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Diagnosis of hybrid systems using Hybrid
Particle Petri nets: theory and application on a
planetary rover

Quentin Gaudel and Elodie Chanthery and Pauline Ribot and Matthew J. Daigle

Abstract This chapter presents a new methodology to perform health monitoring of
hybrid systems under uncertainty. Hybrid systems can be represented as multi-mode
systems with hybrid automata. Diagnosers are generated from these hybrid automata
using a new data structure in order to monitor both the behavior and degradation of
such systems. After a review of the state of the art on different existing solutions for
diagnosis of hybrid systems under uncertainty, we propose to introduce the Hybrid
Particle Petri Nets (HPPN) modeling framework. The main advantage of HPPN is
that they take into account knowledge-based uncertainty in the system representa-
tion and uncertainty in the diagnosis process. The HPPN-based diagnoser deals with
occurrences of unobservable discrete events (such as fault events) and it is robust to
false observations. It also estimates the continuous state of the system by using
particle filtering. A methodology is proposed to perform model-based diagnosis on
hybrid systems by using the HPPN modeling framework. The system diagnosis is
computed at any time from a HPPN-based diagnoser and contains all the hypothe-
ses over its past mode trajectory. Each hypothesis is valued with a belief degree
and includes discrete and continuous state estimates, as well as the set of faults that
occurred on the system up to the current time. The HPPN-based methodology is
demonstrated with an application on the K11 planetary rover prototype developed
by NASA Ames Research Center. A hybrid model of the K11 is proposed and exper-
imental results show that the approach is robust to real system data and constraints.
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1 Introduction

Real systems have become so complex that it is often impossible for humans to
capture and explain their behaviors as a whole, especially when they are exposed to
failures. System health management (SHM) or prognostics and health management
(PHM) aims at developing tools that can support maintenance and repair tasks, re-
ducing the global costs due to unavailability and repair actions, but also optimizing
the mission reward by replanning or reconfiguring the system [Sweet et al. (2014)].
An efficient health monitoring technique has to be adopted to determine the health
state of the system at any time by using diagnostics and prognostics techniques.
A diagnosis method is used to determine the current health state and identify the
possible causes of failures that lead to this state by reasoning on observations. Prog-
nosis is used to predict the future health states and the times of the occurrences of
the faults that lead to these states. Hybrid systems have been defined by Henzinger
(1996) as follows.

Definition 1 (Hybrid System). A hybrid system exhibits both discrete and continu-
ous dynamics.

Sensor data and commands are designated as continuous or discrete observations
on the system. Hybrid systems are usually described as a multi-mode system com-
posed of an underlying discrete-event system (DES) representing the mode changes
and various underlying continuous dynamics associated with each mode [Bayoudh
et al. (2008)].

Definition 2 (Discrete State, Continuous State). The system discrete state is de-
fined as the current discrete state of the DES. The evolution of the system continuous
state depends on continuous dynamics associated with the current system mode.

In most industrial systems, if the degradation is not observable, it is estimated
as fault occurrence probabilities. The degradation thus depends on the stress level
of the current health mode of the system and, in some cases, also relies on the
current continuous state and also on the analysis of the events that occurred on the
system [Gaudel et al. (2015)]. Because of these dependencies and its importance for
PHM, we choose to evaluate the degradation separately from the discrete state and
the continuous state of the system.

Definition 3 (Degradation state). The system degradation state is the current value
of the degradation whose evolution is represented by degradation dynamics.

We extend the multi-mode system by associating underlying degradation dynam-
ics (e.g. degradation laws) with each mode.

Definition 4 (Mode, Event, State). A mode is defined as a combination of a discrete
state of the DES with continuous dynamics and degradation dynamics. The changes
of modes are associated with occurrences of discrete events. The state of the hybrid
system is defined as the combination of its discrete, continuous and degradation
states.
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Our previous works introduced a framework called Hybrid Particle Petri
Nets (HPPN). Gaudel et al. (2014a) proposed to use HPPN to model an uncer-
tain hybrid system and track its current health state by generating a diagnoser. The
methodology uses information about the system degradation that is a significant ad-
vantage to compute a more accurate diagnosis and to perform prognosis. In Gaudel
et al. (2015), we tested the proposed approach on a simulated three-tank system.

This chapter presents in detail the HPPN-based health monitoring method ex-
posed in Gaudel et al. (2015) that has been improved concerning computation per-
formance. The method is hence recalled and new notions are precised, such as the
definition of discrete events, the calculation of mode scores or the choice of scale
parameters for the diagnoser process. This chapter then exposes results of the imple-
mented health monitoring method on the K11 planetary rover prototype. The K11 is
a testbed developed by NASA Ames Research Center which is used for diagnostics
and prognostics purposes [Balaban et al. (2013); Daigle et al. (2014); Sweet et al.
(2014); Daigle et al. (2015b)]. A hybrid model of the rover is proposed, based on
the discretization of its health evolution. Experimental results are given, illustrating
how the methodology is robust to real system data and constraints.

The chapter is organized as follows. Section 2 presents related works on diag-
nosis of hybrid systems. Section 3 recalls and deepens the health monitoring
methodology based on the modeling of the hybrid system and the generation of
a diagnoser in the HPPN framework. Section 6 focuses on the application of the
proposed methodology on the K11 planetary rover prototype. It provides the K11
hybrid model and exposes the experimental results and performance metrics. Con-
clusions and future works are discussed in the final section.

2 Related Work

Hybrid systems are a very important subject in many fields, such as modeling, veri-
fication, control, and monitoring.

Some models, initially purely continuous have been extended with the integra-
tion of events [Narasimhan and Biswas (2007)]. Similarly, discrete event models
have been extended with some continuous aspects, such as Continuous Petri Nets
(CPN) [David and Alla (2005)] and Hybrid Petri Nets (HPN) [Zaidi et al. (20006);
Dotoli et al. (2008)], which introduce a new type of place (continuous place) with a
rational marking. Finally, some other hybrid models have been build by the explicit
combination of a discrete event model and a continuous model, such as Hybrid
Automaton [Bayoudh et al. (2008); Hofbaur and Williams (2002)] or particle Petri
nets [Lesire and Tessier (2005)]. All of these models have been widely used and
extended for monitoring hybrid systems.

Zhao et al. (2005) propose an approach based on timed Petri nets and mode esti-
mation. The Petri nets use is justified by significant computational advantages over
concurrent automata. Fault detection and estimation are done sequentially. Uncer-
tainty about discrete events is not considered. Bayoudh et al. (2008) model the sys-
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tem with a hybrid automaton. The hybrid system is described as a multi-mode sys-
tem in which each mode is associated with a continuous dynamic. These works then
exploit the analytical redundancy relations of the continuous models and the parity
space approach to generate a DES diagnosis that recognizes the signatures asso-
ciated with each operational modes. Horton et al. (1998) introduce fluid stochastic
Petri nets. The arcs of a fluid stochastic Petri net carry fluid flow which limits the
passage of tokens, and create continuous marking. However, the continuous dynam-
ics is limited to a speed and is not appropriate to represent any hybrid system.
Lesire and Tessier (2005) combine a discrete event model (Petri nets) and a con-
tinuous model (dynamic equations) in an extension of the hybrid Petri nets called
Particle Petri Nets (PPN). They propose to distribute the rational marking of the
continuous spaces in a set of particles. The tokens of the discrete places (named
configurations) and these particles are then used in a monitoring mechanism com-
bining the possibilistic firing [Cardoso et al. (1999)] with a particle filter to manage
all the uncertainties relative to the system and discrete and continuous observations.
This work is oriented towards mission monitoring, not health monitoring.

The Modified Particle Petri Nets (MPPN) formalism [Zouaghi et al. (2011)] is
proposed as an extension of the PPN. The main advantage of MPPN is that they
propose to use transitions associated with conditions that deal with both the config-
uration and particle values. The application is essentially oriented towards mission
monitoring, not health management. The different health states of the system are not
considered. Moreover, there is no correspondence with the diagnoser object defined
in the literature and the problem of ambiguity in the model is not addressed. The
diagnoser approach was introduced in Sampath et al. (1995). The diagnoser is basi-
cally a monitor that is able to process any possible observable event that occurs in the
system. It consists in recording these observations and providing the set of possible
faults whose occurrence is consistent with the observations. However, this approach
is restricted to DES and does not manage uncertainty. Some approaches extend the
diagnoser to DES modelled by Petri nets. However, none of these approaches take
into account continuous aspects, nor consider uncertainty in the system. In Soldani
et al. (2007), an approach for the localization of intermittent faults by dealing with
partial observability in the discrete event framework is proposed. The method is
based on Petri nets that model the normal functioning of the system observable be-
havior. A localization mechanism, based on the diagnoser approach, points out the
set of events potentially responsible for the faults.

Some studies are particularly focused on the diagnosis of systems with the inten-
tion of using it for prognosis purposes. These approaches consider monitoring the
degradation of the system. This is called the advanced diagnosis.

In Vianna and Yoneyama (2015), the diagnosis method uses an extended Kalman
filter and an Interactive Multiple-Model (IMM) algorithm to monitor both the be-
havior of the system and its degradation in order to obtain a better system state
estimation as a starting point for the prognosis process. However, the approach is
limited to continuous systems.

Chanthery and Ribot (2013) propose to extend the diagnosis approach proposed
in Bayoudh et al. (2008) by associating to each mode of the hybrid system a degra-
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dation dynamics. However, dynamics are limited to aging laws which estimate the
probabilities of occurrences of anticipated faults. The approach does not take into
account the uncertainties on the system model and the observations, both for the
continuous and discrete part.

In Yu et al. (2011), fault isolation is performed dynamically with a Hybrid Bond
Graph (HBG). The method proposes to use a fault signature matrix for each mode
and introduces a delay to allow each fault to express its symptoms on the residu-
als (especially the only detectable faults with the continuous signals). However, no
indication of the waiting time is given. In parallel with the monitoring of the evolu-
tion of these new faults, the degradations of each component depend on the current
operational mode and are estimated with a hybrid differential evolution algorithm.

This paper focuses on the application of the health monitoring methodology on
the K11 rover, that is subject to inherent uncertainty of real systems.

Uncertainty has been widely studied for state estimation of continuous systems.
Concerning hybrid systems, Koutsoukos et al. (2002) use a particle filtering tech-
nique to estimate the state of a hybrid system modeled as a hybrid automaton. Uncer-
tainty related to discrete events is not taken into account and the system degrada-
tion is not considered. In Narasimhan et al. (2004), a consistency-based approach
combined with particle filters is proposed. Noise and uncertainty are taken into ac-
count, but only discrete faults are addressed. Biswas et al. (2003) and Wang et al.
(2007) both propose a robust state estimation and fault diagnosis for uncertain hy-
brid nonlinear systems, where the discrete dynamics has unknown transition func-
tions. However, they only consider discrete faults. Ru and Hadjicostis (2009) use
partially observed Petri nets. Partially observed Petri nets are transformed into an
equivalent labelled Petri net and an online monitor is built to diagnose faults and
provide beliefs (degrees of confidence) regarding the occurrences of faults. How-
ever, this approach is limited because it only takes into account uncertainty in the
diagnosis results, not about the model or the event observations. Basile et al. (2009)
propose to reduce the explosion of the state space by introducing generalized mark-
ings (negative tokens) to take into account uncertainty about the firing of transitions.
The stochastic Petri nets are used by Jianxiong et al. (2013) to build a formal model
of each component of an integrated modular avionics architecture. However, for all
these approaches, no continuous aspect in the model is taken into account.

In previous works, health monitoring and diagnosis was applied to the K11 rover.
In Narasimhan et al. (2012), two diagnosis algorithms were applied, Qualitative
Event-based Diagnosis (QED) [Daigle et al. (2015a)], and the Hybrid Diagnosis En-
gine (HyDE) [Narasimhan and Browston (2007)]. QED performs diagnosis based
on reasoning over symbols representing qualitative deviations of the sensor signals
with respect to model-predicted values. Sensor and process noise are handled by
using an observer to estimate the current system state, however no uncertainty in
the symbols computed for diagnosis is considered, and all diagnostic hypotheses
are viewed as equally likely. HyDE is a consistency-based diagnosis engine that
uses hybrid and stochastic models and reasoning. Reasoning is performed by hy-
pothesizing alternative system trajectories inferred from the transition and behavior
models of the system, and considers a priori fault probabilities and mode transition
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probabilities. Both diagnosis algorithms were used to diagnose parasitic load, mo-
tor friction, and voltage sensor faults in simulation. In Sweet et al. (2014), QED
diagnosed parasitic load faults and voltage sensor faults in real-world scenarios.

3 Health Monitoring Methodology for Hybrid Systems

This section details the methodology proposed in Gaudel et al. (2015) to perform
model-based health monitoring of hybrid systems.

We are interested in modeling changes in system dynamics when one or several
anticipated faults occur.

Definition 5 (Health Modes). The health modes are the hybrid system modes (a
discrete state with continuous dynamics and degradation dynamics) and represent
different health conditions.

Definition 6 (Nominal mode). As long as the system does not encounter any fault,
it is in a nominal mode.

Definition 7 (Degraded mode). Tracked faults are assumed to be permanent, i.e.
once a fault happens, the system moves from a nominal mode to a degraded mode
or faulty mode.

Definition 8 (Failure mode). Without repair, the system ends in a failure mode in
which it is not operational anymore.

The set of health modes is the superset of nominal, degraded and failure modes.

An overview of the health monitoring method is illustrated in Fig. 1 and de-
scribed by Algorithm 1. Three different objects are defined in the HPPN frame-
work: a hybrid system model HPPNg, a HPPN-based diagnoser HPPN, and a
HPPN-based prognoser HPPNyr. Note that the generation of the prognoser object
for prognosis purpose is not detailed in this chapter.

The first offline step is the modeling of the hybrid system (line 1) using the HPPN
framework, as described in Section 4). The system model HPPNg can be built either
from a multimode description of the system or directly from expert knowledge. The
second offline step (line 2) is the generation of a HPPN-based diagnoser HPPN4
from the system model HPPNg described in Section 5.2. Then the online diagnoser
process (line 3-6) uses the system consecutive observations Oy (inputs and outputs)
to update the diagnoser result and compute the diagnosis Ax (see Section 5).

Example 1. Throughout Section 3, an example of a mobile robot, described in Fig. 2,
is used to illustrate the definitions and concepts.

The system is described with an oriented graph, in which the nodes represent
the health modes and the arcs represent the mode changes. Variables that can be
observed or estimated with observations are in bold.

The robot mission is to move without encountering an obstacle or failure, un-
til it reaches a specific area and is turned off. The initial mode is Nominal;: the
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Multimode description of the system

Future inputs

S N
Observations U1, Uicsr
B S N
(ln;uts; out;utsl)v US o uly,
Wi, vk, Yi, yie) ;

HPPN,: HPPN-based diagnoser
CreateHPPNModel() ). +

l m, = I’rvgrw.sutH[’PNq,,Ak, U

Fig. 1. Overview of the health monitoring methodology for hybrid systems.

Algorithm 1 HPPN-based monitoring methodology

AN o S e

: HPPN g + CreateHPPNModel()
: HPPN, <+ GenerateHPPNDiagnoser(HPPN )
: for all k do
Ok + (U5 ,ud Y5 y)
Ay < Update(HPPN p,k, Oy)
end for

robot is not degraded and is moving in a non-hostile zone. Its velocity v can be es-
timated with continuous dynamics C| and continuous observations, and is positive.
Two faults are expected and the robot degradation is estimated as fault occurrence
probabilities with degradation dynamics D1, in which the probabilities increase with
time.

When the (discrete and observable) on-off command furn off occurs, the robot
stops and its velocity decreasing to 0. The robot enters mode Nominal,, where its
motor is turned off and its velocity thus stays 0 (continuous dynamics C,). Because
the robot is turned off, the fault occurrence probabilities stagnate, following degra-

Nominal; Degraded;
occ(f1) G
D,

Failed;

occe(f2) and v <0

@ Nominal, occ(wall)

Fig. 2. Mobile robot description.

Failed,

5

dation dynamics Ds.

ko

k+2
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Fault f, represents a disconnection of the robot motor. Its occurrence leads the
system to the failure mode Failed;. The occurrence of f, implies the robot stops, so
its velocity decreases to 0. Once the motor is disconnected, the robot has the same
continuous and degradation dynamics (C, and D3) as if it was turned off.

Fault f; represents the robot entrance in a hostile zone where it is degrading faster
due to environmental conditions. The robot is still moving at the same velocity (Cy).
The physical conditions in mode Degraded; imply that the probability of f> in-
creases more significantly than in mode Nominal;. This is defined with degradation
dynamics D;.

From mode Degraded;, the robot can still enter in mode Failed; with fault f;
occurrence but it does not match with any condition on the velocity in that case
(see arc between Degraded; and Failed;). The velocity estimation is considered
less accurate in the hostile zone than in the non-hostile zone, indeed.

Finally, the hostile zone contains obstacles. The robot can encounter a wall, that
stops the robot but not its motor. In that case, the mission fails and the robot enters
in failure mode Failed,. This event wall is not predictable (not estimated with prob-
abilities) but is observable with an environmental on-off sensor. Even if the mission
is compromised and the robot is not moving anymore (C3), its motor is still on so
the degradation laws remain the same (D;).

4 Hybrid System Modeling

We propose to model the system by using the Hybrid Particle Petri Nets (HPPN)
framework introduced in Gaudel et al. (2014a).

4.1 Hybrid Particle Petri Nets

The HPPN formalism is an extension of Petri nets. Definition 9 gives the complete
structure of a Hybrid Particle Petri Net before explaining each notation.

Definition 9. A HPPN is defined as a 11-tuple (P,T,A, o ,E,X,D,€,2,Q,M)
which describes discrete evolutions (with symbolic places), continuous evolutions
(with numerical places) and degradation evolutions (with degradation places) and
relations between them:

e P is the set of places, partitioned into numerical places PV, symbolic places PS
and degradation places P, P = PSUPN UPP,

T is the set of transitions,

A CPxTUT x P is the set of arcs,

2/ is the set of arc annotations,

E is the set of event labels,
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e X C R™ is the state space of the continuous state vector, with ny € Ny the
number of continuous state variables,

D C R" is the state space of the degradation state vector, with np € N, the
number of degradation state variables,

% is the set of dynamic equation sets associated with numerical places,

2 is the set of dynamic equation sets associated with degradation places,

£ is the set of conditions associated with transitions,

M is the initial marking of the Petri net.

An example of a simple HPPN is illustrated in Fig. 3. Symbolic places are rep-
resented by thin green circles, numerical places are represented by blue circles and
degradation places are represented by thick grey circles. Transitions are represented
by black lines. Arcs connecting transitions and symbolic places (resp. numerical and
degradation places) are represented by plain arrows (resp. discontinuous and dotted
arrows).

P

P p p

D
2

Fig. 3. Example of a simple HPPN at time k& = 0.

The set E = E, UE,, is the set of event labels that is partitioned into observable
event labels E, and unobservable event labels E,,,. Fo example, an anticipated fault
in the system model is represented by an unobservable event f € E,, C E. An event
e is a couple e = (v, k) where v € E is an event label (or type) and k € R the time of
occurrence of e. For example, (z,4) means an event type z has occurred at time 4.
An event (v,k) is unobservable if for all k, v does not belong to the set of discrete
observations of the system.

The places of a HPPN are marked by tokens that carry different types of infor-
mation.

Symbolic places P5 model the discrete states of the system and are marked by
symbolic tokens called configurations.The set of configurations at time k is denoted
M,f . Each configuration in a HPPN carries the trace of events that occurred on the
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system until time k. A configuration & € M,f is a token at time k whose value is a
set of events by that occurred on the system until time k: by = {(v, x)||x < k}.

Numerical places PV represent continuous dynamics of the system and related
uncertainty. Each numerical place p" € PV is associated to a set of dynamic equa-
tions Cv € % modeling system continuous dynamic and its corresponding model
noise and measurement noise:

C v = X+l = f(Xk,uk) + V(xkauk) (1)
P Yk = h(.X,'k,Mk) + W(Xk,uk) ’

where x; € X is the continuous state vector, u; € R"™ is the vector of n, continu-
ous input variables, f is the noise-free continuous evolution function, v is a noise
function, y; € R™ is the vector of n, continuous output variables, h is the noise-free
output function and w is the noise function associated to observation. Functions f,
v, h and w depend on the considered place p". Numerical places are marked by
numerical tokens called particles. The set of particles at time k is denoted M,’(V . More
precisely, a particle m; € M,ICV is a token whose value represents a possible continuous
state x; € X of the system at time k.

Degradation places PP represent degradation dynamic of the system and related
uncertainty. Each degradation place p? € PP is associated with a set of equations
D,» € Z modeling system degradation dynamic:

Do = { diy1 = &(di, b, e, k) + 2(Ae, iy X, ) @)

where d; € D is the degradation state vector, g is the noise-free degradation evolu-
tion function and z is a noise function. Functions g and z depend on the considered
place pD . It has to be noticed that, as said earlier, the difference between contin-
uous and degradation places is that degradation system states are function of the
continuous state and the set of events by that have occurred time k.

Degradation places are marked by degradation tokens. The set of degradation
tokens at time k is denoted M,? . A degradation token dy € M,? links a configuration
Oy to a particle 7, and its value is a possible degradation state d; € D of the system
at time k.

The set of places P of the HPPN is:

P=PUPYUPP = {p,...p} U{p) - P YU LPT, - P} (3)

where s, n and d are respectively the number of symbolic, numerical and degradation
places. In Fig. 3, we have for example, P = {p}, p5, pY. pY ., p?, p2'}.
Let M, denote the set of tokens of the HPPN at time k:

My = M{ UMY UMP, (4)

where M,f, M,jcV and MkD are respectively the set of configurations, particles and
degradation tokens at time k. In Fig. 3, we have for example, My = {8, o, do }-
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The marking M of a HPPN at time & is the distribution of tokens in the different
places:
My = M UMY UMP?, ®)

where M§ € (ZMIE )s, MY € (ZMlicv )" and MP € (ZMI? )1 are respectively symbolic,
numerical and degradation markings at time k. For the example illustrated in Fig. 3:

Mp = [[&] @],
Mel - Hﬂ()] w]a
Mg = [[do] 0]-

Initial marking M represents the initial conditions of the system (the initial con-
tinuous and degradation states and the set of events that have occurred until time
0).

Definition 10 (Hypothesis). A hypothesis on the system contains all knowledge
about the system state at time k and the events that have occurred on the system
until time k. A hypothesis {8, @}, ..., m* ,d},....d*} at time k is composed of a
configuration &, a set of particles {m|i € {I,...,n}} and a set of degradation to-
kens {di|i € {1,...,nc}}, where each degradation token d; links the particle 7 to
the configuration &.

For example, if the event set is by, the continuous state xy and the degradation
state dg are precisely known, the initial set of tokens My = {dy, 7, do }, where do
links &y and 7y, is the unique hypothesis. A hypothesis at time k may contain sev-
eral particles and degradation tokens to represent imprecise knowledge on contin-
uous and degradation states, e.g. {8, 7}, ..., m*,d},...,d;*}, where n; € N, is the
number of particles used to represent the continuous state, and where n; degrada-
tion tokens links ny particles to the configuration 5,(1. The number n;, of particles and
degradation tokens is representative of the hypothesis precision at time k.

Definition 11 (Particle cluster). The set of n; particles linked to the same configu-
ration with n; degradation tokens is called a particle cluster.

In Fig. 4, d' and d? links 7' and 72 to 8!, and d> and d* links 7> and 7* to §2.
Two hypotheses are represented {§', 7!, 7%,d!,d?} and {8% 73 7%, a3 d*}, with
two particle clusters {z!, 72} and {7>, 7*}. A each time k, the set of particle clusters
defines a partition of the particle set M,’CV of the HPPN.

4.2 Illustration example

The HPPN model of the mobile robot is presented in Fig. 5. Symbolic places are
represented by places with regular thicknesses, while numerical and degradation
places are represented by places with medium and large thicknesses, respectively.
Arcs that connect transitions and symbolic (numerical and degradation) places are
represented by solid (dashed and dotted) arrows.
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Fig. 5. HPPN model of the mobile robot.

Health modes of a hybrid system (nominal, degraded and failure modes). are rep-
resented by combinations of discrete states, continuous dynamics and degradation
dynamics. Transitions model changes of health modes, so any transition have three
places (one of each type) in its sets of input places and three places in its set of
output places. Two transitions cannot have both the same set of input places and the
same set of output places.

We decompose the five health modes of the robot into four symbolic places,
two numerical places and three degradation places. Four discrete health states are
identified from the robot description (Fig. 2). One nominal state, one degraded state,
and two different failure states are represented by the four symbolic places pf , pg, pg
and pj, respectively. The two numerical places pY and pY represent the continuous
dynamics C; and C,. The three degradation places p?, p? and pf represent the
degradation dynamics D1, Dy and D3, respectively. Five transitions represent the
health mode changes. For example, transition #4 represents the change from mode
Nominal; to mode Nominaly so °ty = {pf,plsv,p?} and 7} = {pf,pév,pg}.

The initial mode is Nominal; so the tokens &y, My and d are in pf , pISV and p17) s
respectively. At time k = 0, no event has occurred, by = {}. The only estimated state
is the velocity, xo = [vo]7 with vo > 0 because the velocity is initially positive. The
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initial fault occurrence probabilities p(’;l and p({z are very low. Thus, dy = [P({l apgz]T
with pJ' = 0.01 and p{> = 0.05.

4.3 Marking evolution rules in HPPN for diagnosis

Firing rules in a HPPN may be different depending on the utilization for model sim-
ulation, diagnosis or prognosis purposes. Semantics of transition firing are proposed
here only for diagnosis purpose.

The following assumptions are considered. The set of input places of a transition
is composed of at least one place of any type and at most a place of each type. The
set of output places of a transition is composed of at least as many places of each
type contained in its set of input places.

Let °¢ (resp. t°) denote the set of input (resp. output) places of ¢. The firing of a
transition ¢ € T depends on its associated condition set €, € Q. This condition set
€, contains as many conditions as there are input places in °¢:

VteT, || =] (©6)

For example, if ¢ has a place of each type in °f, its condition set is €, =
(@f, ", ®P). A condition @ : M; — B, with B = {T, L} (set of logic values TRUE
and FALSE), can be a test on the token value, always satisfied (T), or never satisfied
().

A symbolic condition a),S can be T or L, or it can test the occurrence of an
event v € E (as fault, mission event, interaction with environment, etc.). In this case,
the condition @’ (8;) = occ(by,v) tests if the event set by of the configuration &
contains the event (v,k).

A numerical condition @/ (resp. degradation condition @P) can be T or L or it
can test a constraint on the continuous state (resp. degradation state) of the system.
In this case, the condition ®" (1) = c(x;) tests the value of the continuous state
vector x, of the particle 7.

Example 2. For the example of the mobile robot illustrated on Fig. 5, condi-
tion Q(t4) (S, T, dx) = occ(by,turn of f) A (x) < 0) tests if an event labeled with
turn of f occurred at time k and if vy is 0. We assume that a fault occurs if its
probability of occurrence is greater than a predefined threshold 0.9. Consequently,
the condition associated with transition 1, is Q(t,) (8, 7, d) = occ(b, fi) V (d? >
0.9). With the same reasoning, we have Q(t1)(8, T, di) = occ(by, f2) V (d} >
09), Q(l‘3)(5k, ﬂk,dk) = OCC(bk,fz) A (xg < O) V (d]} > 09) and .Q(l‘S)(5k, Ek,dk) =
occ(by,wall).

The firing of a transition ¢ at time £ is illustrated in Fig. 6. A token is accepted by
the conditions €2, at time k if it satisfies the condition of its type. Let My (p) be the
set of tokens in the place p € P at time k. .7/ is the set of tokens in the input places
of the transition ¢ that are accepted by the conditions £2; at time k :
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T ={ &G eM(p’) | @} (&)=T }U
{meM(p") | o) (m)=T}U @)
{dee M (pP) | 0P (dp) =T },

where (pS, pV, pP) € (PSN°t) x (PN N°t) x (PP N°¢t) and @° € Q, o € Q,, 0P €
Q.

Definition 12 (Fireable transition). A transition ¢ € T is fireable at time & if it exists
at least one token in each of its input places which are accepted by the conditions
Q;:

Vpe®t, | (p)| > 0. ®)

In Fig. 6, we suppose at time k that ©°(8') =T, oM (n') =T, 0P (d") =T,
®’(8%) = 1 and o (7*) = L, then the transition  is fireable.

P pY pY P Y PP
b !62

A%
Ps

k k+1

Fig. 6. Illustration of a transition firing at time .

Definition 13 (Transition firing). The firing of a transition # € T at time k is defined
as follows:
VPO ¢ {PS,PN,PD},[) cp° mot7p/ cpe ﬂto,

Myi1(p) = M(p)\F(p), )
My (p') = Mi(p') U7 (),

where .7/ (p) is the set of tokens of ./} which are in the place p.

In Fig. 6, after firing the transition ¢, the three accepted token are in the output
places of z. During the transition firing, accepted tokens are moved, their links are
conserved and their values are either conserved or updated. This property is the main



Diagnosis of hybrid systems using HPPN: theory and practice 15

difference from ordinary Petri nets in which tokens are consumed and new tokens
are created in the output places of the transition. The conservation of token values
exists in some extensions of Petri nets, like in colored Petri nets for example but the
existence of links between tokens and their conservation during the transition firing
is specific to HPPN.

An arc a € A connecting a transition 7 to a symbolic place p°, can be annotated
with an event label v € E. In this case, the set of event b of a configuration § which
has moved in p® after the firing of ¢ at time k is updated with the event (v,k). The
values of configurations evolve with the annotations .« C A x E during the firing of
transitions. In Fig. 6, we suppose that d' links ' and 7! at time k. After the firing
of ¢, the value of &' is b, | = by U (v,k), the value of 7' is x| = x}, the value of
d'isd}, , =d},and d" still links 8' and 7',

5 Hybrid System Diagnosis

Diagnosis aims at tracking the system current health state. The system health state
is the combination of its discrete, continuous and degradation states. We propose to
build a diagnoser from the HPPN model of a hybrid system [Gaudel et al. (2014b)].
The HPPN-based diagnoser monitors both the system behavior and degradation un-
der uncertainty. Its online process takes as inputs the set of discrete and continuous
observations on the system. The output of the diagnoser process at any time k is
an estimation of the system health state that takes the form of the marking of the
HPPN-based diagnoser A, = M.

5.1 Uncertainty

Several types of uncertainty are taken into account by using HPPN. Knowledge-
based uncertainty must be taken into account because the model does not reflect
perfectly reality, as for the symbolic part of the model than the numerical one. Due
to the inherent imprecision of sensors, we also consider uncertainty about observa-
tions. Two types of uncertainty are then considered: the symbolic uncertainty deal-
ing with the discrete model and observations; and the numerical uncertainty dealing
with the imprecision on the continuous model and numerical values.

Regarding the symbolic aspects, the discrete model of the system may include
symbolic uncertainty as impossible or incomplete event sequences. Concerning the
discrete observations, an event may occur without being observed: this is a missing
observation. Dually, an event may be observed whereas it has not really occurred:
we talk about false observation.

Symbolic uncertainty is managed at two levels in the HPPN-based diagnoser:
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e Every symbolic condition of transitions is replaced by a TRUE condition during
the diagnoser generation. It means that pseudo-firing is used for these transitions
with modified symbolic conditions.

e During the prediction step of the online diagnoser process, the diagnoser uses
pseudo-firing of transitions [Lesire and Tessier (2005); Zouaghi et al. (2011)],
introduced in Cardoso et al. (1999) to consider the occurrences of each event
consistent with the discrete dynamic. Pseudo-firing creates new hypotheses.

Transition pseudo-firing duplicates tokens: tokens in the input places of the tran-
sition are not moved but duplicated and their duplicates are moved in the output
places of the transition.

Definition 14 (Transition pseudo-firing). Let 7 € T an enabled transition. For each
type of input and output place of ¢, the pseudo-firing of r € T at time k — 1 is formally
defined by:

vP° € {P5,PN PP} pe P°1°t,p € PPN1°,

Mi(p) = My—1(p),
M(p') = M1 () U1 (p), (10)

where .7/, (p) is the token set of ./}, that are in place p.

Example 3. Fig. 7 illustrates the pseudo-firing of a transition 7. At time k, d' is
supposed to link ' and ! and transition 7 is supposed to be enabled. After pseudo-
firing ¢, tokens 8!, 7! and d' are not moved and tokens 62, w2 and d? are created
and moved in the output places of . Moreover, d ! links 6! and 7!, and 42 links 62
and 72.

Py
51

Fig. 7. Pseudo-firing of a transition ¢ at time k.
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Besides the intrinsic deviation between reality and continuous model of a system,
numerical uncertainty embodies the fact that the numerical values are imprecise.
This is an inevitable problem in real case studies. For example, in Fig. 8, we can
see the difference between the measured data of a battery voltage and its non-noisy
discharge model.

42 : ‘ : :
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I M‘H‘m ——  model ||
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Fig. 8. Comparison between measured data of a battery voltage and its non-noisy discharge model.

Numerical uncertainty is often dealt with through an estimator [Ding (2014)],
that aims at estimating the continuous state according to model noise and measure-
ment noise. We use particle filters [van der Merwe et al. (2000)] to estimate the
continuous state through the set of particles of the HPPN. The use of particulate
filters is relevant for estimating discrete, continuous and degradation states since the
representation of the continuous state estimate is already discretized into particles.

For example, in this work, a particle filter is applied independently to each clus-
ter of particles thanks to the links between the configurations and the particles, pro-
vided by the degradation tokens. During the diagnosis prediction step, the values of
the particles evolve as a function of the continuous dynamics associated with the nu-
merical places to which the particles belong. Then, during the correcting step of the
online diagnoser process, each particle cluster is resampled independently. The links
between the configurations and the particles, provided by the degradation tokens, are
thus used to prevent the particle distribution to be disturbed by pseudo-firing.

5.2 Diagnoser Generation

The system model HPPNg is a tuple (Pp,Tp,Ap, Zp,Ep,Xe,Do, Co, Do, Lo -
M) as defined in Section 4. The diagnoser HPPN 4 is a tuple:

HPPN, = (Pa,Tp,Ap, P, Er, XA, DA, Cr, Da, 24, Moa), (11)
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which is generated from the system model HPPNg in 6 steps that are described
hereafter.

The diagnoser has to estimate the discrete, continuous and degradation states of
the system. Step 1 consists in copying the HPPN system model. Indeed, discrete,
continuous and degradation state spaces, as well as continuous and degradation dy-
namics are the same as those of the model. As a result, all the places, event labels,
state spaces and diagnosis dynamics remain the same as those of the model HPPN ¢:

Py =Pp,Ep =Egp, XA =X¢,Dp = Do, 6p = 6o, D4 = Do (12)

The initial marking My, of the HPPN-based diagnoser HPPN, corresponds to
the initial marking Mg of the system model, which contains knowledge about
mode, state and events that occurred on the system at time O (usually none):
Moa =Mog.

Step 2 consists in separating the HPPN-based diagnoser into two levels: the be-
havioral level manages the observable part of the system whereas the degradation
level includes the unobservable part. Thus, the behavioral level contains only the
symbolic and numerical places, while the degradation level contains the degrada-
tion places.

Each transition transition 7 € Ty thus generates a pair of transitions (¢/,7”) during
the diagnoser generation. Transition ¢’ inherits arcs linking 7 to symbolic and nu-
merical places, as well as symbolic and numerical conditions. Transition #” inherits
arcs linking ¢ to the degradation places, as well as the degradation condition. ¢’ and
t" are then defined by:

ot/:otﬂ(PSUPN), l/o:loﬂ(PSUPN)7 (13)
and:
" =tnP?, " =1"nPP, (14)

with the following conditions €2, and £2,:
Qy=(0),a),  Qu=(aP). (15)

The set of all transitions in the behavioral level and in the degradation level is de-
noted T4.

Example 4. Fig. 9 illustrates the second step of the diagnoser generation HPPNy4,
the separation into 2 levels, for the example of the mobile robot. Degradation places
and associated transitions are put in the degradation level.

Step 3 consists in setting to TRUE all the symbolic conditions, in agreement with
the uncertainty management concerning the occurrences of events (see Section 5.1):

VIET), 0 €Q = o + T. (16)

Thus, all configurations in the HPPN-based diagnoser satisfy the symbolic condi-
tions. This means that the diagnoser considers at any time the occurrence of each
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Fig. 9. Diagnoser generation of the mobile robot - Step 2 : Separation into 2 levels

event that can occur from the estimated current mode. The arc annotations remain
unchanged:
G\ = Dp. 17

Example 5. In the example of the mobile robot, conditions Q(#;) = Q(f) =
Q(ts) = T because of the OR logical expression. Transitions #3 and 74 keep their
numerical conditions because of the AND logical expression.

Step 4 consists in removing degradation conditions in order to disconnect the
marking evolution of the degradation level from the degradation state:

Vi €Ty, o € Q = Q, + Q\{wP}. (18)

This step allows to manage computation performance and to keep focus on obser-
vations during the diagnosis process.

Example 6. In the example of the mobile robot, condition Q(#3) = T after Step 4.

Step 5 also improves the computation performance by merging transitions having
the same sets of input and output places in order. It reduces the size of the possible
state space. As a consequence, in the behavioral level, hypotheses sharing the same
cluster of particles are created during the prediction step of the online diagnoser.
In other words, several hypotheses are monitored according to the same continuous
dynamics with a single cluster of particles instead of having as many clusters as
hypotheses.

In the degradation level, this step eliminates concurrent transitions which have
the same degradation place as input and the same degradation place as output.
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Two transitions are mergeable if they represent the same change in continuous
dynamics (the same numerical places as input and as output, and the same numerical
condition) and have the same symbolic input place.

Definition 15 (meargeable transitions). Two transitions (¢',#") € T2 are mergeable
if and only if:

Ct' ="y A (FNPYN ="NPPY A (F°NPP =" NPN) A (Qy = Q). (19)

Step 5 of the diagnoser generation consists in merging every pair of mergeable
transitions as long as there are at least two mergeable transitions using the following
definition.

Definition 16 (Merging of two transitions). Merging two meargeable transitions
(t',t") € (T)? is defined by:
1. Create a new transition ¢ such as:

°re°t, t°—tour’°, Q — Q. (20)
2. Update Ty:
Ts « (Ts\{t',1"}) U {t}. (21

Example 7. Fig. 10 illustrates the merging step of the diagnoser generation for the
mobile robot. To simplify the reading, transitions of Fig. 9 have been renamed ac-
cording to the following correspondence table.

A A A A LATALA
Fig. 10[t1 |12 |13 |ta]ts |16 | 7] 18 [ 10 |110

In the behavioral level, transitions #; and #3 (f4 and t5) are merged into 13 (respec-
tively #45) as they have the same set of input places {p3, pY'} (respectively {p{, p¥ })
and the same numerical place pgv as output. In the degradation level, the transitions
t9 and t( are merged into #91¢ as they were concurrent.

Step 6 consists in removing the transitions resulting in an elementary loop in the
degradation level (pure Petri net).

Ty < Ty \ {t|°tNPP =t°NPP}. (22)

The goal is to improve the computational performance by avoiding the displacement
of the degradation tokens through a transition that loops on the same degradation
place. This step has no impact on the tracking quality of the degradation.

Example 8. Fig. 11 shows the diagnoser of the mobile robot. Transition g is re-
moved because it formed an elementary loop with pé).
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Fig. 11. HPPN-based diagnoser HPPN, for the mobile robot

5.3 Diagnoser Process

The initial marking Mo = {M3, M} ,ME} of the HPPN-based diagnoser represents
the system’s initial mode. It is composed of one configuration with value b, n’o\’
particles with value xy and nlov degradation tokens with value dy, where n]0\' is the
initial number of particles. As long as only one hypothesis is considered in the ini-
tial marking, two hypotheses cannot share the same configuration. However, two
hypotheses can share the same set of particles if they have the same continuous dy-
namics but different discrete states (see Example 7). From the initial marking and
the initial commands, the diagnoser marking M evolves at time k according to the
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observations Ox = O} UOY, where O and OV respectively represent the observa-
tions corresponding to the symbolic part and the numerical part.

The estimated marking at time k, My = {M3,MY ,MP} where M; = Mk‘k, repre-
sents all the possible hypotheses on the system mode at time k.

The marking evolution in the HPPN-based diagnoser is based on two steps, pre-
diction and correction, which combine the transition pseudo-firing, particle filters
and an algorithm called the Stochastic Scaling Algorithm (SSA).

In particle filtering, the number of particles defines the precision of the filter. The
goal of the SSA is to avoid the combinatory explosion and to limit the number of
tokens at each step of the algorithm. It dynamically adapts the hypotheses precision.
This algorithm is not described in this chapter, but the reader could refer to Douc
and Cappé (2005), Li et al. (2015) or Doucet and Johansen (2009) to obtain more
information about resampling methods for particle filtering.

The prediction step of the online diagnoser process aims at determining all pos-
sible next states of the diagnoser Mk+1|k. It is based on the firing of the enabled
transitions and on the update of the token values. All the enabled transitions are
fired according to the rules described in section 4.3. This implies the assumption
that a single event can occur at time k. The event set by of a configuration &, moved
through an arc a € A during the transition firing, is updated according to the an-
notation .27 (a). The value x of a particle 7 is updated according to the continuous
dynamics associated to the numerical place p¥ € PV in which 7 belongs after the
transition firing. Noise is added during the particle value update to take into account
uncertainty about model continuous dynamics. The value d of a degradation token
d is updated according to the degradation dynamics associated to the degradation
place pP € PP in which d belongs after the transition firing.

The correction step of the online diagnoser process updates the predicted mark-
ing Mk+1\k to the estimated marking Mk+1\ k-1 according to new observations Oj .
It is based on the computation of the scores of all hypotheses contained in the
marking and on the resampling of the tokens depending on the scores of the hy-
potheses they represent. The scores of hypotheses are computed with PrS and PrV,
the probability distributions over the symbolic and the continuous states, respec-
tively. PrS gives the configuration weights. A configuration weight is computed as
the inverse of exponential of the distance between the configuration event set and
O, = {Ox|x < k+1}, the set of symbolic observations until k+ 1. P gives
the normalized particle weights, calculated according to the distance between the
particle values and numerical observations 02’ +1- Then, the score of one hypothese
is computed using a weighted function of the sum of its particle weights and its
configuration weight:

Score(8},{n]}, {d.}) = a x Pr(8}) + (1 — a) x Zk PV (x)), (23)
j=1

where o € [0, 1] is the coefficient indicating the global confidence of the symbolic
part relatively to the numerical part and n = |{7]}| is the number of particles con-
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sidered for the hypothesis. The score of a hypothesis is always between O and 1.
A decision making process associates a new number of parti-cles nf{v ', to each set
of particles, according to the best score of all the possible modes it belongs and
three scale parameters, denoted n),,, nj) .+ and n,y,.. Each set of particles is then
resampled with its associated nf{v 1 barticles, like in classical particle filtering. Pa-
rameters 7Y, and njs\; .. are respectively the minimum and the sufficient numbers
of particles (but also the number of degradation tokens) to monitor a hypothesis. It
means that any n, | is chosen to satisfy the predicate )y, <ny, | <nl ... Param-
eter nl¥, . is the maximum number of particles (or degradation tokens) available to
monitor all hypotheses. It means the total number of particles after the resampling
is always less than or equal to n), . During the resampling, degradation tokens
linked to duplicated particles are duplicated while those linked to deleted particles
are deleted. Finally, configurations that are no longer linked with any degradation to-
kens are deleted. The correction mechanism highlights that the degradation tokens,
in addition to estimate the degradation state, prevent the particle distribution of one
hypothesis to be disturbed by the particle distributions of the other hypotheses. In
particle filtering, the number of particles defines the precision of the filter but is also
a computational performance factor. The scale parameters of the diagnoser process
thus compromise the number of hypotheses to monitor and the precision granted to
each one of them, relative to the available computational power (nY¥,. can be set up
to fulfill performance constraints).

The diagnosis Ay is deduced from the marking of the HPPN-based diagnoser
HPPN, at time k:

A = My = (M, M, M} (24)

It represents all diagnosis hypotheses as a distribution of beliefs over the current
health mode and how this mode has been reached. In other words, the marking M;
indicates the belief over the continuous state, the fault occurrences and the degra-
dation state. The HPPN-based diagnoser results include the results of a classical
diagnoser in terms of fault occurrences. In a classical diagnoser, however, every
diagnosis hypotheses has the same belief degree. A HPPN-based diagnoser handles
more uncertainty and evaluates the ambiguity according to the tokens places and
values.

6 Case Study

This section focuses on the application of the proposed methodology on the K11
planetary rover prototype. The K11 is a four-wheeled rover designed as a platform
for testing power-efficient rover architectures in Antarctic conditions [Lachat et al.
(20006)].

The K11 has then been redesigned by NASA Ames Research Center for diagnostics
and Prognostics-enabled Decision Making research [Balaban et al. (2013); Sweet
et al. (2014); Daigle et al. (2014)]. It has been transformed into a testbed to simulate



24 Quentin Gaudel and Elodie Chanthery and Pauline Ribot and Matthew J. Daigle

some fault occurrences and failures. In this work, it is studied as a functional rover
exposed to failures and executing missions.

6.1 Rover Description

The K11 rover is powered by twenty-four 2.2 Ah lithium-ion single cell batter-
ies. A typical mission of the rover consists in visiting and performing desired sci-
ence functions at a set of waypoints, before joining its charging station. A de-
cision making module (DM) is responsible for determining the order in which
to visit the waypoints according to the terrain map, the waypoint positions and
rewards, and the rover conditions. The rover has four wheels, denominated by
their location: the front-left (FL) wheel, the front-right (FR) wheel, the back-left
(BL) wheel and the back-right (BR) wheel. Each wheel is driven by an indepen-
dent 250 W graphite-brush motor, with control performed by a single-axis digital
motion controller. An onboard laptop computer runs the control and data acqui-
sition software. The rover is a skid-steered vehicle, meaning that the wheels can-
not be steered and the rover is rotated by commanding the wheel speeds on the left
and right sides to different values. The battery management system provides bat-
tery charging and load balancing capabilities. It also sends voltage and temperature
measurements for each of the individual cells to the onboard computer. The data
acquisition module collects current and motor temperature measurements and sends
them to the onboard computer. The motor controllers send back motion data such
as commanded speeds and actual speeds. More details on the rover can be found
in Balaban et al. (2013).

All the continuous observations on the rover and the list of faults we consider
in this study are presented in Table 1. Four signals command the wheels with a
proportional-integral-derivative controller and the set of sensors returns 61 mea-
surement signals. Several fault types have been implemented on the testbed and are
related to the power system (battery), the electro-mechanical system (motors, con-
troller), and the sensors (drift, bias, scaling or failure).

The K11 rover has no discrete actuator or discrete sensor and thus has mostly
been studied as a continuous system, where faults were defined as constraints on the
continuous state. We propose to abstract anticipated faults into unobservable events.
The multi-mode system that describes the rover health evolution is presented in
Fig. 12. To simplify the description, only a part of the multi-mode system is shown.
The modes corresponding to consecutive fault occurrences are not included and only
the front-left motor is considered.

The rover is in mode Nominal; with continuous dynamics C; as long as no
fault has occurred. Fault f; occurrence represents the end of discharge (EOD)
of the battery, i.e. the date when the battery is too discharged to power the sys-
tem. This is assumed to occur when the battery voltage is lower than 3.25 V and
it leads to the mission failure (mode Failed; with continuous dynamics Cs). Fault
> represents the emergence of a parasitic battery load arising from an electrical
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Table 1. Continuous commands, continuous measurements, and fault types on the K11

Command type  |[Comments | Units
Wheel speed Commanded speeds for wheels rad/s
on the same side are the same
Measurement type| Comments | Units
Wheel speed One for each wheel rad/s
Total current A current sensor on the power bus ~ |A
Motor current One for each motor A
Motor temperature |One for each motor °C
Battery temperature |One for each battery cell °C
Battery voltage One for each battery cell A\
Fault event labels [Fault descriptions |Effects
N Battery charge depletion Lead to failure
b Parasitic electric load Increase battery drain
By fasfs, fe Increased motor frictions Increase battery drain and motor
temperatures
f1, 18, fo, fio Motor overheating Lead to failure
fi1, 12, 113, f1a Failed motor temperature sensors Unable to sense motor temperatures

dv<3.25
oce(fi) and v occ(f1) and v < 3.25

Degraded,;

oce(f7) and tr, > 70
Degraded,

occ(fi) and v < 3.25
oce(f7) and tg, > 70

occ(fi) and v < 3.25

Degradeds
occ(f7) and tr, > 70

Fig. 12. Streamlined description of the rover health evolution.

submodule continuously engaged, for example. The parasitic load increases the to-
tal current and thus the battery drain (mode Degraded; with continuous dynamics
C,), which causes the system to reach the EOD prematurely. Fault f3 (f, f5 and fg)
represents an increased friction of the FL (FR, BL and BR) motor. The increased
friction induces the need for a larger amount of current to satisfy the same speed
(mode Degraded, with continuous dynamics C3). Furthermore, the load demands
will be higher, raising the motor temperature. The most critical scenario for a motor
is an overheating. In such case, the heat will eventually destroy the insulation of the
windings, causing electrical shorts and leading to motor failure. The overheating
of the FL (FR, BL and BR) motor is represented by fault f; (fs, fo and fio). The
occurrence of any one of these faults leads to the rover failure (mode Fuailed, with
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continuous dynamics Cs) and thus represents the rover end of life (EOL). A motor is
assumed to overheat when its temperature exceeds 70 °C. The motor temperatures
are measured by four sensors. These sensors, however, are known to fail unexpect-
edly, sending inconsistent values. These failures are represented by faults fi; fi2,
f13 and f14. We consider that the temperature model is not accurate enough with-
out a correction step with observations. As a consequence, once fi1 (fi2, f13 and
f14) has occurred, the occurrence of fault f7 (fs, fo and fi9) does not match with
any condition on the FL (FR, BL and BR) motor temperature (see the arc between
Degradeds and Failed;). In Fig. 12, mode Degradeds; with continuous dynamics Cy
represents the mode where the temperature sensor of the FL motor has failed. The
rover degradation state can be monitored with degradation dynamics D1, which cor-
responds to the identity dynamics.

6.2 Rover Modeling

Considering all the motors and the consecutive fault combinations, we identified 192
modes and 240 mode changes. The HPPN-based model of the rover has 241 places
(192 symbolic places, 48 numerical places, 1 degradation place) and 240 transitions.
The HPPN-based diagnoser has the same number of places and transitions because
the merging step of the diagnoser generation (Step 5) does not reduce the number of
transitions (it is specific to this case study). Actually, the merging step merges transi-
tions having exactly the same sets of input and output places. This kind of transition
does not exist in this real application, but it may be very useful in other cases. The
degradation place is removed from the transition inputs and outputs, reducing the
complexity of the net. Because there is only one degradation place, all transitions in
the degradation level are removed by Step 6 of the diagnoser generation. The under-
lying DES of the multi-mode system and HPPN-based model and diagnoser of the
K11 rover are available at https://homepages.laas.fr/echanthe/PetriNets2016.

The nominal continuous dynamics is represented as a set of differential equations
that unifies the battery model with the rover motion model and the temperature mod-
els. It can be converted to a discrete-time representation and solved with a sample
time of 1/20s, while continuous observation sampling is about 1s. We consider 30
state variables for the rover, including the rover 3-dimensional position, its relative
angle position, the wheel control errors, the motor temperatures and motor winding
temperatures. The 24 batteries are lumped into a single one to only consider 5 bat-
tery state variables (3 charges, the temperature and the voltage) instead of 120. The
battery model has been validated with experimental data in previous works [Daigle
et al. (2014); Sweet et al. (2014)]. Unifying the battery model with motion and tem-
peratures, however, increases uncertainty about the rover model.

Fault f, occurrence and effect on the system behavior are modeled as a time
varying parameter. The parasitic battery load is captured as an additional current
reaching a value between 1.5 A and 4.5 A from value O A in a few seconds after the
fault occurrence. First, two parameters are added to the continuous state vector to
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monitor both the duration since the fault occurrence and the additional current value.
Then, the uncertain rise of the additional current is modeled by adding a Gaussian
noise, with a mean and standard deviation values starting respectively at 3 and 0.3,
and decreasing to O while the duration since the fault occurrence increases.

Finally, the temperature model is quite uncertain so temperature measurements
are assumed to be reliable when sensors are not failed. We model fault fiy, fi2, f13
and f14 by increasing significantly the motor temperature sensor noise because
failed sensors only send inconsistent large values with no pattern. Fault f3, fa, f5
and fg and increased motor frictions can be modeled with time varying parameters
(as additional motor resistances) like f, but are not monitored in this study.

6.3 Simulation Results

The HPPN framework is implemented in Python 3.4. The tests were performed on
a 4 Intel(R) Core(TM) i5-4590 CPU at 3.30 GHz with 16 GB of RAM and running
GNU/Linux (Linux 3.13.0 — 74, x86_64). In order to reduce computation time, the
token value update step is multithreaded on the 4 physical cores. The rest of this
implementation only uses one core.

Two scenarios studied in Sweet et al. (2014) are considered in this work. The
rover mission is to visit a maximum of 12 waypoints and to go back to its starting
position. All waypoints have different associated rewards. In nominal conditions,
the rover DM system returns a S-waypoints path, starting and finishing at the same
position. For all scenarios, the K11 rover starts at Os with batteries fully charged
and with all components at the ambient temperature. The K11 rover currently has,
however, 2 motor temperature sensors (FL and BL) failed. These faults do affect
the monitoring but not the physical system, so the DM returns the same path as
in nominal conditions. These sensor faults are diagnosed in one sampling period
by the diagnoser if we consider the initial mode to be unknown, so we assume to
know the rover initial degraded mode, and we have only one hypothesis in the initial
diagnoser marking.

For the sake of clarity, in the rest of the paper, health modes are designated
with representative keywords of the rover state. For example, the initial mode is
designated as Sensor BL FL fault. The initial number of particles and degrada-
tion tokens is nf)v = 100. The scale parameters of the diagnoser process are set to
(n%m,ngtff,n%ax) = (40, 80,6000).

6.3.1 Scenario 1
In Scenario 1, no fault occurs. The rover successfully executes its mission. Fig. 13

presents tthe diagnosis hypotheses as the distribution of beliefs over the current
health mode at any time.
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Fig. 13. Scenario 1: Mode belief at any time.

The belief degree of a possible mode is the score computed for the related hy-
pothesis with Eq. 23 and « set to 0.5. Any belief degree is between 0 and 1, this
represents a score, so the sum of the belief degrees of all possible modes is not 1.
In Fig. 13, the maximum belief degree of a mode at any time is represented by the
thickness of the line and the highest belief degree of all the modes is plotted in blue.
The gap between 81 s and 281 s corresponds to a break during the experiment. The
figure shows that the diagnoser keeps the real mode Sensor BL FL fault in its set
of hypotheses and assigns it the highest belief degree almost all along the scenario.
Other modes are also highly considered by the diagnoser at any time because of the
model-based uncertainty. The combination of continuous and discrete evolutions is
explained by the marking rules in the HPPN. As the diagnoser generation process
replaces every symbolic condition by a TRUE condition, the emphasis is put on the
continuous evolution of the system. It means that faults are essentially detected by
continuous clues. In the same way, if a discrete event occurs before a degradation
is detected, the discrete evolution of the system will always be followed thanks to
the pseudo-firing process, and then the degradation will confirm or not this discrete
evoluton.

6.3.2 Scenario 2.

In Scenario 2, a battery parasitic load occurs between 660 s and 695 s, and the DM
system cancels the visit of the farthest waypoint. Fault f, occurrence is immediately
detected by the diagnoser (Fig. 14). After 678 s, the possibility of being in mode
Sensor BL FL fault + Parasitic load is the highest until the end of the mission. The
fault load is estimated (most likely) at 1.39 A at 678 s, 1.73 A at 679 s, 2.16 A at
683 s and 2.16 A at 3906 s. A zoom between 570 s and 760 s on the trajectories of
the modes that are still possible at 3906s (Fig. 15) shows that fault f, is believed
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Fig. 14. Scenario 2: Mode belief at any time.

to occur between 631 s and 694 s, and most likely between 677 s and 689 s. These
results are consistent with our analysis of the measured total current.

Mode trajectories at time 3906.0s
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Fig. 15. Scenario 2: Trajectories of possible modes at time 3906s.

Faults are always detected in one sampling period because the HPPN-based diag-
noser considers all hypotheses (including the hypotheses concerning faults with
slow degradation) during the prediction step due to pseudo-firing. Moreover it keeps
the matching marking during the correction step. However, the isolation may be
longer than one sampling period. The results show that the diagnoser grants most
of the time, but not always, the highest belief to the real mode. The diagnosis, how-
ever, carries all the explanation of the observations as a distribution of beliefs, and
then the real mode is always considered in the set of diagnosis hypotheses. This
illustrates the robustness of the HPPN-based diagnoser to the rover model and data.
The average diagnosis computation time and token number are 13.3 s and 8801.4,
respectively. These metrics point out the diagnosis computation time remains ac-
ceptable compared to the system model computational complexity. The maximum
RAM used by Scenario 1 and 2 are 140.7 MB and 141.8 MB. More extended per-
formance analyses are proposed in the next section.
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The case study results show that HPPN-based diagnosis is robust to real sys-
tem data and constraints and adaptable to systems without discrete observations nor
degradation knowledge.

6.3.3 Performance Analysis, Comparison with other Approaches

Diagnosis computation times, and the maximum RAM used for different sets of
scaling parameters, are given in Table 2. Tests have been performed on three scenar-
ios (including the nominal and faulty scenarios presented above) and run 12 times.
54403 diagnoses are computed.

Table 2. Computational performances of the HPPN-based diagnosis method for different scaling
parameters.

Scaling parameters Ay time (8) max. RAM (MB)
minimum 0.28

(40,80,1500) 4 maximum 4.54
average 3.35 126.73
minimum 0.28

(40,80,400)4 maximum 1.00
average 0.56 122.15
minimum 0.22

(20,60,400) 4 maximum 0.98
average 0.74 112.18

These metrics point out that computation times with the initial scaling parameters
remain acceptable but do not respect real-time constraints; observations sampling is
about 1 s and the average diagnosis computation time is 3.35 s. This is mainly due
to that diagnosis process relies on parallel step-by-step simulations but it is also due
to the rover model computational complexity.

The methodology theoretical complexity is difficult to evaluate because it de-
pends on the continuous equations, the DES structure and the token number, among
others. Moreover, software implementation, compilation optimization or virtual ma-
chine execution are also other performance factors difficult to evaluate in practice.
This is why we propose in this work to approach performance constraints by tuning
the scaling parameters.

Other diagnosis works have been conducted on the rover [Balaban et al. (2013)],
such as the QED algorithm, described in Daigle et al. (2015a) or the HyDe (Hybrid
Diagnostic Engine) [Narasimhan and Brownston (2007)]. The main advantage of
our approach is that the diagnosis estimates are not presented as a set of candidates,
but as a distribution of candidates. In case of decision making in a health manage-
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ment context, the operator may take a more justified decision. In terms of detection
delay, QED and HyDe detect the fault in less than 1 sec. QED isolates it in 26 s and
has a good estimate of the parasitic load (3 % of relative error) in about 50 s. Our
method detects the fault after the first diagnosis. The estimation of the worse isola-
tion time is about 18 s. The estimation of the parasitic load is good (8% of relative
error) after 23 s.

7 Conclusion

This work applies the approach of health monitoring based on Hybrid Particle Petri
Nets to a real case study, the K11 planetary rover prototype. The HPPN framework
is particularly useful to take into account knowledge-based and observation-based
uncertainty. The HPPN-based diagnoser deals with event occurrence possibility and
knowledge imprecision. It monitors both discrete and continuous dynamics, as well
as degradation evolution, in order to introduce concepts that will be useful to per-
form prognosis and health management of hybrid systems under uncertainty. In ad-
dition, diagnosis results can be used as probability distributions for decision making.

Then, the methodology was applied on the K11 rover. A hybrid model of the
rover has been proposed by discretizing its health evolution and defining fault
events. The system model and diagnoser have been generated in the HPPN frame-
work and two scenarios have been tested to illustrate the proposed method advan-
tages. The diagnoser results are consistent with the expected ones and show that
HPPN-based diagnosis is robust to real system data and constraints and adaptable
to systems without discrete observations nor degradation knowledge.

Other works aim at formalizing and developing a prognosis process that will
interleave diagnosis and prognosis methods to obtain more accurate results. The
HPPN-based prognostics methodology has been defined and tested on a three-tank
system as well as on the K11 rover.

This work has a lot of interesting perspectives. The first one is the extension
of the work to very large systems. To be applied on real large scale systems, the
proposed methodology could be adapted in the context of decentralized diagnosis
structures as the approaches developed in Sayed-Mouchaweh and Lughofer (2015).
The second perspective deals with the major hypothesis on the HPPN model-based
approach: the system model is assumed to be correct and complete. Machine learn-
ing techniques may be used to adapt this predefined model with new collected
data [Khamassi et al. (2016); Leclercq et al. (2008)]. Another perspective is to use
machine learning methods to improve the detection of small drift in the system
parameters. The combination of model-based and data-driven approaches for diag-
nosis is under investigation [Jung et al. (2016), Tidriri et al. (2016), Toubakh and
Sayed-Mouchaweh (2016)].
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