h”T —e h”T
+1 (113)
nr nr 1
= Zpkloghk + Zpklog — +log sup
k=1 k=1 Pk
<logh <lognt
Al=¢
—log A= log(1+.A) _Al-¢ _ A log(1+ A) +1 (114)
e hnT —e nr
>0
< —(1—-¢)logA+loghy +lognt + logs,,
log(1 + A)
+—+1 115
T (115)
= 2(A) (116)

where the inequality in (113) follows because A(p) < A¢~1.
Finally, when A(p) > 1/2,

g(A,p, 1)
h A1

= —D(p E) — log e%ﬂﬂﬁh e_A—l_%gTMA)

1 T
+Z(“_2Pk(’<— 1)) (117)
k=1
<a

h A1

= _D . _10 T P

a (p SnT) ge%ﬂ”*‘) _e,Afl,%ngA)

(118)
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h

< — inf D(p —)
p: A(p)=} Snt
Al o
—log T o At T A1)
e hnyp —e hny

2 g3(A). (120)

We note that depending on the value of A(p), the function
g(A, p, 1) is upper-bounded by one of the three functions
g1(A), g2(A), or g3(A). Thus, it is also upper-bounded by
their maximum:

g(-Aa P, :u) = max{g1 (-A)’ gZ(-A)a 83(-/4)}

We now analyze this maximum when A — oo. Since g2(A)
tends to —oo as A — oo and since g1(A) and g3(A) are
both bounded for A > 1, g2(A) is strictly smaller than
max{g(A), g3(A)} for A large enough. Moreover,

(121)

h

lim g3(A) = — inf D(p _) (122)
A—o00 p: a—ZZL Pk(k*I)Z% Sny
h

- inf D(p —) (123)
p: a*ZZL Pk(k*1)=% Snr

where the second equality follows because, given a < o,
an optimal choice of p will make full use of the available
constraint

Zpk(k—l)fa—%. (124)

k=1

It remains to investigate the behavior of g;(A) for A — oo.
To that goal define

. h 1)
Ap) 2 -D(p|—)—log————
§1(A, p) (p snT) S E—ry

w*(p) e (P

1 —e—1*@) +1
24~ log(1+.4)
T Tp — e )
+ log [ o ® (125)

where ™ (p) is the unique positive solution to (96) (with A(p)
defined in (93)).
Notice that

gi1(A) = sup g1(A, p)
pra—>1, pk(kfl)e(All_g ,%)
log(1 4+ .A)
- 126
S (126)
Note further that, for a fixed p,
A(A,p) £ g1(Ap) — JLmOO g1(A,p) (127)
24~ log(1+.A)
e h”T — e_/l*(p)
= log ) (128)
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Since % is increasing in ¢ for b > 1 and because of (98),
ZA_Chl,(;—i(H—A) B e—A‘_C
0> A(A,p) > log e (129)
1 —e A
and therefore for any p:
_—
e e
[AAP)| = Jlog A (130)
AZ% 1og(1) = 0. (131)

This proves that g;(A, p) converges uniformly as A — oo
and we are allowed to swap limit and supremum to obtain

Jim g1(A4)

= jim sup g1(A, p)
T e e et 0)
log(1
_log(1 +.A) (132)
A,
= sup lim g;(A,p) (133)
pia-XT, pek-De(0.3) 7
= sup { 1 — log ﬂ
o ; 1 — e #* ()
p: a= 3T, pek—1e(0,4) ¢

wr(p) e~ (p) h
_ERE _pp|—)1. (34
[ — o ® p oot (134)

Since for any 4 € (0, 1),
w pre
1-1 — - >0 135
Ogl—e*ﬂ' 1 —e # (135)
and since
* * —u*
lim[l—log B } —0  (136)
=0 I —e# I —e#

we conclude by comparing (123) and (134) that for sufficiently
large values of A, g1(A) > g3(A), and thus

lim sup g(A, p, 1)
A—)OO P

< lim gi(A) (137)
A—o00
= Sup [1 — log &
B n 1 —e—1*@)
p: a—ZkL Pk(k—l)e((),%) ¢
Iu*(p) eiﬂ*(p) h
—-———F——-D — 138
@ b (138)

= sup {1 — log %
ie(maX{O,%Jrafath},min{%,a}) 1—e#
wu(d) e 1)
] — e—u)

- inf D (p
p: afzgl pr(k—1)=1

h
—)] (139)
Sy
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where in (139) u (1) is the unique positive solution to (35).
Note that for the re-parametrizing in (139) we have defined

h=a— Y pilk—1)

k=1

(140)

and then used the same argumentation as given at the end
of Section V-A to restrict the required range of 1. By [21,
Probl. 12.2] it then follows that the infimum is achieved for
the p given in (36).

Combining (139) with (103) and (106) then proves the
proposition.

VIII. CONCLUDING REMARKS

In this paper we present upper and lower bounds on
the capacity of a multiple-input and single-output (MISO)
free-space optical intensity channel with signal-independent
additive Gaussian noise and with both a peak- and an average-
power constraint on the input. Asymptotically, when both peak
and average power tend either to infinity or to zero (with their
ratio held fixed), we succeed in specifying the capacity exactly.

At low SNR, a good input vector X maximizes the variance
of h™X under the given power constraints. This is achieved by
X having only entries of A and 0, i.e., by each LED sending
either full or no power.

At high SNR, a good input vector X maximizes the dif-
ferential entropy h(h™X). For the case of only an average-
power constraint or only a peak-power constraint (or both
a peak- and an average-power constraint but with the latter
being sufficiently loose), this is relatively straightforward. For
the general situation of both a peak- and an average-power
constraint, maximizing h(h"X) is more involved. The optimal
input can be found based on two insights. First, in order to
reach a certain range of amplitude levels h™X € (sx—1 A, sg.Al,
it is most energy-efficient to set all LEDs with strong channel
gains to the maximum level, X; = A, j =1,...,k—1;to
switch the weaker LEDs off, X; =0, j = k+1,...,n71}
and to exclusively use X to signal. Second, conditional on
a given range (sx—1A, sgAl, X should have a truncated
exponential distribution in order to maximize the conditional
differential entropy under the given power constraints. It then
only remains to optimize over the probability masses assigned
to each of the different amplitude ranges and the parameters
of the truncated exponentials. Note that this optimization
characterizes an implicit trade-off: higher probabilities on the
higher amplitude ranges will increase the effectively used total
range of h'X, but at the cost of using more power for the LEDs
that are set deterministically to A.

Our lower bound in Proposition 5 is based on such a
choice of input distribution. Our upper bound in Proposition 10
and its asymptotic analysis in Section VII are based on the
same intuition, but borrow from known upper bounds on the
SISO capacity. Alternatively, one can also derive a new upper
bound using the duality-based bounding technique [18], as we
outlined in [17]. Such a bound, however, is much harder to
prove.

A close look at the results in [10] confirms that also for the
MIMO optical intensity channel when the channel matrix H
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has full column rank, the high-SNR asymptotic capacity is
given by the maximum differential entropy of HX minus that
of the noise vector. With the current work and [10], the only
MIMO optical intensity channels whose high-SNR asymptotic
capacities are not yet known are those with more than one
receive antennas (photodetectors), and with channel matrices
that do not have full column rank. It is natural to conjecture
that, for those channels, the high-SNR asymptotic capacity is
again given by the maximum of h(HX) minus the differential
entropy of the noise.

APPENDIX
PROOF OF LEMMA 8

The variance of X can be decomposed as
E[(X - EX)’]
nt
= > HE (X — E[Xc)?]
k=1

nt
+ Z h,‘hj(E [X,'Xj]—E[X,‘]E[Xj]). (141)

i,j=1

i#j
Let us fix the joint distribution on (Xi,..., Xu—1),
and fix with probability one the conditional mean

E[Xur|X1,.... Xnp—1]. These determine the consumed
average input power, as well as every summand on the
RHS of (141) except E [(XnT - [XnT])z]. For any choice

above, the value of E [(XnT - [XnT])z] is maximized by
X, taking value only in the set {0, A}. We hence conclude
that, to maximize the variance (141) subject to a constraint
on average input power, it is optimal to restrict X,, to
taking value only in {0, .A4}. Repeating this argument, we
conclude that every Xi, k = 1, ..., nt, should take value only
in {0, A}.

Next, using the same argument as in Lemma 4, we know
that it is optimal to consider joint distributions as follows: for
each k € {0, ..., nt}, with probability g

Xi==X;y=A and Xpy1=---=X,;, =0. (142)
Such a choice produces an X that takes value only in (41).
This proves Part 1 of the lemma. Further, this choice of inputs
consumes an average power of > ;T gck. The condition for

a probability vector qo, ..., gu; to be valid is thus

nt
Z qrk < a.
k=0

Part 2 of the lemma is then proven by noting that with the
choice in (142), the variance of X is

E[(% - Etx)’] =[] - (E1%)

(143)

(144)
2

nt nt
= qu.Az s,% — quAsk . (145)
k=1 k=1
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